Properties

Label 4020.2.g.c.1609.7
Level 4020
Weight 2
Character 4020.1609
Analytic conductor 32.100
Analytic rank 0
Dimension 38
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4020 = 2^{2} \cdot 3 \cdot 5 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4020.g (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(32.0998616126\)
Analytic rank: \(0\)
Dimension: \(38\)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1609.7
Character \(\chi\) = 4020.1609
Dual form 4020.2.g.c.1609.26

$q$-expansion

\(f(q)\) \(=\) \(q\)\(-1.00000i q^{3}\) \(+(-0.847850 + 2.06909i) q^{5}\) \(+3.67313i q^{7}\) \(-1.00000 q^{9}\) \(+O(q^{10})\) \(q\)\(-1.00000i q^{3}\) \(+(-0.847850 + 2.06909i) q^{5}\) \(+3.67313i q^{7}\) \(-1.00000 q^{9}\) \(-3.98590 q^{11}\) \(-1.24921i q^{13}\) \(+(2.06909 + 0.847850i) q^{15}\) \(-0.354171i q^{17}\) \(-1.69097 q^{19}\) \(+3.67313 q^{21}\) \(-1.36335i q^{23}\) \(+(-3.56230 - 3.50856i) q^{25}\) \(+1.00000i q^{27}\) \(+0.677093 q^{29}\) \(+0.344129 q^{31}\) \(+3.98590i q^{33}\) \(+(-7.60004 - 3.11426i) q^{35}\) \(+8.16175i q^{37}\) \(-1.24921 q^{39}\) \(-5.45089 q^{41}\) \(-10.6444i q^{43}\) \(+(0.847850 - 2.06909i) q^{45}\) \(+10.1918i q^{47}\) \(-6.49186 q^{49}\) \(-0.354171 q^{51}\) \(+4.74012i q^{53}\) \(+(3.37945 - 8.24720i) q^{55}\) \(+1.69097i q^{57}\) \(+5.13578 q^{59}\) \(+5.19082 q^{61}\) \(-3.67313i q^{63}\) \(+(2.58472 + 1.05914i) q^{65}\) \(-1.00000i q^{67}\) \(-1.36335 q^{69}\) \(-3.56237 q^{71}\) \(-4.89398i q^{73}\) \(+(-3.50856 + 3.56230i) q^{75}\) \(-14.6407i q^{77}\) \(+5.19345 q^{79}\) \(+1.00000 q^{81}\) \(-7.49034i q^{83}\) \(+(0.732812 + 0.300284i) q^{85}\) \(-0.677093i q^{87}\) \(-11.5662 q^{89}\) \(+4.58849 q^{91}\) \(-0.344129i q^{93}\) \(+(1.43369 - 3.49878i) q^{95}\) \(-17.6632i q^{97}\) \(+3.98590 q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(38q \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 38q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(38q \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 38q^{9} \) \(\mathstrut +\mathstrut 24q^{11} \) \(\mathstrut +\mathstrut 2q^{15} \) \(\mathstrut -\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 12q^{21} \) \(\mathstrut +\mathstrut 4q^{25} \) \(\mathstrut -\mathstrut 56q^{29} \) \(\mathstrut -\mathstrut 4q^{31} \) \(\mathstrut -\mathstrut 2q^{35} \) \(\mathstrut +\mathstrut 60q^{41} \) \(\mathstrut +\mathstrut 2q^{45} \) \(\mathstrut -\mathstrut 70q^{49} \) \(\mathstrut +\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 52q^{59} \) \(\mathstrut +\mathstrut 48q^{61} \) \(\mathstrut +\mathstrut 16q^{65} \) \(\mathstrut -\mathstrut 12q^{69} \) \(\mathstrut +\mathstrut 12q^{75} \) \(\mathstrut -\mathstrut 24q^{79} \) \(\mathstrut +\mathstrut 38q^{81} \) \(\mathstrut +\mathstrut 16q^{85} \) \(\mathstrut -\mathstrut 76q^{89} \) \(\mathstrut +\mathstrut 44q^{91} \) \(\mathstrut +\mathstrut 36q^{95} \) \(\mathstrut -\mathstrut 24q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4020\mathbb{Z}\right)^\times\).

