Properties

Label 48.2.a
Level 48
Weight 2
Character orbit a
Rep. character \(\chi_{48}(1,\cdot)\)
Character field \(\Q\)
Dimension 1
Newforms 1
Sturm bound 16
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 48.a (trivial)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(48))\).

Total New Old
Modular forms 14 1 13
Cusp forms 3 1 2
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim.
\(+\)\(-\)\(-\)\(1\)
Plus space\(+\)\(0\)
Minus space\(-\)\(1\)

Trace form

\(q \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(q \) \(\mathstrut +\mathstrut q^{3} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut q^{9} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut -\mathstrut 2q^{13} \) \(\mathstrut -\mathstrut 2q^{15} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut +\mathstrut 8q^{23} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut q^{27} \) \(\mathstrut +\mathstrut 6q^{29} \) \(\mathstrut -\mathstrut 8q^{31} \) \(\mathstrut -\mathstrut 4q^{33} \) \(\mathstrut +\mathstrut 6q^{37} \) \(\mathstrut -\mathstrut 2q^{39} \) \(\mathstrut -\mathstrut 6q^{41} \) \(\mathstrut -\mathstrut 4q^{43} \) \(\mathstrut -\mathstrut 2q^{45} \) \(\mathstrut -\mathstrut 7q^{49} \) \(\mathstrut +\mathstrut 2q^{51} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut 8q^{55} \) \(\mathstrut +\mathstrut 4q^{57} \) \(\mathstrut -\mathstrut 4q^{59} \) \(\mathstrut -\mathstrut 2q^{61} \) \(\mathstrut +\mathstrut 4q^{65} \) \(\mathstrut +\mathstrut 4q^{67} \) \(\mathstrut +\mathstrut 8q^{69} \) \(\mathstrut -\mathstrut 8q^{71} \) \(\mathstrut +\mathstrut 10q^{73} \) \(\mathstrut -\mathstrut q^{75} \) \(\mathstrut +\mathstrut 8q^{79} \) \(\mathstrut +\mathstrut q^{81} \) \(\mathstrut +\mathstrut 4q^{83} \) \(\mathstrut -\mathstrut 4q^{85} \) \(\mathstrut +\mathstrut 6q^{87} \) \(\mathstrut -\mathstrut 6q^{89} \) \(\mathstrut -\mathstrut 8q^{93} \) \(\mathstrut -\mathstrut 8q^{95} \) \(\mathstrut +\mathstrut 2q^{97} \) \(\mathstrut -\mathstrut 4q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(48))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3
48.2.a.a \(1\) \(0.383\) \(\Q\) None \(0\) \(1\) \(-2\) \(0\) \(+\) \(-\) \(q+q^{3}-2q^{5}+q^{9}-4q^{11}-2q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(48))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(48)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)