Properties

Label 6007.2.a.a
Level 6007
Weight 2
Character orbit 6007.a
Self dual Yes
Analytic conductor 47.966
Analytic rank 2
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6007 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6007.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(47.9661364942\)
Analytic rank: \(2\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( -\beta q^{2} \) \( + ( -2 + \beta ) q^{3} \) \( + ( -1 + \beta ) q^{4} \) \( + ( 1 - \beta ) q^{5} \) \( + ( -1 + \beta ) q^{6} \) \( -3 q^{7} \) \( + ( -1 + 2 \beta ) q^{8} \) \( + ( 2 - 3 \beta ) q^{9} \) \(+O(q^{10})\) \( q\) \( -\beta q^{2} \) \( + ( -2 + \beta ) q^{3} \) \( + ( -1 + \beta ) q^{4} \) \( + ( 1 - \beta ) q^{5} \) \( + ( -1 + \beta ) q^{6} \) \( -3 q^{7} \) \( + ( -1 + 2 \beta ) q^{8} \) \( + ( 2 - 3 \beta ) q^{9} \) \(+ q^{10}\) \( + ( 1 + 2 \beta ) q^{11} \) \( + ( 3 - 2 \beta ) q^{12} \) \( -3 q^{13} \) \( + 3 \beta q^{14} \) \( + ( -3 + 2 \beta ) q^{15} \) \( -3 \beta q^{16} \) \( + ( -5 + \beta ) q^{17} \) \( + ( 3 + \beta ) q^{18} \) \( -3 q^{19} \) \( + ( -2 + \beta ) q^{20} \) \( + ( 6 - 3 \beta ) q^{21} \) \( + ( -2 - 3 \beta ) q^{22} \) \( + ( -4 - 2 \beta ) q^{23} \) \( + ( 4 - 3 \beta ) q^{24} \) \( + ( -3 - \beta ) q^{25} \) \( + 3 \beta q^{26} \) \( + ( -1 + 2 \beta ) q^{27} \) \( + ( 3 - 3 \beta ) q^{28} \) \( + ( -2 - 4 \beta ) q^{29} \) \( + ( -2 + \beta ) q^{30} \) \( + ( -6 + 3 \beta ) q^{31} \) \( + ( 5 - \beta ) q^{32} \) \( -\beta q^{33} \) \( + ( -1 + 4 \beta ) q^{34} \) \( + ( -3 + 3 \beta ) q^{35} \) \( + ( -5 + 2 \beta ) q^{36} \) \( + ( 6 - 3 \beta ) q^{37} \) \( + 3 \beta q^{38} \) \( + ( 6 - 3 \beta ) q^{39} \) \( + ( -3 + \beta ) q^{40} \) \( -6 q^{41} \) \( + ( 3 - 3 \beta ) q^{42} \) \( + ( -8 + 5 \beta ) q^{43} \) \( + ( 1 + \beta ) q^{44} \) \( + ( 5 - 2 \beta ) q^{45} \) \( + ( 2 + 6 \beta ) q^{46} \) \( + ( -5 + 4 \beta ) q^{47} \) \( + ( -3 + 3 \beta ) q^{48} \) \( + 2 q^{49} \) \( + ( 1 + 4 \beta ) q^{50} \) \( + ( 11 - 6 \beta ) q^{51} \) \( + ( 3 - 3 \beta ) q^{52} \) \( + ( 3 - \beta ) q^{53} \) \( + ( -2 - \beta ) q^{54} \) \( + ( -1 - \beta ) q^{55} \) \( + ( 3 - 6 \beta ) q^{56} \) \( + ( 6 - 3 \beta ) q^{57} \) \( + ( 4 + 6 \beta ) q^{58} \) \( + ( -3 + 5 \beta ) q^{59} \) \( + ( 5 - 3 \beta ) q^{60} \) \( + ( -6 + 2 \beta ) q^{61} \) \( + ( -3 + 3 \beta ) q^{62} \) \( + ( -6 + 9 \beta ) q^{63} \) \( + ( 1 + 2 \beta ) q^{64} \) \( + ( -3 + 3 \beta ) q^{65} \) \( + ( 1 + \beta ) q^{66} \) \( + 3 q^{67} \) \( + ( 6 - 5 \beta ) q^{68} \) \( + ( 6 - 2 \beta ) q^{69} \) \( -3 q^{70} \) \( + ( -15 + \beta ) q^{71} \) \( + ( -8 + \beta ) q^{72} \) \( + ( 3 - 3 \beta ) q^{74} \) \( + ( 5 - 2 \beta ) q^{75} \) \( + ( 3 - 3 \beta ) q^{76} \) \( + ( -3 - 6 \beta ) q^{77} \) \( + ( 3 - 3 \beta ) q^{78} \) \( + ( -4 + 7 \beta ) q^{79} \) \( + 3 q^{80} \) \( + ( -2 + 6 \beta ) q^{81} \) \( + 6 \beta q^{82} \) \( + ( 3 - 10 \beta ) q^{83} \) \( + ( -9 + 6 \beta ) q^{84} \) \( + ( -6 + 5 \beta ) q^{85} \) \( + ( -5 + 3 \beta ) q^{86} \) \( + 2 \beta q^{87} \) \( + ( 3 + 4 \beta ) q^{88} \) \( + ( 6 - 4 \beta ) q^{89} \) \( + ( 2 - 3 \beta ) q^{90} \) \( + 9 q^{91} \) \( + ( 2 - 4 \beta ) q^{92} \) \( + ( 15 - 9 \beta ) q^{93} \) \( + ( -4 + \beta ) q^{94} \) \( + ( -3 + 3 \beta ) q^{95} \) \( + ( -11 + 6 \beta ) q^{96} \) \( + ( -9 + 4 \beta ) q^{97} \) \( -2 \beta q^{98} \) \( + ( -4 - 5 \beta ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(2q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(2q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 