Properties

Label 4026.2.a.y
Level 4026
Weight 2
Character orbit 4026.a
Self dual Yes
Analytic conductor 32.148
Analytic rank 1
Dimension 7
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4026 = 2 \cdot 3 \cdot 11 \cdot 61 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4026.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.1477718538\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( - \beta_{1} q^{5} \) \(+ q^{6}\) \( + \beta_{6} q^{7} \) \(- q^{8}\) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( - \beta_{1} q^{5} \) \(+ q^{6}\) \( + \beta_{6} q^{7} \) \(- q^{8}\) \(+ q^{9}\) \( + \beta_{1} q^{10} \) \(- q^{11}\) \(- q^{12}\) \( + ( -1 - \beta_{2} - \beta_{3} - \beta_{5} ) q^{13} \) \( - \beta_{6} q^{14} \) \( + \beta_{1} q^{15} \) \(+ q^{16}\) \( + ( 1 + \beta_{2} + \beta_{3} + \beta_{4} ) q^{17} \) \(- q^{18}\) \( + ( -1 + \beta_{1} - \beta_{3} - \beta_{6} ) q^{19} \) \( - \beta_{1} q^{20} \) \( - \beta_{6} q^{21} \) \(+ q^{22}\) \( + ( - \beta_{4} + \beta_{5} ) q^{23} \) \(+ q^{24}\) \( + ( 3 + \beta_{2} + 2 \beta_{3} + 2 \beta_{5} + \beta_{6} ) q^{25} \) \( + ( 1 + \beta_{2} + \beta_{3} + \beta_{5} ) q^{26} \) \(- q^{27}\) \( + \beta_{6} q^{28} \) \( + ( -2 - \beta_{1} - \beta_{2} - \beta_{6} ) q^{29} \) \( - \beta_{1} q^{30} \) \( + ( \beta_{1} - \beta_{4} - \beta_{5} ) q^{31} \) \(- q^{32}\) \(+ q^{33}\) \( + ( -1 - \beta_{2} - \beta_{3} - \beta_{4} ) q^{34} \) \( + ( -2 - \beta_{2} - \beta_{4} - \beta_{5} - \beta_{6} ) q^{35} \) \(+ q^{36}\) \( + ( 2 + \beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{37} \) \( + ( 1 - \beta_{1} + \beta_{3} + \beta_{6} ) q^{38} \) \( + ( 1 + \beta_{2} + \beta_{3} + \beta_{5} ) q^{39} \) \( + \beta_{1} q^{40} \) \( + ( \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} ) q^{41} \) \( + \beta_{6} q^{42} \) \( + ( \beta_{1} - \beta_{2} + \beta_{4} + \beta_{5} - \beta_{6} ) q^{43} \) \(- q^{44}\) \( - \beta_{1} q^{45} \) \( + ( \beta_{4} - \beta_{5} ) q^{46} \) \( + ( 1 + \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{5} - \beta_{6} ) q^{47} \) \(- q^{48}\) \( + ( \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} ) q^{49} \) \( + ( -3 - \beta_{2} - 2 \beta_{3} - 2 \beta_{5} - \beta_{6} ) q^{50} \) \( + ( -1 - \beta_{2} - \beta_{3} - \beta_{4} ) q^{51} \) \( + ( -1 - \beta_{2} - \beta_{3} - \beta_{5} ) q^{52} \) \( + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{6} ) q^{53} \) \(+ q^{54}\) \( + \beta_{1} q^{55} \) \( - \beta_{6} q^{56} \) \( + ( 1 - \beta_{1} + \beta_{3} + \beta_{6} ) q^{57} \) \( + ( 2 + \beta_{1} + \beta_{2} + \beta_{6} ) q^{58} \) \( + ( -2 - \beta_{2} + \beta_{4} + \beta_{5} ) q^{59} \) \( + \beta_{1} q^{60} \) \(- q^{61}\) \( + ( - \beta_{1} + \beta_{4} + \beta_{5} ) q^{62} \) \( + \beta_{6} q^{63} \) \(+ q^{64}\) \( + ( -3 + 4 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} ) q^{65} \) \(- q^{66}\) \( + ( \beta_{1} - \beta_{2} + 2 \beta_{3} + \beta_{5} ) q^{67} \) \( + ( 1 + \beta_{2} + \beta_{3} + \beta_{4} ) q^{68} \) \( + ( \beta_{4} - \beta_{5} ) q^{69} \) \( + ( 2 + \beta_{2} + \beta_{4} + \beta_{5} + \beta_{6} ) q^{70} \) \( + ( -3 + \beta_{1} + \beta_{2} + \beta_{3} + \beta_{6} ) q^{71} \) \(- q^{72}\) \( + ( -1 - \beta_{1} - 2 \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} ) q^{73} \) \( + ( -2 - \beta_{1} - \beta_{2} + \beta_{4} + \beta_{5} + 2 \beta_{6} ) q^{74} \) \( + ( -3 - \beta_{2} - 2 \beta_{3} - 2 \beta_{5} - \beta_{6} ) q^{75} \) \( + ( -1 + \beta_{1} - \beta_{3} - \beta_{6} ) q^{76} \) \( - \beta_{6} q^{77} \) \( + ( -1 - \beta_{2} - \beta_{3} - \beta_{5} ) q^{78} \) \( + ( 1 - \beta_{2} - \beta_{3} + \beta_{5} + 2 \beta_{6} ) q^{79} \) \( - \beta_{1} q^{80} \) \(+ q^{81}\) \( + ( - \beta_{2} - 2 \beta_{3} - \beta_{4} - \beta_{5} - \beta_{6} ) q^{82} \) \( + ( -3 + \beta_{1} - \beta_{3} + \beta_{4} - \beta_{5} - 2 \beta_{6} ) q^{83} \) \( - \beta_{6} q^{84} \) \( + ( 4 - \beta_{1} + 2 \beta_{3} + 2 \beta_{4} + 2 \beta_{5} ) q^{85} \) \( + ( - \beta_{1} + \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} ) q^{86} \) \( + ( 2 + \beta_{1} + \beta_{2} + \beta_{6} ) q^{87} \) \(+ q^{88}\) \( + ( -4 + \beta_{1} - 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} ) q^{89} \) \( + \beta_{1} q^{90} \) \( + ( 3 + \beta_{2} + \beta_{3} - \beta_{5} + \beta_{6} ) q^{91} \) \( + ( - \beta_{4} + \beta_{5} ) q^{92} \) \( + ( - \beta_{1} + \beta_{4} + \beta_{5} ) q^{93} \) \( + ( -1 - \beta_{1} - 2 \beta_{2} + \beta_{3} - \beta_{5} + \beta_{6} ) q^{94} \) \( + ( -8 + 3 \beta_{1} - 2 \beta_{3} - \beta_{4} - 3 \beta_{5} - 2 \beta_{6} ) q^{95} \) \(+ q^{96}\) \( + ( 3 + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} ) q^{97} \) \( + ( - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} ) q^{98} \) \(- q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(7q \) \(\mathstrut -\mathstrut 7q^{2} \) \(\mathstrut -\mathstrut 7q^{3} \) \(\mathstrut +\mathstrut 7q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 7q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 7q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(7q \) \(\mathstrut -\mathstrut 7q^{2} \) \(\mathstrut -\mathstrut 7q^{3} \) \(\mathstrut +\mathstrut 7q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut +\mathstrut 7q^{6} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut -\mathstrut 7q^{8} \) \(\mathstrut +\mathstrut 7q^{9} \) \(\mathstrut +\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 7q^{11} \) \(\mathstrut -\mathstrut 7q^{12} \) \(\mathstrut -\mathstrut q^{14} \) \(\mathstrut +\mathstrut 2q^{15} \) \(\mathstrut +\mathstrut 7q^{16} \) \(\mathstrut +\mathstrut 3q^{17} \) \(\mathstrut -\mathstrut 7q^{18} \) \(\mathstrut -\mathstrut 5q^{19} \) \(\mathstrut -\mathstrut 2q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut +\mathstrut 7q^{22} \) \(\mathstrut -\mathstrut 3q^{23} \) \(\mathstrut +\mathstrut 7q^{24} \) \(\mathstrut +\mathstrut 11q^{25} \) \(\mathstrut -\mathstrut 7q^{27} \) \(\mathstrut +\mathstrut q^{28} \) \(\mathstrut -\mathstrut 14q^{29} \) \(\mathstrut -\mathstrut 2q^{30} \) \(\mathstrut +\mathstrut 5q^{31} \) \(\mathstrut -\mathstrut 