Properties

Label 53.2.a.a
Level 53
Weight 2
Character orbit 53.a
Self dual Yes
Analytic conductor 0.423
Analytic rank 1
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 53 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 53.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(0.423207130713\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut -\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut -\mathstrut q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut -\mathstrut q^{4} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut -\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut 6q^{9} \) \(\mathstrut +\mathstrut 3q^{12} \) \(\mathstrut -\mathstrut 3q^{13} \) \(\mathstrut +\mathstrut 4q^{14} \) \(\mathstrut -\mathstrut q^{16} \) \(\mathstrut -\mathstrut 3q^{17} \) \(\mathstrut -\mathstrut 6q^{18} \) \(\mathstrut -\mathstrut 5q^{19} \) \(\mathstrut +\mathstrut 12q^{21} \) \(\mathstrut +\mathstrut 7q^{23} \) \(\mathstrut -\mathstrut 9q^{24} \) \(\mathstrut -\mathstrut 5q^{25} \) \(\mathstrut +\mathstrut 3q^{26} \) \(\mathstrut -\mathstrut 9q^{27} \) \(\mathstrut +\mathstrut 4q^{28} \) \(\mathstrut -\mathstrut 7q^{29} \) \(\mathstrut +\mathstrut 4q^{31} \) \(\mathstrut -\mathstrut 5q^{32} \) \(\mathstrut +\mathstrut 3q^{34} \) \(\mathstrut -\mathstrut 6q^{36} \) \(\mathstrut +\mathstrut 5q^{37} \) \(\mathstrut +\mathstrut 5q^{38} \) \(\mathstrut +\mathstrut 9q^{39} \) \(\mathstrut +\mathstrut 6q^{41} \) \(\mathstrut -\mathstrut 12q^{42} \) \(\mathstrut -\mathstrut 2q^{43} \) \(\mathstrut -\mathstrut 7q^{46} \) \(\mathstrut -\mathstrut 2q^{47} \) \(\mathstrut +\mathstrut 3q^{48} \) \(\mathstrut +\mathstrut 9q^{49} \) \(\mathstrut +\mathstrut 5q^{50} \) \(\mathstrut +\mathstrut 9q^{51} \) \(\mathstrut +\mathstrut 3q^{52} \) \(\mathstrut -\mathstrut q^{53} \) \(\mathstrut +\mathstrut 9q^{54} \) \(\mathstrut -\mathstrut 12q^{56} \) \(\mathstrut +\mathstrut 15q^{57} \) \(\mathstrut +\mathstrut 7q^{58} \) \(\mathstrut -\mathstrut 2q^{59} \) \(\mathstrut -\mathstrut 8q^{61} \) \(\mathstrut -\mathstrut 4q^{62} \) \(\mathstrut -\mathstrut 24q^{63} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut -\mathstrut 12q^{67} \) \(\mathstrut +\mathstrut 3q^{68} \) \(\mathstrut -\mathstrut 21q^{69} \) \(\mathstrut +\mathstrut q^{71} \) \(\mathstrut +\mathstrut 18q^{72} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut -\mathstrut 5q^{74} \) \(\mathstrut +\mathstrut 15q^{75} \) \(\mathstrut +\mathstrut 5q^{76} \) \(\mathstrut -\mathstrut 9q^{78} \) \(\mathstrut -\mathstrut q^{79} \) \(\mathstrut +\mathstrut 9q^{81} \) \(\mathstrut -\mathstrut 6q^{82} \) \(\mathstrut -\mathstrut q^{83} \) \(\mathstrut -\mathstrut 12q^{84} \) \(\mathstrut +\mathstrut 2q^{86} \) \(\mathstrut +\mathstrut 21q^{87} \) \(\mathstrut -\mathstrut 14q^{89} \) \(\mathstrut +\mathstrut 12q^{91} \) \(\mathstrut -\mathstrut 7q^{92} \) \(\mathstrut -\mathstrut 12q^{93} \) \(\mathstrut +\mathstrut 2q^{94} \) \(\mathstrut +\mathstrut 15q^{96} \) \(\mathstrut +\mathstrut q^{97} \) \(\mathstrut -\mathstrut 9q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −3.00000 −1.00000 0 3.00000 −4.00000 3.00000 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(53\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2} \) \(\mathstrut +\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(53))\).