Properties

Label 600.1.bj.b.341.1
Level 600
Weight 1
Character 600.341
Analytic conductor 0.299
Analytic rank 0
Dimension 4
Projective image \(D_{5}\)
CM disc. -24
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 600.bj (of order \(10\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(0.29943900758\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Projective image \(D_{5}\)
Projective field Galois closure of 5.1.225000000.2

Embedding invariants

Embedding label 341.1
Root \(0.809017 + 0.587785i\)
Character \(\chi\) = 600.341
Dual form 600.1.bj.b.461.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.809017 + 0.587785i) q^{2}\) \(+(-0.309017 - 0.951057i) q^{3}\) \(+(0.309017 + 0.951057i) q^{4}\) \(+(0.809017 + 0.587785i) q^{5}\) \(+(0.309017 - 0.951057i) q^{6}\) \(+0.618034 q^{7}\) \(+(-0.309017 + 0.951057i) q^{8}\) \(+(-0.809017 + 0.587785i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.809017 + 0.587785i) q^{2}\) \(+(-0.309017 - 0.951057i) q^{3}\) \(+(0.309017 + 0.951057i) q^{4}\) \(+(0.809017 + 0.587785i) q^{5}\) \(+(0.309017 - 0.951057i) q^{6}\) \(+0.618034 q^{7}\) \(+(-0.309017 + 0.951057i) q^{8}\) \(+(-0.809017 + 0.587785i) q^{9}\) \(+(0.309017 + 0.951057i) q^{10}\) \(+(-1.30902 - 0.951057i) q^{11}\) \(+(0.809017 - 0.587785i) q^{12}\) \(+(0.500000 + 0.363271i) q^{14}\) \(+(0.309017 - 0.951057i) q^{15}\) \(+(-0.809017 + 0.587785i) q^{16}\) \(-1.00000 q^{18}\) \(+(-0.309017 + 0.951057i) q^{20}\) \(+(-0.190983 - 0.587785i) q^{21}\) \(+(-0.500000 - 1.53884i) q^{22}\) \(+1.00000 q^{24}\) \(+(0.309017 + 0.951057i) q^{25}\) \(+(0.809017 + 0.587785i) q^{27}\) \(+(0.190983 + 0.587785i) q^{28}\) \(+(-0.618034 - 1.90211i) q^{29}\) \(+(0.809017 - 0.587785i) q^{30}\) \(+(0.190983 - 0.587785i) q^{31}\) \(-1.00000 q^{32}\) \(+(-0.500000 + 1.53884i) q^{33}\) \(+(0.500000 + 0.363271i) q^{35}\) \(+(-0.809017 - 0.587785i) q^{36}\) \(+(-0.809017 + 0.587785i) q^{40}\) \(+(0.190983 - 0.587785i) q^{42}\) \(+(0.500000 - 1.53884i) q^{44}\) \(-1.00000 q^{45}\) \(+(0.809017 + 0.587785i) q^{48}\) \(-0.618034 q^{49}\) \(+(-0.309017 + 0.951057i) q^{50}\) \(+(0.500000 + 1.53884i) q^{53}\) \(+(0.309017 + 0.951057i) q^{54}\) \(+(-0.500000 - 1.53884i) q^{55}\) \(+(-0.190983 + 0.587785i) q^{56}\) \(+(0.618034 - 1.90211i) q^{58}\) \(+(-1.30902 + 0.951057i) q^{59}\) \(+1.00000 q^{60}\) \(+(0.500000 - 0.363271i) q^{62}\) \(+(-0.500000 + 0.363271i) q^{63}\) \(+(-0.809017 - 0.587785i) q^{64}\) \(+(-1.30902 + 0.951057i) q^{66}\) \(+(0.190983 + 0.587785i) q^{70}\) \(+(-0.309017 - 0.951057i) q^{72}\) \(+(-1.61803 - 1.17557i) q^{73}\) \(+(0.809017 - 0.587785i) q^{75}\) \(+(-0.809017 - 0.587785i) q^{77}\) \(+(-0.500000 - 1.53884i) q^{79}\) \(-1.00000 q^{80}\) \(+(0.309017 - 0.951057i) q^{81}\) \(+(-0.190983 + 0.587785i) q^{83}\) \(+(0.500000 - 0.363271i) q^{84}\) \(+(-1.61803 + 1.17557i) q^{87}\) \(+(1.30902 - 0.951057i) q^{88}\) \(+(-0.809017 - 0.587785i) q^{90}\) \(-0.618034 q^{93}\) \(+(0.309017 + 0.951057i) q^{96}\) \(+(0.190983 + 0.587785i) q^{97}\) \(+(-0.500000 - 0.363271i) q^{98}\) \(+1.61803 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut -\mathstrut q^{6} \) \(\mathstrut -\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut -\mathstrut q^{10} \) \(\mathstrut -\mathstrut 3q^{11} \) \(\mathstrut +\mathstrut q^{12} \) \(\mathstrut +\mathstrut 2q^{14} \) \(\mathstrut -\mathstrut q^{15} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut -\mathstrut 4q^{18} \) \(\mathstrut +\mathstrut q^{20} \) \(\mathstrut -\mathstrut 3q^{21} \) \(\mathstrut -\mathstrut 2q^{22} \) \(\mathstrut +\mathstrut 4q^{24} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut q^{27} \) \(\mathstrut +\mathstrut 3q^{28} \) \(\mathstrut +\mathstrut 2q^{29} \) \(\mathstrut +\mathstrut q^{30} \) \(\mathstrut +\mathstrut 3q^{31} \) \(\mathstrut -\mathstrut 4q^{32} \) \(\mathstrut -\mathstrut 2q^{33} \) \(\mathstrut +\mathstrut 2q^{35} \) \(\mathstrut -\mathstrut q^{36} \) \(\mathstrut -\mathstrut q^{40} \) \(\mathstrut +\mathstrut 3q^{42} \) \(\mathstrut +\mathstrut 2q^{44} \) \(\mathstrut -\mathstrut 4q^{45} \) \(\mathstrut +\mathstrut q^{48} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut +\mathstrut q^{50} \) \(\mathstrut +\mathstrut 2q^{53} \) \(\mathstrut -\mathstrut q^{54} \) \(\mathstrut -\mathstrut 2q^{55} \) \(\mathstrut -\mathstrut 3q^{56} \) \(\mathstrut -\mathstrut 2q^{58} \) \(\mathstrut -\mathstrut 3q^{59} \) \(\mathstrut +\mathstrut 4q^{60} \) \(\mathstrut +\mathstrut 2q^{62} \) \(\mathstrut -\mathstrut 2q^{63} \) \(\mathstrut -\mathstrut q^{64} \) \(\mathstrut -\mathstrut 3q^{66} \) \(\mathstrut +\mathstrut 3q^{70} \) \(\mathstrut +\mathstrut q^{72} \) \(\mathstrut -\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut q^{75} \) \(\mathstrut -\mathstrut q^{77} \) \(\mathstrut -\mathstrut 2q^{79} \) \(\mathstrut -\mathstrut 4q^{80} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut -\mathstrut 3q^{83} \) \(\mathstrut +\mathstrut 2q^{84} \) \(\mathstrut -\mathstrut 2q^{87} \) \(\mathstrut +\mathstrut 3q^{88} \) \(\mathstrut -\mathstrut q^{90} \) \(\mathstrut +\mathstrut 2q^{93} \) \(\mathstrut -\mathstrut q^{96} \) \(\mathstrut +\mathstrut 3q^{97} \) \(\mathstrut -\mathstrut 2q^{98} \) \(\mathstrut +\mathstrut 2q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(3\) −0.309017 0.951057i −0.309017 0.951057i
\(4\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(5\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(6\) 0.309017 0.951057i 0.309017 0.951057i
\(7\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(8\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(9\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(10\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(11\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(12\) 0.809017 0.587785i 0.809017 0.587785i
\(13\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(14\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(15\) 0.309017 0.951057i 0.309017 0.951057i
\(16\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(17\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(18\) −1.00000 −1.00000
\(19\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(20\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(21\) −0.190983 0.587785i −0.190983 0.587785i
\(22\) −0.500000 1.53884i −0.500000 1.53884i
\(23\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(24\) 1.00000 1.00000
\(25\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(26\) 0 0
\(27\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(28\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(29\) −0.618034 1.90211i −0.618034 1.90211i −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 0.951057i \(1.40000\pi\)
\(30\) 0.809017 0.587785i 0.809017 0.587785i
\(31\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(32\) −1.00000 −1.00000
\(33\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(34\) 0 0
\(35\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(36\) −0.809017 0.587785i −0.809017 0.587785i
\(37\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(41\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(42\) 0.190983 0.587785i 0.190983 0.587785i
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0.500000 1.53884i 0.500000 1.53884i
\(45\) −1.00000 −1.00000
\(46\) 0 0
\(47\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(48\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(49\) −0.618034 −0.618034
\(50\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(54\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(55\) −0.500000 1.53884i −0.500000 1.53884i
\(56\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(57\) 0 0
\(58\) 0.618034 1.90211i 0.618034 1.90211i
\(59\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(60\) 1.00000 1.00000
\(61\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(62\) 0.500000 0.363271i 0.500000 0.363271i
\(63\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(64\) −0.809017 0.587785i −0.809017 0.587785i
\(65\) 0 0
\(66\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(67\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) −0.309017 0.951057i −0.309017 0.951057i
\(73\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(74\) 0 0
\(75\) 0.809017 0.587785i 0.809017 0.587785i
\(76\) 0 0
\(77\) −0.809017 0.587785i −0.809017 0.587785i
\(78\) 0 0
\(79\) −0.500000 1.53884i −0.500000 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(80\) −1.00000 −1.00000