7q^{32} \) \(\mathstrut +\mathstrut 7q^{33} \) \(\mathstrut -\mathstrut 3q^{34} \) \(\mathstrut -\mathstrut 9q^{35} \) \(\mathstrut +\mathstrut 7q^{36} \) \(\mathstrut +\mathstrut 14q^{37} \) \(\mathstrut +\mathstrut 5q^{38} \) \(\mathstrut +\mathstrut 2q^{40} \) \(\mathstrut -\mathstrut 7q^{41} \) \(\mathstrut +\mathstrut q^{42} \) \(\mathstrut +\mathstrut q^{43} \) \(\mathstrut -\mathstrut 7q^{44} \) \(\mathstrut -\mathstrut 2q^{45} \) \(\mathstrut +\mathstrut 3q^{46} \) \(\mathstrut -\mathstrut 7q^{48} \) \(\mathstrut -\mathstrut 11q^{50} \) \(\mathstrut -\mathstrut 3q^{51} \) \(\mathstrut -\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 7q^{54} \) \(\mathstrut +\mathstrut 2q^{55} \) \(\mathstrut -\mathstrut q^{56} \) \(\mathstrut +\mathstrut 5q^{57} \) \(\mathstrut +\mathstrut 14q^{58} \) \(\mathstrut -\mathstrut 14q^{59} \) \(\mathstrut +\mathstrut 2q^{60} \) \(\mathstrut -\mathstrut 7q^{61} \) \(\mathstrut -\mathstrut 5q^{62} \) \(\mathstrut +\mathstrut q^{63} \) \(\mathstrut +\mathstrut 7q^{64} \) \(\mathstrut -\mathstrut 10q^{65} \) \(\mathstrut -\mathstrut 7q^{66} \) \(\mathstrut +\mathstrut 3q^{68} \) \(\mathstrut +\mathstrut 3q^{69} \) \(\mathstrut +\mathstrut 9q^{70} \) \(\mathstrut -\mathstrut 22q^{71} \) \(\mathstrut -\mathstrut 7q^{72} \) \(\mathstrut +\mathstrut q^{73} \) \(\mathstrut -\mathstrut 14q^{74} \) \(\mathstrut -\mathstrut 11q^{75} \) \(\mathstrut -\mathstrut 5q^{76} \) \(\mathstrut -\mathstrut q^{77} \) \(\mathstrut +\mathstrut 10q^{79} \) \(\mathstrut -\mathstrut 2q^{80} \) \(\mathstrut +\mathstrut 7q^{81} \) \(\mathstrut +\mathstrut 7q^{82} \) \(\mathstrut -\mathstrut 17q^{83} \) \(\mathstrut -\mathstrut q^{84} \) \(\mathstrut +\mathstrut 18q^{85} \) \(\mathstrut -\mathstrut q^{86} \) \(\mathstrut +\mathstrut 14q^{87} \) \(\mathstrut +\mathstrut 7q^{88} \) \(\mathstrut -\mathstrut 18q^{89} \) \(\mathstrut +\mathstrut 2q^{90} \) \(\mathstrut +\mathstrut 21q^{91} \) \(\mathstrut -\mathstrut 3q^{92} \) \(\mathstrut -\mathstrut 5q^{93} \) \(\mathstrut -\mathstrut 41q^{95} \) \(\mathstrut +\mathstrut 7q^{96} \) \(\mathstrut +\mathstrut 25q^{97} \) \(\mathstrut -\mathstrut 7q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{7}\mathstrut -\mathstrut \) \(2\) \(x^{6}\mathstrut -\mathstrut \) \(21\) \(x^{5}\mathstrut +\mathstrut \) \(39\) \(x^{4}\mathstrut +\mathstrut \) \(89\) \(x^{3}\mathstrut -\mathstrut \) \(100\) \(x^{2}\mathstrut -\mathstrut \) \(96\) \(x\mathstrut +\mathstrut \) \(8\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( 5 \nu^{6} - 147 \nu^{5} - \nu^{4} + 2952 \nu^{3} - 1452 \nu^{2} - 10701 \nu - 534 \)\()/1706\)
\(\beta_{3}\)\(=\)\((\)\( -9 \nu^{6} + 94 \nu^{5} + 343 \nu^{4} - 1731 \nu^{3} - 2675 \nu^{2} + 5102 \nu + 2326 \)\()/1706\)
\(\beta_{4}\)\(=\)\((\)\( 53 \nu^{6} - 364 \nu^{5} - 693 \nu^{4} + 6213 \nu^{3} - 3961 \nu^{2} - 9194 \nu + 10376 \)\()/3412\)
\(\beta_{5}\)\(=\)\((\)\( 155 \nu^{6} - 292 \nu^{5} - 3443 \nu^{4} + 5359 \nu^{3} + 17257 \nu^{2} - 10150 \nu - 21672 \)\()/3412\)