\(n\) \(1141\) \(2011\) \(2681\) \(3217\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −0.847850 + 2.06909i −0.379170 + 0.925327i
\(6\) 0 0
\(7\) 3.67313i 1.38831i 0.719825 + 0.694156i \(0.244222\pi\)
−0.719825 + 0.694156i \(0.755778\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.98590 −1.20179 −0.600897 0.799327i \(-0.705190\pi\)
−0.600897 + 0.799327i \(0.705190\pi\)
\(12\) 0 0
\(13\) 1.24921i 0.346467i −0.984881 0.173234i \(-0.944578\pi\)
0.984881 0.173234i \(-0.0554216\pi\)
\(14\) 0 0
\(15\) 2.06909 + 0.847850i 0.534238 + 0.218914i
\(16\) 0 0
\(17\) 0.354171i 0.0858990i −0.999077 0.0429495i \(-0.986325\pi\)
0.999077 0.0429495i \(-0.0136755\pi\)
\(18\) 0 0
\(19\) −1.69097 −0.387936 −0.193968 0.981008i \(-0.562136\pi\)
−0.193968 + 0.981008i \(0.562136\pi\)
\(20\) 0 0
\(21\) 3.67313 0.801542
\(22\) 0 0
\(23\) 1.36335i 0.284279i −0.989847 0.142139i \(-0.954602\pi\)
0.989847 0.142139i \(-0.0453981\pi\)
\(24\) 0 0
\(25\) −3.56230 3.50856i −0.712460 0.701713i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 0.677093 0.125733 0.0628665 0.998022i \(-0.479976\pi\)
0.0628665 + 0.998022i \(0.479976\pi\)
\(30\) 0 0
\(31\) 0.344129 0.0618074 0.0309037 0.999522i \(-0.490161\pi\)
0.0309037 + 0.999522i \(0.490161\pi\)
\(32\) 0 0
\(33\) 3.98590i 0.693856i
\(34\) 0 0
\(35\) −7.60004 3.11426i −1.28464 0.526406i
\(36\) 0 0
\(37\) 8.16175i 1.34178i 0.741555 + 0.670892i \(0.234088\pi\)
−0.741555 + 0.670892i \(0.765912\pi\)
\(38\) 0 0
\(39\) −1.24921 −0.200033
\(40\) 0 0
\(41\) −5.45089 −0.851287 −0.425643 0.904891i \(-0.639952\pi\)
−0.425643 + 0.904891i \(0.639952\pi\)
\(42\) 0 0
\(43\) 10.6444i 1.62325i −0.584177 0.811626i \(-0.698583\pi\)
0.584177 0.811626i \(-0.301417\pi\)
\(44\) 0 0
\(45\) 0.847850 2.06909i 0.126390 0.308442i
\(46\) 0 0
\(47\) 10.1918i 1.48663i 0.668944 + 0.743313i \(0.266747\pi\)
−0.668944 + 0.743313i \(0.733253\pi\)
\(48\) 0 0
\(49\) −6.49186 −0.927408
\(50\) 0 0
\(51\) −0.354171 −0.0495938
\(52\) 0 0
\(53\) 4.74012i 0.651106i 0.945524 + 0.325553i \(0.105550\pi\)
−0.945524 + 0.325553i \(0.894450\pi\)
\(54\) 0 0
\(55\) 3.37945 8.24720i 0.455684 1.11205i
\(56\) 0 0
\(57\) 1.69097i 0.223975i
\(58\) 0 0
\(59\) 5.13578 0.668621 0.334311 0.942463i \(-0.391497\pi\)
0.334311 + 0.942463i \(0.391497\pi\)
\(60\) 0 0
\(61\) 5.19082 0.664616 0.332308 0.943171i \(-0.392173\pi\)
0.332308 + 0.943171i \(0.392173\pi\)
\(62\) 0 0
\(63\) 3.67313i 0.462770i
\(64\) 0 0
\(65\) 2.58472 + 1.05914i 0.320595 + 0.131370i
\(66\) 0 0
\(67\) 1.00000i 0.122169i
\(68\) 0 0
\(69\) −1.36335 −0.164128
\(70\) 0 0
\(71\) −3.56237 −0.422776 −0.211388 0.977402i \(-0.567798\pi\)
−0.211388 + 0.977402i \(0.567798\pi\)
\(72\) 0 0
\(73\) 4.89398i 0.572797i −0.958111 0.286398i \(-0.907542\pi\)
0.958111 0.286398i \(-0.0924581\pi\)
\(74\) 0 0
\(75\) −3.50856 + 3.56230i −0.405134 + 0.411339i
\(76\) 0 0
\(77\) 14.6407i 1.66846i
\(78\) 0 0
\(79\) 5.19345 0.584308 0.292154 0.956371i \(-0.405628\pi\)
0.292154 + 0.956371i \(0.405628\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 7.49034i 0.822171i −0.911597 0.411086i \(-0.865150\pi\)
0.911597 0.411086i \(-0.134850\pi\)
\(84\) 0 0
\(85\) 0.732812 + 0.300284i 0.0794847 + 0.0325704i
\(86\) 0 0
\(87\) 0.677093i 0.0725920i
\(88\) 0 0
\(89\) −11.5662 −1.22601 −0.613007 0.790078i \(-0.710040\pi\)
−0.613007 + 0.790078i \(0.710040\pi\)