\(81\) 0.309017 0.951057i 0.309017 0.951057i
\(82\) 0 0
\(83\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(84\) 0.500000 0.363271i 0.500000 0.363271i
\(85\) 0 0
\(86\) 0 0
\(87\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(88\) 1.30902 0.951057i 1.30902 0.951057i
\(89\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(90\) −0.809017 0.587785i −0.809017 0.587785i
\(91\) 0 0
\(92\) 0 0
\(93\) −0.618034 −0.618034
\(94\) 0 0
\(95\) 0 0
\(96\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(97\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) −0.500000 0.363271i −0.500000 0.363271i
\(99\) 1.61803 1.61803
\(100\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(101\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(102\) 0 0
\(103\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(104\) 0 0
\(105\) 0.190983 0.587785i 0.190983 0.587785i
\(106\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(107\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(108\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(109\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(110\) 0.500000 1.53884i 0.500000 1.53884i
\(111\) 0 0
\(112\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(113\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.61803 1.17557i 1.61803 1.17557i
\(117\) 0 0
\(118\) −1.61803 −1.61803
\(119\) 0 0
\(120\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(121\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.618034 0.618034
\(125\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(126\) −0.618034 −0.618034
\(127\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(128\) −0.309017 0.951057i −0.309017 0.951057i
\(129\) 0 0
\(130\) 0 0
\(131\) −0.618034 + 1.90211i −0.618034 + 1.90211i −0.309017 + 0.951057i \(0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(132\) −1.61803 −1.61803
\(133\) 0 0
\(134\) 0 0
\(135\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(136\) 0 0
\(137\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(138\) 0 0
\(139\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(140\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.309017 0.951057i 0.309017 0.951057i
\(145\) 0.618034 1.90211i 0.618034 1.90211i
\(146\) −0.618034 1.90211i −0.618034 1.90211i
\(147\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(148\) 0 0
\(149\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(150\) 1.00000 1.00000
\(151\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.309017 0.951057i −0.309017 0.951057i
\(155\) 0.500000 0.363271i 0.500000 0.363271i
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0.500000 1.53884i 0.500000 1.53884i
\(159\) 1.30902 0.951057i 1.30902 0.951057i
\(160\) −0.809017 0.587785i −0.809017 0.587785i
\(161\) 0 0
\(162\) 0.809017 0.587785i 0.809017 0.587785i
\(163\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(164\) 0 0
\(165\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(166\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(167\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(168\) 0.618034 0.618034
\(169\) 0.309017 0.951057i 0.309017 0.951057i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(174\) −2.00000 −2.00000
\(175\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(176\) 1.61803 1.61803
\(177\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(178\) 0 0
\(179\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(180\) −0.309017 0.951057i −0.309017 0.951057i
\(181\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) −0.500000 0.363271i −0.500000 0.363271i
\(187\) 0 0
\(188\) 0 0
\(189\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(190\) 0 0
\(191\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(192\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(193\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(194\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(195\) 0 0
\(196\) −0.190983 0.587785i −0.190983 0.587785i
\(197\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(198\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(199\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(200\) −1.00000 −1.00000
\(201\) 0 0
\(202\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(203\) −0.381966 1.17557i −0.381966 1.17557i