6q^{7} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut 2q^{10} \) \(\mathstrut +\mathstrut 4q^{11} \) \(\mathstrut +\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 6q^{13} \) \(\mathstrut +\mathstrut 3q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut -\mathstrut 3q^{16} \) \(\mathstrut -\mathstrut 9q^{17} \) \(\mathstrut +\mathstrut 7q^{18} \) \(\mathstrut -\mathstrut 6q^{19} \) \(\mathstrut -\mathstrut 3q^{20} \) \(\mathstrut +\mathstrut 9q^{21} \) \(\mathstrut -\mathstrut 7q^{22} \) \(\mathstrut -\mathstrut 10q^{23} \) \(\mathstrut +\mathstrut 5q^{24} \) \(\mathstrut -\mathstrut 7q^{25} \) \(\mathstrut +\mathstrut 3q^{26} \) \(\mathstrut +\mathstrut 3q^{28} \) \(\mathstrut -\mathstrut 8q^{29} \) \(\mathstrut -\mathstrut 3q^{30} \) \(\mathstrut -\mathstrut 9q^{31} \) \(\mathstrut +\mathstrut 9q^{32} \) \(\mathstrut -\mathstrut q^{33} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut 3q^{35} \) \(\mathstrut -\mathstrut 8q^{36} \) \(\mathstrut +\mathstrut 9q^{37} \) \(\mathstrut +\mathstrut 3q^{38} \) \(\mathstrut +\mathstrut 9q^{39} \) \(\mathstrut -\mathstrut 5q^{40} \) \(\mathstrut -\mathstrut 12q^{41} \) \(\mathstrut +\mathstrut 3q^{42} \) \(\mathstrut -\mathstrut 11q^{43} \) \(\mathstrut +\mathstrut 3q^{44} \) \(\mathstrut +\mathstrut 8q^{45} \) \(\mathstrut +\mathstrut 10q^{46} \) \(\mathstrut -\mathstrut 6q^{47} \) \(\mathstrut -\mathstrut 3q^{48} \) \(\mathstrut +\mathstrut 4q^{49} \) \(\mathstrut +\mathstrut 6q^{50} \) \(\mathstrut +\mathstrut 16q^{51} \) \(\mathstrut +\mathstrut 3q^{52} \) \(\mathstrut +\mathstrut 5q^{53} \) \(\mathstrut -\mathstrut 5q^{54} \) \(\mathstrut -\mathstrut 3q^{55} \) \(\mathstrut +\mathstrut 9q^{57} \) \(\mathstrut +\mathstrut 14q^{58} \) \(\mathstrut -\mathstrut q^{59} \) \(\mathstrut +\mathstrut 7q^{60} \) \(\mathstrut -\mathstrut 10q^{61} \) \(\mathstrut -\mathstrut 3q^{62} \) \(\mathstrut -\mathstrut 3q^{63} \) \(\mathstrut +\mathstrut 4q^{64} \) \(\mathstrut -\mathstrut 3q^{65} \) \(\mathstrut +\mathstrut 3q^{66} \) \(\mathstrut +\mathstrut 6q^{67} \) \(\mathstrut +\mathstrut 7q^{68} \) \(\mathstrut +\mathstrut 10q^{69} \) \(\mathstrut -\mathstrut 6q^{70} \) \(\mathstrut -\mathstrut 29q^{71} \) \(\mathstrut -\mathstrut 15q^{72} \) \(\mathstrut +\mathstrut 3q^{74} \) \(\mathstrut +\mathstrut 8q^{75} \) \(\mathstrut +\mathstrut 3q^{76} \) \(\mathstrut -\mathstrut 12q^{77} \) \(\mathstrut +\mathstrut 3q^{78} \) \(\mathstrut -\mathstrut q^{79} \) \(\mathstrut +\mathstrut 6q^{80} \) \(\mathstrut +\mathstrut 2q^{81} \) \(\mathstrut +\mathstrut 6q^{82} \) \(\mathstrut -\mathstrut 4q^{83} \) \(\mathstrut -\mathstrut 12q^{84} \) \(\mathstrut -\mathstrut 7q^{85} \) \(\mathstrut -\mathstrut 7q^{86} \) \(\mathstrut +\mathstrut 2q^{87} \) \(\mathstrut +\mathstrut 10q^{88} \) \(\mathstrut +\mathstrut 8q^{89} \) \(\mathstrut +\mathstrut q^{90} \) \(\mathstrut +\mathstrut 18q^{91} \) \(\mathstrut +\mathstrut 21q^{93} \) \(\mathstrut -\mathstrut 7q^{94} \) \(\mathstrut -\mathstrut 3q^{95} \) \(\mathstrut -\mathstrut 16q^{96} \) \(\mathstrut -\mathstrut 14q^{97} \) \(\mathstrut -\mathstrut 2q^{98} \) \(\mathstrut -\mathstrut 13q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−1.61803 −0.381966 0.618034 −0.618034 0.618034 −3.00000 2.23607 −2.85410 1.00000
1.2 0.618034 −2.61803 −1.61803 1.61803 −1.61803 −3.00000 −2.23607 3.85410 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(6007\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{2} \) \(\mathstrut +\mathstrut T_{2} \) \(\mathstrut -\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6007))\).