Defining parameters
| Level: | \( N \) | \(=\) | \( 4028 = 2^{2} \cdot 19 \cdot 53 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 4028.c (of order \(2\) and degree \(1\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 53 \) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(1080\) | ||
| Trace bound: | \(0\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4028, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 546 | 82 | 464 | 
| Cusp forms | 534 | 82 | 452 | 
| Eisenstein series | 12 | 0 | 12 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(4028, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 4028.2.c.a | $82$ | $32.164$ | None | \(0\) | \(0\) | \(0\) | \(-8\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(4028, [\chi])\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(4028, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(106, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(212, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1007, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2014, [\chi])\)\(^{\oplus 2}\)
            