\(90\) 0 0
\(91\) 4.58849 0.481004
\(92\) 0 0
\(93\) 0.344129i 0.0356845i
\(94\) 0 0
\(95\) 1.43369 3.49878i 0.147094 0.358967i
\(96\) 0 0
\(97\) 17.6632i 1.79342i −0.442617 0.896711i \(-0.645950\pi\)
0.442617 0.896711i \(-0.354050\pi\)
\(98\) 0 0
\(99\) 3.98590 0.400598
\(100\) 0 0
\(101\) −5.52695 −0.549952 −0.274976 0.961451i \(-0.588670\pi\)
−0.274976 + 0.961451i \(0.588670\pi\)
\(102\) 0 0
\(103\) 18.0243i 1.77599i −0.459853 0.887995i \(-0.652098\pi\)
0.459853 0.887995i \(-0.347902\pi\)
\(104\) 0 0
\(105\) −3.11426 + 7.60004i −0.303921 + 0.741688i
\(106\) 0 0
\(107\) 18.2547i 1.76474i −0.470552 0.882372i \(-0.655945\pi\)
0.470552 0.882372i \(-0.344055\pi\)
\(108\) 0 0
\(109\) 11.4396 1.09572 0.547859 0.836571i \(-0.315443\pi\)
0.547859 + 0.836571i \(0.315443\pi\)
\(110\) 0 0
\(111\) 8.16175 0.774679
\(112\) 0 0
\(113\) 12.1514i 1.14311i −0.820565 0.571553i \(-0.806341\pi\)
0.820565 0.571553i \(-0.193659\pi\)
\(114\) 0 0
\(115\) 2.82091 + 1.15592i 0.263051 + 0.107790i
\(116\) 0 0
\(117\) 1.24921i 0.115489i
\(118\) 0 0
\(119\) 1.30091 0.119255
\(120\) 0 0
\(121\) 4.88739 0.444308
\(122\) 0 0
\(123\) 5.45089i 0.491491i
\(124\) 0 0
\(125\) 10.2798 4.39599i 0.919457 0.393190i
\(126\) 0 0
\(127\) 2.07566i 0.184185i −0.995750 0.0920927i \(-0.970644\pi\)
0.995750 0.0920927i \(-0.0293556\pi\)
\(128\) 0 0
\(129\) −10.6444 −0.937185
\(130\) 0 0
\(131\) −7.87477 −0.688022 −0.344011 0.938966i \(-0.611786\pi\)
−0.344011 + 0.938966i \(0.611786\pi\)
\(132\) 0 0
\(133\) 6.21115i 0.538575i
\(134\) 0 0
\(135\) −2.06909 0.847850i −0.178079 0.0729714i
\(136\) 0 0
\(137\) 9.02338i 0.770920i −0.922725 0.385460i \(-0.874043\pi\)
0.922725 0.385460i \(-0.125957\pi\)
\(138\) 0 0
\(139\) −3.33603 −0.282958 −0.141479 0.989941i \(-0.545186\pi\)
−0.141479 + 0.989941i \(0.545186\pi\)
\(140\) 0 0
\(141\) 10.1918 0.858304
\(142\) 0 0
\(143\) 4.97920i 0.416382i
\(144\) 0 0
\(145\) −0.574074 + 1.40097i −0.0476742 + 0.116344i
\(146\) 0 0
\(147\) 6.49186i 0.535439i
\(148\) 0 0
\(149\) 10.9548 0.897452 0.448726 0.893670i \(-0.351878\pi\)
0.448726 + 0.893670i \(0.351878\pi\)
\(150\) 0 0
\(151\) −5.79175 −0.471326 −0.235663 0.971835i \(-0.575726\pi\)
−0.235663 + 0.971835i \(0.575726\pi\)
\(152\) 0 0
\(153\) 0.354171i 0.0286330i
\(154\) 0 0
\(155\) −0.291770 + 0.712036i −0.0234355 + 0.0571921i
\(156\) 0 0
\(157\) 20.0431i 1.59961i 0.600258 + 0.799806i \(0.295064\pi\)
−0.600258 + 0.799806i \(0.704936\pi\)
\(158\) 0 0
\(159\) 4.74012 0.375916
\(160\) 0 0
\(161\) 5.00777 0.394668
\(162\) 0 0
\(163\) 16.4495i 1.28843i −0.764846 0.644213i \(-0.777185\pi\)
0.764846 0.644213i \(-0.222815\pi\)
\(164\) 0 0
\(165\) −8.24720 3.37945i −0.642043 0.263089i
\(166\) 0 0
\(167\) 10.2670i 0.794488i 0.917713 + 0.397244i \(0.130033\pi\)
−0.917713 + 0.397244i \(0.869967\pi\)
\(168\) 0 0
\(169\) 11.4395 0.879960
\(170\) 0 0
\(171\) 1.69097 0.129312
\(172\) 0 0
\(173\) 9.03279i 0.686750i −0.939198 0.343375i \(-0.888430\pi\)
0.939198 0.343375i \(-0.111570\pi\)
\(174\) 0 0
\(175\) 12.8874 13.0848i 0.974196 0.989116i
\(176\) 0 0
\(177\) 5.13578i 0.386029i
\(178\) 0 0
\(179\) −16.4474 −1.22933 −0.614666 0.788787i \(-0.710709\pi\)
−0.614666 + 0.788787i \(0.710709\pi\)
\(180\) 0 0
\(181\) 19.0006 1.41230 0.706152 0.708060i \(-0.250429\pi\)
0.706152 + 0.708060i \(0.250429\pi\)
\(182\) 0 0