\(204\) 0 0
\(205\) 0 0
\(206\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0.500000 0.363271i 0.500000 0.363271i
\(211\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(212\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(213\) 0 0
\(214\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(215\) 0 0
\(216\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(217\) 0.118034 0.363271i 0.118034 0.363271i
\(218\) 0 0
\(219\) −0.618034 + 1.90211i −0.618034 + 1.90211i
\(220\) 1.30902 0.951057i 1.30902 0.951057i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(224\) −0.618034 −0.618034
\(225\) −0.809017 0.587785i −0.809017 0.587785i
\(226\) 0 0
\(227\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(230\) 0 0
\(231\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(232\) 2.00000 2.00000
\(233\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.30902 0.951057i −1.30902 0.951057i
\(237\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(238\) 0 0
\(239\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(240\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(241\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(242\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(243\) −1.00000 −1.00000
\(244\) 0 0
\(245\) −0.500000 0.363271i −0.500000 0.363271i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(249\) 0.618034 0.618034
\(250\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(251\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(252\) −0.500000 0.363271i −0.500000 0.363271i
\(253\) 0 0
\(254\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.309017 0.951057i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(262\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(263\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(264\) −1.30902 0.951057i −1.30902 0.951057i
\(265\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(270\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(271\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 1.53884i 0.500000 1.53884i
\(276\) 0 0
\(277\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(278\) 0 0
\(279\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(280\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(281\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(282\) 0 0
\(283\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.809017 0.587785i 0.809017 0.587785i
\(289\) −0.809017 0.587785i −0.809017 0.587785i
\(290\) 1.61803 1.17557i 1.61803 1.17557i
\(291\) 0.500000 0.363271i 0.500000 0.363271i
\(292\) 0.618034 1.90211i 0.618034 1.90211i
\(293\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(294\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(295\) −1.61803 −1.61803
\(296\) 0 0
\(297\) −0.500000 1.53884i −0.500000 1.53884i
\(298\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(299\) 0 0
\(300\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(301\) 0 0
\(302\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(303\) −0.500000 1.53884i −0.500000 1.53884i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0.309017 0.951057i 0.309017 0.951057i
\(309\) 0.500000 0.363271i 0.500000 0.363271i
\(310\) 0.618034 0.618034
\(311\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(312\) 0 0
\(313\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(314\) 0 0
\(315\) −0.618034 −0.618034
\(316\) 1.30902 0.951057i 1.30902 0.951057i
\(317\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(318\) 1.61803 1.61803
\(319\) −1.00000 + 3.07768i −1.00000 + 3.07768i
\(320\) −0.309017 0.951057i −0.309017 0.951057i
\(321\) −0.500000 1.53884i −0.500000 1.53884i
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) −1.61803 −1.61803
\(331\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(332\) −0.618034 −0.618034
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(337\) −0.500000 + 0.363271i −0.500000 + 0.363271i −0.809017 0.587785i \(-0.800000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(338\) 0.809017 0.587785i 0.809017 0.587785i
\(339\) 0 0
\(340\) 0 0
\(341\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(347\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(348\) −1.61803 1.17557i −1.61803 1.17557i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(351\) 0 0
