Properties

Label 4022.2.a.f
Level 4022
Weight 2
Character orbit 4022.a
Self dual Yes
Analytic conductor 32.116
Analytic rank 0
Dimension 50
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4022 = 2 \cdot 2011 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4022.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.115831693\)
Analytic rank: \(0\)
Dimension: \(50\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(50q \) \(\mathstrut +\mathstrut 50q^{2} \) \(\mathstrut +\mathstrut 18q^{3} \) \(\mathstrut +\mathstrut 50q^{4} \) \(\mathstrut +\mathstrut 11q^{5} \) \(\mathstrut +\mathstrut 18q^{6} \) \(\mathstrut +\mathstrut 30q^{7} \) \(\mathstrut +\mathstrut 50q^{8} \) \(\mathstrut +\mathstrut 66q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(50q \) \(\mathstrut +\mathstrut 50q^{2} \) \(\mathstrut +\mathstrut 18q^{3} \) \(\mathstrut +\mathstrut 50q^{4} \) \(\mathstrut +\mathstrut 11q^{5} \) \(\mathstrut +\mathstrut 18q^{6} \) \(\mathstrut +\mathstrut 30q^{7} \) \(\mathstrut +\mathstrut 50q^{8} \) \(\mathstrut +\mathstrut 66q^{9} \) \(\mathstrut +\mathstrut 11q^{10} \) \(\mathstrut +\mathstrut 21q^{11} \) \(\mathstrut +\mathstrut 18q^{12} \) \(\mathstrut +\mathstrut 26q^{13} \) \(\mathstrut +\mathstrut 30q^{14} \) \(\mathstrut +\mathstrut 17q^{15} \) \(\mathstrut +\mathstrut 50q^{16} \) \(\mathstrut +\mathstrut 24q^{17} \) \(\mathstrut +\mathstrut 66q^{18} \) \(\mathstrut +\mathstrut 39q^{19} \) \(\mathstrut +\mathstrut 11q^{20} \) \(\mathstrut -\mathstrut q^{21} \) \(\mathstrut +\mathstrut 21q^{22} \) \(\mathstrut +\mathstrut 28q^{23} \) \(\mathstrut +\mathstrut 18q^{24} \) \(\mathstrut +\mathstrut 79q^{25} \) \(\mathstrut +\mathstrut 26q^{26} \) \(\mathstrut +\mathstrut 66q^{27} \) \(\mathstrut +\mathstrut 30q^{28} \) \(\mathstrut -\mathstrut 5q^{29} \) \(\mathstrut +\mathstrut 17q^{30} \) \(\mathstrut +\mathstrut 60q^{31} \) \(\mathstrut +\mathstrut 50q^{32} \) \(\mathstrut +\mathstrut 37q^{33} \) \(\mathstrut +\mathstrut 24q^{34} \) \(\mathstrut +\mathstrut 38q^{35} \) \(\mathstrut +\mathstrut 66q^{36} \) \(\mathstrut +\mathstrut 35q^{37} \) \(\mathstrut +\mathstrut 39q^{38} \) \(\mathstrut +\mathstrut 37q^{39} \) \(\mathstrut +\mathstrut 11q^{40} \) \(\mathstrut +\mathstrut 42q^{41} \) \(\mathstrut -\mathstrut q^{42} \) \(\mathstrut +\mathstrut 44q^{43} \) \(\mathstrut +\mathstrut 21q^{44} \) \(\mathstrut +\mathstrut 31q^{45} \) \(\mathstrut +\mathstrut 28q^{46} \) \(\mathstrut +\mathstrut 60q^{47} \) \(\mathstrut +\mathstrut 18q^{48} \) \(\mathstrut +\mathstrut 92q^{49} \) \(\mathstrut +\mathstrut 79q^{50} \) \(\mathstrut +\mathstrut 26q^{51} \) \(\mathstrut +\mathstrut 26q^{52} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut 66q^{54} \) \(\mathstrut +\mathstrut 33q^{55} \) \(\mathstrut +\mathstrut 30q^{56} \) \(\mathstrut +\mathstrut 15q^{57} \) \(\mathstrut -\mathstrut 5q^{58} \) \(\mathstrut +\mathstrut 65q^{59} \) \(\mathstrut +\mathstrut 17q^{60} \) \(\mathstrut +\mathstrut 15q^{61} \) \(\mathstrut +\mathstrut 60q^{62} \) \(\mathstrut +\mathstrut 56q^{63} \) \(\mathstrut +\mathstrut 50q^{64} \) \(\mathstrut +\mathstrut 6q^{65} \) \(\mathstrut +\mathstrut 37q^{66} \) \(\mathstrut +\mathstrut 48q^{67} \) \(\mathstrut +\mathstrut 24q^{68} \) \(\mathstrut -\mathstrut 9q^{69} \) \(\mathstrut +\mathstrut 38q^{70} \) \(\mathstrut +\mathstrut 34q^{71} \) \(\mathstrut +\mathstrut 66q^{72} \) \(\mathstrut +\mathstrut 91q^{73} \) \(\mathstrut +\mathstrut 35q^{74} \) \(\mathstrut +\mathstrut 54q^{75} \) \(\mathstrut +\mathstrut 39q^{76} \) \(\mathstrut -\mathstrut 6q^{77} \) \(\mathstrut +\mathstrut 37q^{78} \) \(\mathstrut +\mathstrut 29q^{79} \) \(\mathstrut +\mathstrut 11q^{80} \) \(\mathstrut +\mathstrut 66q^{81} \) \(\mathstrut +\mathstrut 42q^{82} \) \(\mathstrut +\mathstrut 43q^{83} \) \(\mathstrut -\mathstrut q^{84} \) \(\mathstrut +\mathstrut 44q^{86} \) \(\mathstrut +\mathstrut 32q^{87} \) \(\mathstrut +\mathstrut 21q^{88} \) \(\mathstrut +\mathstrut 38q^{89} \) \(\mathstrut +\mathstrut 31q^{90} \) \(\mathstrut +\mathstrut 55q^{91} \) \(\mathstrut +\mathstrut 28q^{92} \) \(\mathstrut -\mathstrut 15q^{93} \) \(\mathstrut +\mathstrut 60q^{94} \) \(\mathstrut +\mathstrut 9q^{95} \) \(\mathstrut +\mathstrut 18q^{96} \) \(\mathstrut +\mathstrut 80q^{97} \) \(\mathstrut +\mathstrut 92q^{98} \) \(\mathstrut +\mathstrut 20q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 1.00000 −3.20664 1.00000 −0.511117 −3.20664 0.304730 1.00000 7.28252 −0.511117
1.2 1.00000 −2.97777 1.00000 −2.48115 −2.97777 4.88773 1.00000 5.86711 −2.48115
1.3 1.00000 −2.74563 1.00000 −2.60075 −2.74563 0.636977 1.00000 4.53848 −2.60075
1.4 1.00000 −2.61133 1.00000 −0.740567 −2.61133 −2.94518 1.00000 3.81902 −0.740567
1.5 1.00000 −2.59841 1.00000 4.27842 −2.59841 3.34363 1.00000 3.75173 4.27842
1.6 1.00000 −2.50306 1.00000 0.0732871 −2.50306 −1.25699 1.00000 3.26529 0.0732871
1.7 1.00000 −2.49143 1.00000 2.52331 −2.49143 1.07230 1.00000 3.20721 2.52331
1.8 1.00000 −2.46190 1.00000 2.99591 −2.46190 1.50567 1.00000 3.06093 2.99591
1.9 1.00000 −2.20305 1.00000 2.72503 −2.20305 3.76461 1.00000 1.85345 2.72503
1.10 1.00000 −1.73177 1.00000 0.638996 −1.73177 0.168919 1.00000 −0.000964633 0 0.638996
1.11 1.00000 −1.60405 1.00000 1.46390 −1.60405 4.50208 1.00000 −0.427040 1.46390
1.12 1.00000 −1.54111 1.00000 −4.38749 −1.54111 4.20037 1.00000 −0.624992 −4.38749
1.13 1.00000 −1.49263 1.00000 −2.25527 −1.49263 0.477234 1.00000 −0.772062 −2.25527
1.14 1.00000 −1.45431 1.00000 −2.49956 −1.45431 −3.69872 1.00000 −0.884987 −2.49956
1.15 1.00000 −1.41980 1.00000 2.76587 −1.41980 −4.92374 1.00000 −0.984179 2.76587
1.16 1.00000 −1.05832 1.00000 −2.35340 −1.05832 −2.98821 1.00000 −1.87996 −2.35340
1.17 1.00000 −0.537568 1.00000 2.09045 −0.537568 4.78863 1.00000 −2.71102 2.09045
1.18 1.00000 −0.445408 1.00000 −2.87764 −0.445408 −1.74390 1.00000 −2.80161 −2.87764
1.19 1.00000 −0.424610 1.00000 −2.05502 −0.424610 3.71032 1.00000 −2.81971 −2.05502
1.20 1.00000 −0.367906 1.00000 2.32640 −0.367906 1.76735 1.00000 −2.86465 2.32640
See all 50 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.50
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(2011\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{50} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4022))\).