\(183\) 5.19082i 0.383716i
\(184\) 0 0
\(185\) −16.8874 6.91994i −1.24159 0.508764i
\(186\) 0 0
\(187\) 1.41169i 0.103233i
\(188\) 0 0
\(189\) −3.67313 −0.267181
\(190\) 0 0
\(191\) −23.1050 −1.67182 −0.835910 0.548866i \(-0.815060\pi\)
−0.835910 + 0.548866i \(0.815060\pi\)
\(192\) 0 0
\(193\) 2.97961i 0.214477i −0.994233 0.107239i \(-0.965799\pi\)
0.994233 0.107239i \(-0.0342009\pi\)
\(194\) 0 0
\(195\) 1.05914 2.58472i 0.0758465 0.185096i
\(196\) 0 0
\(197\) 7.15240i 0.509587i 0.966995 + 0.254794i \(0.0820075\pi\)
−0.966995 + 0.254794i \(0.917992\pi\)
\(198\) 0 0
\(199\) −13.7887 −0.977452 −0.488726 0.872437i \(-0.662538\pi\)
−0.488726 + 0.872437i \(0.662538\pi\)
\(200\) 0 0
\(201\) −1.00000 −0.0705346
\(202\) 0 0
\(203\) 2.48705i 0.174557i
\(204\) 0 0
\(205\) 4.62154 11.2784i 0.322783 0.787718i
\(206\) 0 0
\(207\) 1.36335i 0.0947596i
\(208\) 0 0
\(209\) 6.74004 0.466218
\(210\) 0 0
\(211\) −0.00933814 −0.000642864 −0.000321432 1.00000i \(-0.500102\pi\)
−0.000321432 1.00000i \(0.500102\pi\)
\(212\) 0 0
\(213\) 3.56237i 0.244090i
\(214\) 0 0
\(215\) 22.0242 + 9.02484i 1.50204 + 0.615489i
\(216\) 0 0
\(217\) 1.26403i 0.0858080i
\(218\) 0 0
\(219\) −4.89398 −0.330704
\(220\) 0 0
\(221\) −0.442432 −0.0297612
\(222\) 0 0
\(223\) 8.79157i 0.588727i −0.955694 0.294364i \(-0.904892\pi\)
0.955694 0.294364i \(-0.0951077\pi\)
\(224\) 0 0
\(225\) 3.56230 + 3.50856i 0.237487 + 0.233904i
\(226\) 0 0
\(227\) 25.8704i 1.71708i 0.512747 + 0.858540i \(0.328628\pi\)
−0.512747 + 0.858540i \(0.671372\pi\)
\(228\) 0 0
\(229\) 7.38276 0.487867 0.243933 0.969792i \(-0.421562\pi\)
0.243933 + 0.969792i \(0.421562\pi\)
\(230\) 0 0
\(231\) −14.6407 −0.963288
\(232\) 0 0
\(233\) 4.02124i 0.263440i −0.991287 0.131720i \(-0.957950\pi\)
0.991287 0.131720i \(-0.0420500\pi\)
\(234\) 0 0
\(235\) −21.0878 8.64111i −1.37561 0.563684i
\(236\) 0 0
\(237\) 5.19345i 0.337351i
\(238\) 0 0
\(239\) −4.65242 −0.300940 −0.150470 0.988615i \(-0.548079\pi\)
−0.150470 + 0.988615i \(0.548079\pi\)
\(240\) 0 0
\(241\) 5.31972 0.342674 0.171337 0.985213i \(-0.445191\pi\)
0.171337 + 0.985213i \(0.445191\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 5.50412 13.4323i 0.351646 0.858156i
\(246\) 0 0
\(247\) 2.11237i 0.134407i
\(248\) 0 0
\(249\) −7.49034 −0.474681
\(250\) 0 0
\(251\) 15.4986 0.978261 0.489131 0.872211i \(-0.337314\pi\)
0.489131 + 0.872211i \(0.337314\pi\)
\(252\) 0 0
\(253\) 5.43419i 0.341645i
\(254\) 0 0
\(255\) 0.300284 0.732812i 0.0188045 0.0458905i
\(256\) 0 0
\(257\) 11.0848i 0.691448i −0.938336 0.345724i \(-0.887633\pi\)
0.938336 0.345724i \(-0.112367\pi\)
\(258\) 0 0
\(259\) −29.9791 −1.86281
\(260\) 0 0
\(261\) −0.677093 −0.0419110
\(262\) 0 0
\(263\) 18.3141i 1.12930i −0.825331 0.564649i \(-0.809011\pi\)
0.825331 0.564649i \(-0.190989\pi\)
\(264\) 0 0
\(265\) −9.80775 4.01891i −0.602486 0.246880i
\(266\) 0 0
\(267\) 11.5662i 0.707839i
\(268\) 0 0
\(269\) −3.87552 −0.236294 −0.118147 0.992996i \(-0.537695\pi\)
−0.118147 + 0.992996i \(0.537695\pi\)
\(270\) 0 0
\(271\) −6.86979 −0.417310 −0.208655 0.977989i \(-0.566909\pi\)
−0.208655 + 0.977989i \(0.566909\pi\)
\(272\) 0 0
\(273\) 4.58849i 0.277708i
\(274\) 0 0
\(275\) 14.1990 + 13.9848i 0.856230 + 0.843314i
\(276\) 0 0
\(277\) 29.2508i 1.75751i 0.477274 + 0.878755i \(0.341625\pi\)
−0.477274 + 0.878755i \(0.658375\pi\)