\(352\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(353\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(354\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0.190983 0.587785i 0.190983 0.587785i
\(359\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(360\) 0.309017 0.951057i 0.309017 0.951057i
\(361\) −0.809017 0.587785i −0.809017 0.587785i
\(362\) 0 0
\(363\) 1.30902 0.951057i 1.30902 0.951057i
\(364\) 0 0
\(365\) −0.618034 1.90211i −0.618034 1.90211i
\(366\) 0 0
\(367\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(372\) −0.190983 0.587785i −0.190983 0.587785i
\(373\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(374\) 0 0
\(375\) 1.00000 1.00000
\(376\) 0 0
\(377\) 0 0
\(378\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(379\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(380\) 0 0
\(381\) 0.500000 1.53884i 0.500000 1.53884i
\(382\) 0 0
\(383\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(384\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(385\) −0.309017 0.951057i −0.309017 0.951057i
\(386\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(387\) 0 0
\(388\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(389\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.190983 0.587785i 0.190983 0.587785i
\(393\) 2.00000 2.00000
\(394\) 0.190983 0.587785i 0.190983 0.587785i
\(395\) 0.500000 1.53884i 0.500000 1.53884i
\(396\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(397\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(398\) −1.30902 0.951057i −1.30902 0.951057i
\(399\) 0 0
\(400\) −0.809017 0.587785i −0.809017 0.587785i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(405\) 0.809017 0.587785i 0.809017 0.587785i
\(406\) 0.381966 1.17557i 0.381966 1.17557i
\(407\) 0 0
\(408\) 0 0
\(409\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(413\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(414\) 0 0
\(415\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −0.190983 + 0.587785i −0.190983 + 0.587785i 0.809017 + 0.587785i \(0.200000\pi\)
−1.00000 \(\pi\)
\(420\) 0.618034 0.618034
\(421\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.61803 −1.61803
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(432\) −1.00000 −1.00000
\(433\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(434\) 0.309017 0.224514i 0.309017 0.224514i
\(435\) −2.00000 −2.00000
\(436\) 0 0
\(437\) 0 0
\(438\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(439\) 1.30902 + 0.951057i 1.30902 + 0.951057i 1.00000 \(0\)
0.309017 + 0.951057i \(0.400000\pi\)
\(440\) 1.61803 1.61803
\(441\) 0.500000 0.363271i 0.500000 0.363271i
\(442\) 0 0
\(443\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(447\) −0.500000 1.53884i −0.500000 1.53884i
\(448\) −0.500000 0.363271i −0.500000 0.363271i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.309017 0.951057i −0.309017 0.951057i
\(451\) 0 0
\(452\) 0 0
\(453\) −0.190983 0.587785i −0.190983 0.587785i
\(454\) −0.500000 1.53884i −0.500000 1.53884i
\(455\) 0 0
\(456\) 0 0
\(457\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(462\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(463\) −1.61803 + 1.17557i −1.61803 + 1.17557i −0.809017 + 0.587785i \(0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(464\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(465\) −0.500000 0.363271i −0.500000 0.363271i
\(466\) 0 0
\(467\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.500000 1.53884i −0.500000 1.53884i
\(473\) 0 0
\(474\) −1.61803 −1.61803
\(475\) 0 0
\(476\) 0 0
\(477\) −1.30902 0.951057i −1.30902 0.951057i
\(478\) 0 0
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(481\) 0 0
\(482\) −0.618034 −0.618034
\(483\) 0 0
\(484\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(485\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(486\) −0.809017 0.587785i −0.809017 0.587785i
\(487\) 1.30902 0.951057i 1.30902 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
1.00000 \(0\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.190983 0.587785i −0.190983 0.587785i
\(491\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(496\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(497\) 0 0
