Properties

Label 59.1
Level 59
Weight 1
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 290
Trace bound 0

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 59 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(290\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(59))\).

Total New Old
Modular forms 30 30 0
Cusp forms 1 1 0
Eisenstein series 29 29 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q - q^{3} + q^{4} - q^{5} - q^{7} + O(q^{10}) \) \( q - q^{3} + q^{4} - q^{5} - q^{7} - q^{12} + q^{15} + q^{16} + 2q^{17} - q^{19} - q^{20} + q^{21} + q^{27} - q^{28} - q^{29} + q^{35} - q^{41} - q^{48} - 2q^{51} - q^{53} + q^{57} + q^{59} + q^{60} + q^{64} + 2q^{68} + 2q^{71} - q^{76} - q^{79} - q^{80} - q^{81} + q^{84} - 2q^{85} + q^{87} + q^{95} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(59))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
59.1.b \(\chi_{59}(58, \cdot)\) 59.1.b.a 1 1
59.1.d \(\chi_{59}(2, \cdot)\) None 0 28

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T )( 1 + T ) \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( ( 1 - T )( 1 + T ) \)
$13$ \( ( 1 - T )( 1 + T ) \)
$17$ \( ( 1 - T )^{2} \)
$19$ \( 1 + T + T^{2} \)
$23$ \( ( 1 - T )( 1 + T ) \)
$29$ \( 1 + T + T^{2} \)
$31$ \( ( 1 - T )( 1 + T ) \)
$37$ \( ( 1 - T )( 1 + T ) \)
$41$ \( 1 + T + T^{2} \)
$43$ \( ( 1 - T )( 1 + T ) \)
$47$ \( ( 1 - T )( 1 + T ) \)
$53$ \( 1 + T + T^{2} \)
$59$ \( 1 - T \)
$61$ \( ( 1 - T )( 1 + T ) \)
$67$ \( ( 1 - T )( 1 + T ) \)
$71$ \( ( 1 - T )^{2} \)
$73$ \( ( 1 - T )( 1 + T ) \)
$79$ \( 1 + T + T^{2} \)
$83$ \( ( 1 - T )( 1 + T ) \)
$89$ \( ( 1 - T )( 1 + T ) \)
$97$ \( ( 1 - T )( 1 + T ) \)
show more
show less