\(278\) 0 0
\(279\) −0.344129 −0.0206025
\(280\) 0 0
\(281\) −9.06296 −0.540651 −0.270325 0.962769i \(-0.587131\pi\)
−0.270325 + 0.962769i \(0.587131\pi\)
\(282\) 0 0
\(283\) 2.74959i 0.163446i 0.996655 + 0.0817232i \(0.0260423\pi\)
−0.996655 + 0.0817232i \(0.973958\pi\)
\(284\) 0 0
\(285\) −3.49878 1.43369i −0.207250 0.0849245i
\(286\) 0 0
\(287\) 20.0218i 1.18185i
\(288\) 0 0
\(289\) 16.8746 0.992621
\(290\) 0 0
\(291\) −17.6632 −1.03543
\(292\) 0 0
\(293\) 5.28044i 0.308487i −0.988033 0.154243i \(-0.950706\pi\)
0.988033 0.154243i \(-0.0492940\pi\)
\(294\) 0 0
\(295\) −4.35437 + 10.6264i −0.253521 + 0.618693i
\(296\) 0 0
\(297\) 3.98590i 0.231285i
\(298\) 0 0
\(299\) −1.70311 −0.0984933
\(300\) 0 0
\(301\) 39.0981 2.25358
\(302\) 0 0
\(303\) 5.52695i 0.317515i
\(304\) 0 0
\(305\) −4.40104 + 10.7403i −0.252003 + 0.614987i
\(306\) 0 0
\(307\) 31.1784i 1.77944i −0.456502 0.889722i \(-0.650898\pi\)
0.456502 0.889722i \(-0.349102\pi\)
\(308\) 0 0
\(309\) −18.0243 −1.02537
\(310\) 0 0
\(311\) −17.4565 −0.989869 −0.494934 0.868930i \(-0.664808\pi\)
−0.494934 + 0.868930i \(0.664808\pi\)
\(312\) 0 0
\(313\) 10.3566i 0.585388i 0.956206 + 0.292694i \(0.0945518\pi\)
−0.956206 + 0.292694i \(0.905448\pi\)
\(314\) 0 0
\(315\) 7.60004 + 3.11426i 0.428214 + 0.175469i
\(316\) 0 0
\(317\) 2.19437i 0.123248i 0.998099 + 0.0616240i \(0.0196280\pi\)
−0.998099 + 0.0616240i \(0.980372\pi\)
\(318\) 0 0
\(319\) −2.69882 −0.151105
\(320\) 0 0
\(321\) −18.2547 −1.01888
\(322\) 0 0
\(323\) 0.598893i 0.0333233i
\(324\) 0 0
\(325\) −4.38292 + 4.45004i −0.243120 + 0.246844i
\(326\) 0 0
\(327\) 11.4396i 0.632613i
\(328\) 0 0
\(329\) −37.4357 −2.06390
\(330\) 0 0
\(331\) −9.64862 −0.530336 −0.265168 0.964202i \(-0.585427\pi\)
−0.265168 + 0.964202i \(0.585427\pi\)
\(332\) 0 0
\(333\) 8.16175i 0.447261i
\(334\) 0 0
\(335\) 2.06909 + 0.847850i 0.113047 + 0.0463230i
\(336\) 0 0
\(337\) 26.6003i 1.44901i 0.689269 + 0.724505i \(0.257932\pi\)
−0.689269 + 0.724505i \(0.742068\pi\)
\(338\) 0 0
\(339\) −12.1514 −0.659972
\(340\) 0 0
\(341\) −1.37166 −0.0742798
\(342\) 0 0
\(343\) 1.86648i 0.100780i
\(344\) 0 0
\(345\) 1.15592 2.82091i 0.0622326 0.151873i
\(346\) 0 0
\(347\) 19.0663i 1.02353i −0.859125 0.511766i \(-0.828992\pi\)
0.859125 0.511766i \(-0.171008\pi\)
\(348\) 0 0
\(349\) −34.9836 −1.87263 −0.936314 0.351164i \(-0.885786\pi\)
−0.936314 + 0.351164i \(0.885786\pi\)
\(350\) 0 0
\(351\) 1.24921 0.0666776
\(352\) 0 0
\(353\) 14.8946i 0.792758i −0.918087 0.396379i \(-0.870267\pi\)
0.918087 0.396379i \(-0.129733\pi\)
\(354\) 0 0
\(355\) 3.02036 7.37089i 0.160304 0.391206i
\(356\) 0 0
\(357\) 1.30091i 0.0688517i
\(358\) 0 0
\(359\) −20.8058 −1.09809 −0.549043 0.835794i \(-0.685008\pi\)
−0.549043 + 0.835794i \(0.685008\pi\)
\(360\) 0 0
\(361\) −16.1406 −0.849506
\(362\) 0 0
\(363\) 4.88739i 0.256521i
\(364\) 0 0
\(365\) 10.1261 + 4.14936i 0.530024 + 0.217187i
\(366\) 0 0
\(367\) 9.13253i 0.476714i 0.971178 + 0.238357i \(0.0766089\pi\)
−0.971178 + 0.238357i \(0.923391\pi\)
\(368\) 0 0
\(369\) 5.45089 0.283762
\(370\) 0 0
\(371\) −17.4111 −0.903937
\(372\) 0 0
\(373\) 18.9166i 0.979464i 0.871873 + 0.489732i \(0.162905\pi\)
−0.871873 + 0.489732i \(0.837095\pi\)
\(374\) 0 0
\(375\) −4.39599 10.2798i −0.227008 0.530849i
\(376\) 0 0
\(377\) 0.845828i 0.0435624i
\(378\) 0 0