\(498\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −1.00000 −1.00000
\(501\) 0 0
\(502\) −0.500000 0.363271i −0.500000 0.363271i
\(503\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(504\) −0.190983 0.587785i −0.190983 0.587785i
\(505\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(509\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) −1.00000 0.726543i −1.00000 0.726543i
\(512\) 0.809017 0.587785i 0.809017 0.587785i
\(513\) 0 0
\(514\) 0 0
\(515\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.190983 0.587785i 0.190983 0.587785i
\(520\) 0 0
\(521\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(522\) 0.618034 + 1.90211i 0.618034 + 1.90211i
\(523\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(524\) −2.00000 −2.00000
\(525\) 0.500000 0.363271i 0.500000 0.363271i
\(526\) 0 0
\(527\) 0 0
\(528\) −0.500000 1.53884i −0.500000 1.53884i
\(529\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(530\) −1.30902 + 0.951057i −1.30902 + 0.951057i
\(531\) 0.500000 1.53884i 0.500000 1.53884i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(536\) 0 0
\(537\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(538\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(539\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(540\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(541\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(542\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.30902 0.951057i 1.30902 0.951057i
\(551\) 0 0
\(552\) 0 0
\(553\) −0.309017 0.951057i −0.309017 0.951057i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(558\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(559\) 0 0
\(560\) −0.618034 −0.618034
\(561\) 0 0
\(562\) 0 0
\(563\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.190983 0.587785i 0.190983 0.587785i
\(568\) 0 0
\(569\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(570\) 0 0
\(571\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 1.00000
\(577\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(578\) −0.309017 0.951057i −0.309017 0.951057i
\(579\) −0.190983 0.587785i −0.190983 0.587785i
\(580\) 2.00000 2.00000
\(581\) −0.118034 + 0.363271i −0.118034 + 0.363271i
\(582\) 0.618034 0.618034
\(583\) 0.809017 2.48990i 0.809017 2.48990i
\(584\) 1.61803 1.17557i 1.61803 1.17557i
\(585\) 0 0
\(586\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(587\) −1.30902 + 0.951057i −1.30902 + 0.951057i −0.309017 + 0.951057i \(0.600000\pi\)
−1.00000 \(\pi\)
\(588\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(589\) 0 0
\(590\) −1.30902 0.951057i −1.30902 0.951057i
\(591\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0.500000 1.53884i 0.500000 1.53884i
\(595\) 0 0
\(596\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(597\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(601\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(605\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(606\) 0.500000 1.53884i 0.500000 1.53884i
\(607\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(608\) 0 0
\(609\) −1.00000 + 0.726543i −1.00000 + 0.726543i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.809017 0.587785i 0.809017 0.587785i
\(617\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(618\) 0.618034 0.618034
\(619\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(620\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(626\) 1.61803 1.61803
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −0.500000 0.363271i −0.500000 0.363271i
\(631\) 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i \(-0.400000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(632\) 1.61803 1.61803
\(633\) 0 0
\(634\) 1.30902 0.951057i 1.30902 0.951057i
\(635\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(636\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(637\) 0 0
\(638\) −2.61803 + 1.90211i −2.61803 + 1.90211i
\(639\) 0 0
\(640\) 0.309017 0.951057i 0.309017 0.951057i
\(641\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(642\) 0.500000 1.53884i 0.500000 1.53884i
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(648\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(649\) 2.61803 2.61803
