Properties

Label 6003.2.a.v
Level 6003
Weight 2
Character orbit 6003.a
Self dual Yes
Analytic conductor 47.934
Analytic rank 0
Dimension 30
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 6003 = 3^{2} \cdot 23 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 6003.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(47.9341963334\)
Analytic rank: \(0\)
Dimension: \(30\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(30q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut 37q^{4} \) \(\mathstrut +\mathstrut 10q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(30q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut +\mathstrut 37q^{4} \) \(\mathstrut +\mathstrut 10q^{7} \) \(\mathstrut -\mathstrut 6q^{8} \) \(\mathstrut +\mathstrut 8q^{10} \) \(\mathstrut +\mathstrut 36q^{13} \) \(\mathstrut -\mathstrut 7q^{14} \) \(\mathstrut +\mathstrut 47q^{16} \) \(\mathstrut -\mathstrut 18q^{17} \) \(\mathstrut +\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 25q^{22} \) \(\mathstrut +\mathstrut 30q^{23} \) \(\mathstrut +\mathstrut 56q^{25} \) \(\mathstrut -\mathstrut 11q^{26} \) \(\mathstrut +\mathstrut 27q^{28} \) \(\mathstrut -\mathstrut 30q^{29} \) \(\mathstrut +\mathstrut 14q^{31} \) \(\mathstrut +\mathstrut 7q^{32} \) \(\mathstrut +\mathstrut 3q^{34} \) \(\mathstrut +\mathstrut 22q^{35} \) \(\mathstrut +\mathstrut 40q^{37} \) \(\mathstrut -\mathstrut 6q^{38} \) \(\mathstrut +\mathstrut 30q^{40} \) \(\mathstrut -\mathstrut 14q^{41} \) \(\mathstrut +\mathstrut 34q^{43} \) \(\mathstrut -\mathstrut 5q^{44} \) \(\mathstrut -\mathstrut q^{46} \) \(\mathstrut +\mathstrut 2q^{47} \) \(\mathstrut +\mathstrut 74q^{49} \) \(\mathstrut +\mathstrut 21q^{50} \) \(\mathstrut +\mathstrut 71q^{52} \) \(\mathstrut -\mathstrut 16q^{53} \) \(\mathstrut +\mathstrut 22q^{55} \) \(\mathstrut -\mathstrut 14q^{56} \) \(\mathstrut +\mathstrut q^{58} \) \(\mathstrut +\mathstrut 32q^{59} \) \(\mathstrut +\mathstrut 46q^{61} \) \(\mathstrut -\mathstrut 20q^{62} \) \(\mathstrut +\mathstrut 68q^{64} \) \(\mathstrut -\mathstrut 12q^{65} \) \(\mathstrut +\mathstrut 14q^{67} \) \(\mathstrut -\mathstrut 27q^{68} \) \(\mathstrut +\mathstrut 32q^{71} \) \(\mathstrut +\mathstrut 50q^{73} \) \(\mathstrut +\mathstrut 26q^{74} \) \(\mathstrut +\mathstrut 56q^{76} \) \(\mathstrut -\mathstrut 34q^{77} \) \(\mathstrut +\mathstrut 16q^{79} \) \(\mathstrut -\mathstrut 2q^{80} \) \(\mathstrut +\mathstrut 38q^{82} \) \(\mathstrut +\mathstrut 14q^{83} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 10q^{86} \) \(\mathstrut +\mathstrut 40q^{88} \) \(\mathstrut +\mathstrut 2q^{89} \) \(\mathstrut +\mathstrut 32q^{91} \) \(\mathstrut +\mathstrut 37q^{92} \) \(\mathstrut +\mathstrut 29q^{94} \) \(\mathstrut +\mathstrut 28q^{95} \) \(\mathstrut +\mathstrut 56q^{97} \) \(\mathstrut -\mathstrut 8q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −2.78139 0 5.73612 −0.00312667 0 2.66771 −10.3916 0 0.00869647
1.2 −2.66815 0 5.11905 −1.38302 0 0.919018 −8.32211 0 3.69010
1.3 −2.53344 0 4.41832 −4.44002 0 −2.94217 −6.12666 0 11.2485
1.4 −2.40738 0 3.79549 3.50117 0 5.09845 −4.32244 0 −8.42865
1.5 −2.27733 0 3.18622 2.98462 0 −2.44710 −2.70140 0 −6.79696
1.6 −1.99322 0 1.97291 0.735105 0 −3.83374 0.0540029 0 −1.46522
1.7 −1.96558 0 1.86349 −2.31356 0 5.13967 0.268317 0 4.54748
1.8 −1.89039 0 1.57357 −2.79891 0 1.18730 0.806117 0 5.29102
1.9 −1.58386 0 0.508607 2.90489 0 0.0968084 2.36216 0 −4.60094
1.10 −1.33909 0 −0.206831 0.887651 0 −3.28671 2.95515 0 −1.18865
1.11 −0.959410 0 −1.07953 2.76105 0 2.95320 2.95453 0 −2.64898
1.12 −0.809520 0 −1.34468 −2.87436 0 0.883619 2.70758 0 2.32685
1.13 −0.784780 0 −1.38412 −2.15464 0 −2.00724 2.65579 0 1.69092
1.14 −0.473233 0 −1.77605 1.04483 0 3.83278 1.78695 0 −0.494446
1.15 −0.0795257 0 −1.99368 −3.50033 0 0.586662 0.317600 0 0.278366
1.16 0.395940 0 −1.84323 −0.579308 0 −2.59556 −1.52169 0 −0.229371
1.17 0.480943 0 −1.76869 1.51137 0 3.82960 −1.81253 0 0.726880
1.18 0.534050 0 −1.71479 2.64563 0 −5.04348 −1.98388 0 1.41290
1.19 0.619961 0 −1.61565 0.522930 0 −1.16804 −2.24156 0 0.324196
1.20 1.12036 0 −0.744798 4.16877 0 2.81319 −3.07516 0 4.67051
See all 30 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.30
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(23\) \(-1\)
\(29\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6003))\):

\(T_{2}^{30} + \cdots\)
\(T_{5}^{30} - \cdots\)