\(379\) 4.68889 0.240852 0.120426 0.992722i \(-0.461574\pi\)
0.120426 + 0.992722i \(0.461574\pi\)
\(380\) 0 0
\(381\) −2.07566 −0.106339
\(382\) 0 0
\(383\) 11.1860i 0.571575i −0.958293 0.285788i \(-0.907745\pi\)
0.958293 0.285788i \(-0.0922552\pi\)
\(384\) 0 0
\(385\) 30.2930 + 12.4131i 1.54387 + 0.632632i
\(386\) 0 0
\(387\) 10.6444i 0.541084i
\(388\) 0 0
\(389\) −32.5925 −1.65250 −0.826252 0.563301i \(-0.809531\pi\)
−0.826252 + 0.563301i \(0.809531\pi\)
\(390\) 0 0
\(391\) −0.482860 −0.0244193
\(392\) 0 0
\(393\) 7.87477i 0.397230i
\(394\) 0 0
\(395\) −4.40327 + 10.7457i −0.221552 + 0.540676i
\(396\) 0 0
\(397\) 16.4542i 0.825811i −0.910774 0.412906i \(-0.864514\pi\)
0.910774 0.412906i \(-0.135486\pi\)
\(398\) 0 0
\(399\) −6.21115 −0.310947
\(400\) 0 0
\(401\) 18.9972 0.948674 0.474337 0.880343i \(-0.342688\pi\)
0.474337 + 0.880343i \(0.342688\pi\)
\(402\) 0 0
\(403\) 0.429888i 0.0214142i
\(404\) 0 0
\(405\) −0.847850 + 2.06909i −0.0421300 + 0.102814i
\(406\) 0 0
\(407\) 32.5319i 1.61255i
\(408\) 0 0
\(409\) 2.04519 0.101128 0.0505641 0.998721i \(-0.483898\pi\)
0.0505641 + 0.998721i \(0.483898\pi\)
\(410\) 0 0
\(411\) −9.02338 −0.445091
\(412\) 0 0
\(413\) 18.8644i 0.928254i
\(414\) 0 0
\(415\) 15.4982 + 6.35069i 0.760777 + 0.311743i
\(416\) 0 0
\(417\) 3.33603i 0.163366i
\(418\) 0 0
\(419\) 11.8865 0.580695 0.290348 0.956921i \(-0.406229\pi\)
0.290348 + 0.956921i \(0.406229\pi\)
\(420\) 0 0
\(421\) 20.8761 1.01744 0.508719 0.860933i \(-0.330119\pi\)
0.508719 + 0.860933i \(0.330119\pi\)
\(422\) 0 0
\(423\) 10.1918i 0.495542i
\(424\) 0 0
\(425\) −1.24263 + 1.26166i −0.0602764 + 0.0611996i
\(426\) 0 0
\(427\) 19.0665i 0.922694i
\(428\) 0 0
\(429\) 4.97920 0.240398
\(430\) 0 0
\(431\) 1.98614 0.0956692 0.0478346 0.998855i \(-0.484768\pi\)
0.0478346 + 0.998855i \(0.484768\pi\)
\(432\) 0 0
\(433\) 8.40462i 0.403900i −0.979396 0.201950i \(-0.935272\pi\)
0.979396 0.201950i \(-0.0647279\pi\)
\(434\) 0 0
\(435\) 1.40097 + 0.574074i 0.0671713 + 0.0275247i
\(436\) 0 0
\(437\) 2.30539i 0.110282i
\(438\) 0 0
\(439\) −26.1890 −1.24993 −0.624966 0.780652i \(-0.714887\pi\)
−0.624966 + 0.780652i \(0.714887\pi\)
\(440\) 0 0
\(441\) 6.49186 0.309136
\(442\) 0 0
\(443\) 31.3510i 1.48953i 0.667327 + 0.744765i \(0.267439\pi\)
−0.667327 + 0.744765i \(0.732561\pi\)
\(444\) 0 0
\(445\) 9.80640 23.9315i 0.464868 1.13446i
\(446\) 0 0
\(447\) 10.9548i 0.518144i
\(448\) 0 0
\(449\) −0.482287 −0.0227605 −0.0113803 0.999935i \(-0.503623\pi\)
−0.0113803 + 0.999935i \(0.503623\pi\)
\(450\) 0 0
\(451\) 21.7267 1.02307
\(452\) 0 0
\(453\) 5.79175i 0.272120i
\(454\) 0 0
\(455\) −3.89035 + 9.49401i −0.182383 + 0.445086i
\(456\) 0 0
\(457\) 22.1593i 1.03657i −0.855208 0.518285i \(-0.826571\pi\)
0.855208 0.518285i \(-0.173429\pi\)
\(458\) 0 0
\(459\) 0.354171 0.0165313
\(460\) 0 0
\(461\) −9.56263 −0.445376 −0.222688 0.974890i \(-0.571483\pi\)
−0.222688 + 0.974890i \(0.571483\pi\)
\(462\) 0 0
\(463\) 6.00166i 0.278921i −0.990228 0.139460i \(-0.955463\pi\)
0.990228 0.139460i \(-0.0445368\pi\)
\(464\) 0 0
\(465\) 0.712036 + 0.291770i 0.0330199 + 0.0135305i
\(466\) 0 0
\(467\) 25.2288i 1.16745i 0.811951 + 0.583726i \(0.198406\pi\)
−0.811951 + 0.583726i \(0.801594\pi\)
\(468\) 0 0
\(469\) 3.67313 0.169609
\(470\) 0 0
\(471\) 20.0431 0.923537
\(472\) 0 0
\(473\) 42.4274i 1.95081i
