Properties

Label 4022.2.a.c
Level 4022
Weight 2
Character orbit 4022.a
Self dual Yes
Analytic conductor 32.116
Analytic rank 1
Dimension 31
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4022 = 2 \cdot 2011 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4022.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.115831693\)
Analytic rank: \(1\)
Dimension: \(31\)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(31q \) \(\mathstrut +\mathstrut 31q^{2} \) \(\mathstrut -\mathstrut 14q^{3} \) \(\mathstrut +\mathstrut 31q^{4} \) \(\mathstrut -\mathstrut 13q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 29q^{7} \) \(\mathstrut +\mathstrut 31q^{8} \) \(\mathstrut +\mathstrut 27q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(31q \) \(\mathstrut +\mathstrut 31q^{2} \) \(\mathstrut -\mathstrut 14q^{3} \) \(\mathstrut +\mathstrut 31q^{4} \) \(\mathstrut -\mathstrut 13q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 29q^{7} \) \(\mathstrut +\mathstrut 31q^{8} \) \(\mathstrut +\mathstrut 27q^{9} \) \(\mathstrut -\mathstrut 13q^{10} \) \(\mathstrut -\mathstrut 29q^{11} \) \(\mathstrut -\mathstrut 14q^{12} \) \(\mathstrut -\mathstrut 23q^{13} \) \(\mathstrut -\mathstrut 29q^{14} \) \(\mathstrut -\mathstrut 14q^{15} \) \(\mathstrut +\mathstrut 31q^{16} \) \(\mathstrut -\mathstrut 19q^{17} \) \(\mathstrut +\mathstrut 27q^{18} \) \(\mathstrut -\mathstrut 36q^{19} \) \(\mathstrut -\mathstrut 13q^{20} \) \(\mathstrut -\mathstrut 29q^{22} \) \(\mathstrut -\mathstrut 24q^{23} \) \(\mathstrut -\mathstrut 14q^{24} \) \(\mathstrut +\mathstrut 4q^{25} \) \(\mathstrut -\mathstrut 23q^{26} \) \(\mathstrut -\mathstrut 65q^{27} \) \(\mathstrut -\mathstrut 29q^{28} \) \(\mathstrut +\mathstrut 18q^{29} \) \(\mathstrut -\mathstrut 14q^{30} \) \(\mathstrut -\mathstrut 41q^{31} \) \(\mathstrut +\mathstrut 31q^{32} \) \(\mathstrut -\mathstrut 18q^{33} \) \(\mathstrut -\mathstrut 19q^{34} \) \(\mathstrut -\mathstrut 28q^{35} \) \(\mathstrut +\mathstrut 27q^{36} \) \(\mathstrut -\mathstrut 31q^{37} \) \(\mathstrut -\mathstrut 36q^{38} \) \(\mathstrut -\mathstrut 31q^{39} \) \(\mathstrut -\mathstrut 13q^{40} \) \(\mathstrut -\mathstrut 51q^{41} \) \(\mathstrut -\mathstrut 14q^{43} \) \(\mathstrut -\mathstrut 29q^{44} \) \(\mathstrut -\mathstrut 34q^{45} \) \(\mathstrut -\mathstrut 24q^{46} \) \(\mathstrut -\mathstrut 64q^{47} \) \(\mathstrut -\mathstrut 14q^{48} \) \(\mathstrut +\mathstrut 8q^{49} \) \(\mathstrut +\mathstrut 4q^{50} \) \(\mathstrut -\mathstrut 17q^{51} \) \(\mathstrut -\mathstrut 23q^{52} \) \(\mathstrut +\mathstrut 3q^{53} \) \(\mathstrut -\mathstrut 65q^{54} \) \(\mathstrut -\mathstrut 50q^{55} \) \(\mathstrut -\mathstrut 29q^{56} \) \(\mathstrut -\mathstrut 19q^{57} \) \(\mathstrut +\mathstrut 18q^{58} \) \(\mathstrut -\mathstrut 58q^{59} \) \(\mathstrut -\mathstrut 14q^{60} \) \(\mathstrut -\mathstrut 14q^{61} \) \(\mathstrut -\mathstrut 41q^{62} \) \(\mathstrut -\mathstrut 66q^{63} \) \(\mathstrut +\mathstrut 31q^{64} \) \(\mathstrut +\mathstrut 6q^{65} \) \(\mathstrut -\mathstrut 18q^{66} \) \(\mathstrut -\mathstrut 