\(\beta_{6}\)\(=\)\((\)\( -142 \nu^{6} + 251 \nu^{5} + 2758 \nu^{4} - 4849 \nu^{3} - 8749 \nu^{2} + 10647 \nu + 3906 \)\()/1706\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{6}\mathstrut +\mathstrut \) \(2\) \(\beta_{5}\mathstrut +\mathstrut \) \(2\) \(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(8\)
\(\nu^{3}\)\(=\)\(-\)\(2\) \(\beta_{6}\mathstrut -\mathstrut \) \(3\) \(\beta_{5}\mathstrut -\mathstrut \) \(3\) \(\beta_{4}\mathstrut -\mathstrut \) \(2\) \(\beta_{3}\mathstrut +\mathstrut \) \(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(14\) \(\beta_{1}\mathstrut -\mathstrut \) \(2\)
\(\nu^{4}\)\(=\)\(15\) \(\beta_{6}\mathstrut +\mathstrut \) \(30\) \(\beta_{5}\mathstrut +\mathstrut \) \(2\) \(\beta_{4}\mathstrut +\mathstrut \) \(37\) \(\beta_{3}\mathstrut +\mathstrut \) \(17\) \(\beta_{2}\mathstrut -\mathstrut \) \(3\) \(\beta_{1}\mathstrut +\mathstrut \) \(105\)
\(\nu^{5}\)\(=\)\(-\)\(43\) \(\beta_{6}\mathstrut -\mathstrut \) \(65\) \(\beta_{5}\mathstrut -\mathstrut \) \(59\) \(\beta_{4}\mathstrut -\mathstrut \) \(40\) \(\beta_{3}\mathstrut +\mathstrut \) \(27\) \(\beta_{2}\mathstrut +\mathstrut \) \(205\) \(\beta_{1}\mathstrut -\mathstrut \) \(72\)
\(\nu^{6}\)\(=\)\(210\) \(\beta_{6}\mathstrut +\mathstrut \) \(447\) \(\beta_{5}\mathstrut +\mathstrut \) \(37\) \(\beta_{4}\mathstrut +\mathstrut \) \(593\) \(\beta_{3}\mathstrut +\mathstrut \) \(248\) \(\beta_{2}\mathstrut -\mathstrut \) \(99\) \(\beta_{1}\mathstrut +\mathstrut \) \(1515\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.80390
3.01987
1.63928
0.0775196
−0.777182
−1.76251
−4.00088
−1.00000 −1.00000 1.00000 −3.80390 1.00000 −1.13011 −1.00000 1.00000 3.80390
1.2 −1.00000 −1.00000 1.00000 −3.01987 1.00000 4.36357 −1.00000 1.00000 3.01987
1.3 −1.00000 −1.00000 1.00000 −1.63928 1.00000 −1.98112 −1.00000 1.00000 1.63928
1.4 −1.00000 −1.00000 1.00000 −0.0775196 1.00000 2.74128 −1.00000 1.00000 0.0775196
1.5 −1.00000 −1.00000 1.00000 0.777182 1.00000 −3.79435 −1.00000 1.00000 −0.777182
1.6 −1.00000 −1.00000 1.00000 1.76251 1.00000 1.52396 −1.00000 1.00000 −1.76251
1.7 −1.00000 −1.00000 1.00000 4.00088 1.00000 −0.723236 −1.00000 1.00000 −4.00088
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(11\) \(1\)
\(61\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4026))\):

\(T_{5}^{7} \) \(\mathstrut +\mathstrut 2 T_{5}^{6} \) \(\mathstrut -\mathstrut 21 T_{5}^{5} \) \(\mathstrut -\mathstrut 39 T_{5}^{4} \) \(\mathstrut +\mathstrut 89 T_{5}^{3} \) \(\mathstrut +\mathstrut 100 T_{5}^{2} \) \(\mathstrut -\mathstrut 96 T_{5} \) \(\mathstrut -\mathstrut 8 \)
\(T_{7}^{7} \) \(\mathstrut -\mathstrut T_{7}^{6} \) \(\mathstrut -\mathstrut 24 T_{7}^{5} \) \(\mathstrut +\mathstrut 10 T_{7}^{4} \) \(\mathstrut +\mathstrut 140 T_{7}^{3} \) \(\mathstrut +\mathstrut 25 T_{7}^{2} \) \(\mathstrut -\mathstrut 200 T_{7} \) \(\mathstrut -\mathstrut 112 \)
\(T_{13}^{7} \) \(\mathstrut -\mathstrut 46 T_{13}^{5} \) \(\mathstrut +\mathstrut 28 T_{13}^{4} \) \(\mathstrut +\mathstrut 539 T_{13}^{3} \) \(\mathstrut -\mathstrut 531 T_{13}^{2} \) \(\mathstrut -\mathstrut 740 T_{13} \) \(\mathstrut +\mathstrut 28 \)