\(474\) 0 0
\(475\) 6.02375 + 5.93288i 0.276389 + 0.272219i
\(476\) 0 0
\(477\) 4.74012i 0.217035i
\(478\) 0 0
\(479\) −36.5193 −1.66861 −0.834305 0.551303i \(-0.814131\pi\)
−0.834305 + 0.551303i \(0.814131\pi\)
\(480\) 0 0
\(481\) 10.1957 0.464884
\(482\) 0 0
\(483\) 5.00777i 0.227861i
\(484\) 0 0
\(485\) 36.5467 + 14.9757i 1.65950 + 0.680012i
\(486\) 0 0
\(487\) 23.0782i 1.04578i −0.852402 0.522888i \(-0.824855\pi\)
0.852402 0.522888i \(-0.175145\pi\)
\(488\) 0 0
\(489\) −16.4495 −0.743873
\(490\) 0 0
\(491\) −22.6298 −1.02127 −0.510635 0.859798i \(-0.670590\pi\)
−0.510635 + 0.859798i \(0.670590\pi\)
\(492\) 0 0
\(493\) 0.239806i 0.0108003i
\(494\) 0 0
\(495\) −3.37945 + 8.24720i −0.151895 + 0.370684i
\(496\) 0 0
\(497\) 13.0851i 0.586945i
\(498\) 0 0
\(499\) 19.3444 0.865972 0.432986 0.901401i \(-0.357460\pi\)
0.432986 + 0.901401i \(0.357460\pi\)
\(500\) 0 0
\(501\) 10.2670 0.458698
\(502\) 0 0
\(503\) 0.211980i 0.00945172i −0.999989 0.00472586i \(-0.998496\pi\)
0.999989 0.00472586i \(-0.00150429\pi\)
\(504\) 0 0
\(505\) 4.68603 11.4358i 0.208525 0.508885i
\(506\) 0 0
\(507\) 11.4395i 0.508045i
\(508\) 0 0
\(509\) 12.3733 0.548435 0.274218 0.961668i \(-0.411581\pi\)
0.274218 + 0.961668i \(0.411581\pi\)
\(510\) 0 0
\(511\) 17.9762 0.795220
\(512\) 0 0
\(513\) 1.69097i 0.0746582i
\(514\) 0 0
\(515\) 37.2940 + 15.2819i 1.64337 + 0.673403i
\(516\) 0 0
\(517\) 40.6234i 1.78662i
\(518\) 0 0
\(519\) −9.03279 −0.396495
\(520\) 0 0
\(521\) 3.82228 0.167457 0.0837285 0.996489i \(-0.473317\pi\)
0.0837285 + 0.996489i \(0.473317\pi\)
\(522\) 0 0
\(523\) 22.8462i 0.998994i −0.866316 0.499497i \(-0.833518\pi\)
0.866316 0.499497i \(-0.166482\pi\)
\(524\) 0 0
\(525\) −13.0848 12.8874i −0.571066 0.562452i
\(526\) 0 0
\(527\) 0.121880i 0.00530920i
\(528\) 0 0
\(529\) 21.1413 0.919186
\(530\) 0 0
\(531\) −5.13578 −0.222874
\(532\) 0 0
\(533\) 6.80929i 0.294943i
\(534\) 0 0
\(535\) 37.7706 + 15.4772i 1.63297 + 0.669139i
\(536\) 0 0
\(537\) 16.4474i 0.709756i
\(538\) 0 0
\(539\) 25.8759 1.11455
\(540\) 0 0
\(541\) 42.2690 1.81729 0.908643 0.417573i \(-0.137119\pi\)
0.908643 + 0.417573i \(0.137119\pi\)
\(542\) 0 0
\(543\) 19.0006i 0.815394i
\(544\) 0 0
\(545\) −9.69909 + 23.6697i −0.415464 + 1.01390i
\(546\) 0 0
\(547\) 22.6352i 0.967811i 0.875120 + 0.483906i \(0.160782\pi\)
−0.875120 + 0.483906i \(0.839218\pi\)
\(548\) 0 0
\(549\) −5.19082 −0.221539
\(550\) 0 0
\(551\) −1.14495 −0.0487763
\(552\) 0 0
\(553\) 19.0762i 0.811202i
\(554\) 0 0
\(555\) −6.91994 + 16.8874i −0.293735 + 0.716831i
\(556\) 0 0
\(557\) 23.9334i 1.01409i 0.861920 + 0.507045i \(0.169262\pi\)
−0.861920 + 0.507045i \(0.830738\pi\)
\(558\) 0 0
\(559\) −13.2970 −0.562404
\(560\) 0 0
\(561\) 1.41169 0.0596015
\(562\) 0 0
\(563\) 1.50398i 0.0633850i −0.999498 0.0316925i \(-0.989910\pi\)
0.999498 0.0316925i \(-0.0100897\pi\)
\(564\) 0 0
\(565\) 25.1423 + 10.3025i 1.05775 + 0.433432i
\(566\) 0 0
\(567\) 3.67313i 0.154257i
\(568\) 0 0
\(569\) −46.5849 −1.95294 −0.976469 0.215657i \(-0.930811\pi\)
−0.976469 + 0.215657i \(0.930811\pi\)
\(570\) 0 0
\(571\) 2.19735 0.0919561 0.0459780 0.998942i \(-0.485360\pi\)
0.0459780 + 0.998942i \(0.485360\pi\)
\(572\) 0 0
\(573\) 23.1050i 0.965226i
\(574\) 0 0
\(575\) −4.78341 + 4.85667i −0.199482 + 0.202537i
\(576\) 0 0
\(577\) 31.1751i 1.29784i 0.760857 + 0.648919i \(0.224779\pi\)