\(650\) 0 0
\(651\) −0.381966 −0.381966
\(652\) 0 0
\(653\) −0.190983 0.587785i −0.190983 0.587785i 0.809017 0.587785i \(-0.200000\pi\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) −1.61803 + 1.17557i −1.61803 + 1.17557i
\(656\) 0 0
\(657\) 2.00000 2.00000
\(658\) 0 0
\(659\) 0.500000 0.363271i 0.500000 0.363271i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(660\) −1.30902 0.951057i −1.30902 0.951057i
\(661\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.500000 0.363271i −0.500000 0.363271i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.500000 1.53884i 0.500000 1.53884i
\(670\) 0 0
\(671\) 0 0
\(672\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(673\) −0.500000 0.363271i −0.500000 0.363271i 0.309017 0.951057i \(-0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(674\) −0.618034 −0.618034
\(675\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(676\) 1.00000 1.00000
\(677\) 0.500000 + 0.363271i 0.500000 + 0.363271i 0.809017 0.587785i \(-0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(678\) 0 0
\(679\) 0.118034 + 0.363271i 0.118034 + 0.363271i
\(680\) 0 0
\(681\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(682\) −1.00000 −1.00000
\(683\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.809017 0.587785i −0.809017 0.587785i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(692\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(693\) 1.00000 1.00000
\(694\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(695\) 0 0
\(696\) −0.618034 1.90211i −0.618034 1.90211i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(701\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(705\) 0 0
\(706\) 0 0
\(707\) 1.00000 1.00000
\(708\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(709\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(710\) 0 0
\(711\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0.500000 0.363271i 0.500000 0.363271i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(720\) 0.809017 0.587785i 0.809017 0.587785i
\(721\) 0.118034 + 0.363271i 0.118034 + 0.363271i
\(722\) −0.309017 0.951057i −0.309017 0.951057i
\(723\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(724\) 0 0
\(725\) 1.61803 1.17557i 1.61803 1.17557i
\(726\) 1.61803 1.61803
\(727\) −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 0.587785i \(-0.800000\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(730\) 0.618034 1.90211i 0.618034 1.90211i
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(734\) 0.500000 0.363271i 0.500000 0.363271i
\(735\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0.190983 0.587785i 0.190983 0.587785i
\(745\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(746\) 0 0
\(747\) −0.190983 0.587785i −0.190983 0.587785i
\(748\) 0 0
\(749\) 1.00000 1.00000
\(750\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(751\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(752\) 0 0
\(753\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(754\) 0 0
\(755\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(756\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(762\) 1.30902 0.951057i 1.30902 0.951057i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.00000 −1.00000
\(769\) 0.190983 0.587785i 0.190983 0.587785i −0.809017 0.587785i \(-0.800000\pi\)
1.00000 \(0\)
\(770\) 0.309017 0.951057i 0.309017 0.951057i
\(771\) 0 0
\(772\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(773\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0.618034 0.618034
\(776\) −0.618034 −0.618034
\(777\) 0 0
\(778\) −0.500000 1.53884i −0.500000 1.53884i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.618034 1.90211i 0.618034 1.90211i
\(784\) 0.500000 0.363271i 0.500000 0.363271i
\(785\) 0 0
\(786\) 1.61803 + 1.17557i 1.61803 + 1.17557i
\(787\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(788\) 0.500000 0.363271i 0.500000 0.363271i
\(789\) 0 0
\(790\) 1.30902 0.951057i 1.30902 0.951057i
\(791\) 0 0
\(792\) −0.500000 + 1.53884i −0.500000 + 1.53884i
\(793\) 0 0
\(794\) 0 0
\(795\) 1.61803 1.61803
\(796\) −0.500000 1.53884i −0.500000 1.53884i
\(797\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.309017 0.951057i −0.309017 0.951057i
\(801\) 0 0