Properties

Label 6008.2.a.d
Level 6008
Weight 2
Character orbit 6008.a
Self dual Yes
Analytic conductor 47.974
Analytic rank 0
Dimension 49
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6008 = 2^{3} \cdot 751 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6008.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(47.9741215344\)
Analytic rank: \(0\)
Dimension: \(49\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(49q \) \(\mathstrut +\mathstrut 14q^{3} \) \(\mathstrut -\mathstrut 7q^{5} \) \(\mathstrut +\mathstrut 22q^{7} \) \(\mathstrut +\mathstrut 59q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(49q \) \(\mathstrut +\mathstrut 14q^{3} \) \(\mathstrut -\mathstrut 7q^{5} \) \(\mathstrut +\mathstrut 22q^{7} \) \(\mathstrut +\mathstrut 59q^{9} \) \(\mathstrut +\mathstrut 19q^{11} \) \(\mathstrut +\mathstrut 15q^{13} \) \(\mathstrut +\mathstrut 17q^{15} \) \(\mathstrut +\mathstrut 14q^{17} \) \(\mathstrut +\mathstrut 24q^{19} \) \(\mathstrut -\mathstrut 8q^{21} \) \(\mathstrut +\mathstrut 28q^{23} \) \(\mathstrut +\mathstrut 72q^{25} \) \(\mathstrut +\mathstrut 62q^{27} \) \(\mathstrut -\mathstrut 35q^{29} \) \(\mathstrut +\mathstrut 51q^{31} \) \(\mathstrut +\mathstrut 28q^{33} \) \(\mathstrut +\mathstrut 23q^{35} \) \(\mathstrut +\mathstrut 19q^{37} \) \(\mathstrut +\mathstrut 34q^{39} \) \(\mathstrut +\mathstrut 12q^{41} \) \(\mathstrut +\mathstrut 37q^{43} \) \(\mathstrut -\mathstrut 20q^{45} \) \(\mathstrut +\mathstrut 54q^{47} \) \(\mathstrut +\mathstrut 65q^{49} \) \(\mathstrut +\mathstrut 43q^{51} \) \(\mathstrut -\mathstrut 17q^{53} \) \(\mathstrut +\mathstrut 57q^{55} \) \(\mathstrut +\mathstrut 19q^{57} \) \(\mathstrut +\mathstrut 52q^{59} \) \(\mathstrut -\mathstrut 16q^{61} \) \(\mathstrut +\mathstrut 41q^{63} \) \(\mathstrut +\mathstrut 13q^{65} \) \(\mathstrut +\mathstrut 44q^{67} \) \(\mathstrut -\mathstrut 4q^{69} \) \(\mathstrut +\mathstrut 52q^{71} \) \(\mathstrut +\mathstrut 58q^{73} \) \(\mathstrut +\mathstrut 81q^{75} \) \(\mathstrut -\mathstrut 27q^{77} \) \(\mathstrut +\mathstrut 43q^{79} \) \(\mathstrut +\mathstrut 73q^{81} \) \(\mathstrut +\mathstrut 51q^{83} \) \(\mathstrut -\mathstrut 16q^{85} \) \(\mathstrut +\mathstrut 41q^{87} \) \(\mathstrut +\mathstrut 40q^{89} \) \(\mathstrut +\mathstrut 73q^{91} \) \(\mathstrut +\mathstrut 22q^{93} \) \(\mathstrut +\mathstrut 70q^{95} \) \(\mathstrut +\mathstrut 96q^{97} \) \(\mathstrut +\mathstrut 78q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 0 −3.18877 0 2.23846 0 2.57450 0 7.16824 0
1.2 0 −2.93504 0 −2.06805 0 2.42601 0 5.61445 0
1.3 0 −2.90482 0 −3.52511 0 3.26846 0 5.43799 0
1.4 0 −2.65403 0 −0.749159 0 −1.02284 0 4.04389 0
1.5 0 −2.55321 0 −4.16598 0 −2.08978 0 3.51888 0
1.6 0 −2.54750 0 −2.18138 0 −2.46793 0 3.48974 0
1.7 0 −2.35470 0 0.425735 0 −0.578482 0 2.54461 0
1.8 0 −2.20855 0 1.60744 0 2.65561 0 1.87768 0
1.9 0 −2.08107 0 −0.324432 0 −2.64730 0 1.33086 0
1.10 0 −1.95337 0 3.19909 0 4.95256 0 0.815657 0
1.11 0 −1.83267 0 0.130732 0 −0.665399 0 0.358681 0
1.12 0 −1.52312 0 3.48921 0 −1.44076 0 −0.680107 0
1.13 0 −1.49420 0 −0.747906 0 4.82128 0 −0.767369 0
1.14 0 −1.42908 0 1.27830 0 −2.61604 0 −0.957738 0
1.15 0 −1.11974 0 2.58610 0 0.902449 0 −1.74619 0
1.16 0 −1.08636 0 −0.0864029 0 −0.643099 0 −1.81982 0
1.17 0 −1.04405 0 −3.83943 0 4.18991 0 −1.90997 0
1.18 0 −1.04212 0 −3.77557 0 1.06595 0 −1.91399 0
1.19 0 −0.502181 0 −0.673128 0 2.13432 0 −2.74781 0
1.20 0 −0.385942 0 −1.81441 0 −4.21344 0 −2.85105 0
See all 49 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.49
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(751\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{49} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6008))\).