55q^{67} \) \(\mathstrut -\mathstrut 19q^{68} \) \(\mathstrut +\mathstrut q^{69} \) \(\mathstrut -\mathstrut 28q^{70} \) \(\mathstrut -\mathstrut 42q^{71} \) \(\mathstrut +\mathstrut 27q^{72} \) \(\mathstrut -\mathstrut 83q^{73} \) \(\mathstrut -\mathstrut 31q^{74} \) \(\mathstrut -\mathstrut 49q^{75} \) \(\mathstrut -\mathstrut 36q^{76} \) \(\mathstrut +\mathstrut 18q^{77} \) \(\mathstrut -\mathstrut 31q^{78} \) \(\mathstrut -\mathstrut 56q^{79} \) \(\mathstrut -\mathstrut 13q^{80} \) \(\mathstrut +\mathstrut 3q^{81} \) \(\mathstrut -\mathstrut 51q^{82} \) \(\mathstrut -\mathstrut 43q^{83} \) \(\mathstrut +\mathstrut 4q^{85} \) \(\mathstrut -\mathstrut 14q^{86} \) \(\mathstrut -\mathstrut 76q^{87} \) \(\mathstrut -\mathstrut 29q^{88} \) \(\mathstrut +\mathstrut 17q^{89} \) \(\mathstrut -\mathstrut 34q^{90} \) \(\mathstrut -\mathstrut 49q^{91} \) \(\mathstrut -\mathstrut 24q^{92} \) \(\mathstrut -\mathstrut 24q^{93} \) \(\mathstrut -\mathstrut 64q^{94} \) \(\mathstrut -\mathstrut 43q^{95} \) \(\mathstrut -\mathstrut 14q^{96} \) \(\mathstrut -\mathstrut 98q^{97} \) \(\mathstrut +\mathstrut 8q^{98} \) \(\mathstrut -\mathstrut q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 1.00000 −3.32689 1.00000 −3.79290 −3.32689 −3.92698 1.00000 8.06821 −3.79290
1.2 1.00000 −3.17886 1.00000 2.94122 −3.17886 −2.37061 1.00000 7.10517 2.94122
1.3 1.00000 −3.04963 1.00000 −0.453463 −3.04963 2.87005 1.00000 6.30022 −0.453463
1.4 1.00000 −2.91271 1.00000 3.14140 −2.91271 −3.38046 1.00000 5.48388 3.14140
1.5 1.00000 −2.85499 1.00000 1.11825 −2.85499 −3.01039 1.00000 5.15094 1.11825
1.6 1.00000 −2.62663 1.00000 −2.01799 −2.62663 0.869262 1.00000 3.89919 −2.01799
1.7 1.00000 −2.46221 1.00000 −2.36990 −2.46221 2.92726 1.00000 3.06248 −2.36990
1.8 1.00000 −2.43557 1.00000 0.846052 −2.43557 3.32195 1.00000 2.93199 0.846052
1.9 1.00000 −2.37527 1.00000 −1.97700 −2.37527 −4.20609 1.00000 2.64192 −1.97700
1.10 1.00000 −1.80853 1.00000 −3.10189 −1.80853 −2.67852 1.00000 0.270780 −3.10189
1.11 1.00000 −1.75046 1.00000 1.28935 −1.75046 −0.876800 1.00000 0.0641056 1.28935
1.12 1.00000 −1.49586 1.00000 3.62778 −1.49586 −1.50310 1.00000 −0.762393 3.62778
1.13 1.00000 −1.32273 1.00000 −4.14420 −1.32273 −0.0466766 1.00000 −1.25038 −4.14420
1.14 1.00000 −0.917670 1.00000 −0.382051 −0.917670 1.33651 1.00000 −2.15788 −0.382051
1.15 1.00000 −0.691780 1.00000 −1.18527 −0.691780 3.22162 1.00000 −2.52144 −1.18527
1.16 1.00000 −0.653164 1.00000 1.42104 −0.653164 −3.96008 1.00000 −2.57338 1.42104
1.17 1.00000 −0.0253042 1.00000 0.720155 −0.0253042 −3.77805 1.00000 −2.99936 0.720155
1.18 1.00000 −0.0246012 1.00000 2.47730 −0.0246012 1.25791 1.00000 −2.99939 2.47730
1.19 1.00000 0.524728 1.00000 0.579848 0.524728 1.74824 1.00000 −2.72466 0.579848
1.20 1.00000 0.689428 1.00000 −0.213014 0.689428 −0.113005 1.00000 −2.52469 −0.213014
See all 31 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.31
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(2011\) \(-1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{31} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4022))\).