−0.760857 + 0.648919i \(0.775221\pi\)
\(578\) 0 0
\(579\) −2.97961 −0.123829
\(580\) 0 0
\(581\) 27.5130 1.14143
\(582\) 0 0
\(583\) 18.8936i 0.782495i
\(584\) 0 0
\(585\) −2.58472 1.05914i −0.106865 0.0437900i
\(586\) 0 0
\(587\) 19.7574i 0.815477i −0.913099 0.407738i \(-0.866318\pi\)
0.913099 0.407738i \(-0.133682\pi\)
\(588\) 0 0
\(589\) −0.581913 −0.0239773
\(590\) 0 0
\(591\) 7.15240 0.294210
\(592\) 0 0
\(593\) 44.5399i 1.82903i 0.404547 + 0.914517i \(0.367429\pi\)
−0.404547 + 0.914517i \(0.632571\pi\)
\(594\) 0 0
\(595\) −1.10298 + 2.69171i −0.0452178 + 0.110349i
\(596\) 0 0
\(597\) 13.7887i 0.564332i
\(598\) 0 0
\(599\) 25.4327 1.03915 0.519577 0.854424i \(-0.326090\pi\)
0.519577 + 0.854424i \(0.326090\pi\)
\(600\) 0 0
\(601\) −8.66513 −0.353458 −0.176729 0.984260i \(-0.556552\pi\)
−0.176729 + 0.984260i \(0.556552\pi\)
\(602\) 0 0
\(603\) 1.00000i 0.0407231i
\(604\) 0 0
\(605\) −4.14377 + 10.1125i −0.168468 + 0.411130i
\(606\) 0 0
\(607\) 13.3352i 0.541258i 0.962684 + 0.270629i \(0.0872316\pi\)
−0.962684 + 0.270629i \(0.912768\pi\)
\(608\) 0 0
\(609\) 2.48705 0.100780
\(610\) 0 0
\(611\) 12.7316 0.515067
\(612\) 0 0
\(613\) 16.7704i 0.677350i −0.940903 0.338675i \(-0.890021\pi\)
0.940903 0.338675i \(-0.109979\pi\)
\(614\) 0 0
\(615\) −11.2784 4.62154i −0.454789 0.186359i
\(616\) 0 0
\(617\) 25.6884i 1.03418i −0.855932 0.517088i \(-0.827016\pi\)
0.855932 0.517088i \(-0.172984\pi\)
\(618\) 0 0
\(619\) −41.3538 −1.66215 −0.831075 0.556160i \(-0.812274\pi\)
−0.831075 + 0.556160i \(0.812274\pi\)
\(620\) 0 0
\(621\) 1.36335 0.0547095
\(622\) 0 0
\(623\) 42.4841i 1.70209i
\(624\) 0 0
\(625\) 0.379950 + 24.9971i 0.0151980 + 0.999885i
\(626\) 0 0
\(627\) 6.74004i 0.269171i
\(628\) 0 0
\(629\) 2.89065 0.115258
\(630\) 0 0
\(631\) 7.06053 0.281075 0.140538 0.990075i \(-0.455117\pi\)
0.140538 + 0.990075i \(0.455117\pi\)
\(632\) 0 0
\(633\) 0.00933814i 0.000371158i
\(634\) 0 0
\(635\) 4.29474 + 1.75985i 0.170432 + 0.0698376i
\(636\) 0 0
\(637\) 8.10966i 0.321316i
\(638\) 0 0
\(639\) 3.56237 0.140925
\(640\) 0 0
\(641\) −4.92465 −0.194512 −0.0972560 0.995259i \(-0.531007\pi\)
−0.0972560 + 0.995259i \(0.531007\pi\)
\(642\) 0 0
\(643\) 17.0877i 0.673871i −0.941528 0.336936i \(-0.890610\pi\)
0.941528 0.336936i \(-0.109390\pi\)
\(644\) 0 0
\(645\) 9.02484 22.0242i 0.355353 0.867202i
\(646\) 0 0
\(647\) 26.7562i 1.05190i 0.850517 + 0.525948i \(0.176289\pi\)
−0.850517 + 0.525948i \(0.823711\pi\)
\(648\) 0 0
\(649\) −20.4707 −0.803545
\(650\) 0 0
\(651\) 1.26403 0.0495412
\(652\) 0 0
\(653\) 21.9516i 0.859034i 0.903059 + 0.429517i \(0.141316\pi\)
−0.903059 + 0.429517i \(0.858684\pi\)
\(654\) 0 0
\(655\) 6.67663 16.2936i 0.260877 0.636645i
\(656\) 0 0
\(657\) 4.89398i 0.190932i
\(658\) 0 0
\(659\) 18.6068 0.724819 0.362409 0.932019i \(-0.381954\pi\)
0.362409 + 0.932019i \(0.381954\pi\)
\(660\) 0 0
\(661\) 25.4378 0.989416 0.494708 0.869059i \(-0.335275\pi\)
0.494708 + 0.869059i \(0.335275\pi\)
\(662\) 0 0
\(663\) 0.442432i 0.0171826i
\(664\) 0 0
\(665\) 12.8515 + 5.26613i 0.498358 + 0.204212i
\(666\) 0 0
\(667\) 0.923117i 0.0357432i
\(668\) 0 0
\(669\) −8.79157 −0.339902
\(670\) 0 0
\(671\) −20.6901 −0.798731
\(672\) 0 0
\(673\) 12.5740i 0.484693i 0.970190 + 0.242346i \(0.0779170\pi\)
−0.970190 + 0.242346i \(0.922083\pi\)
\(674\) 0 0
\(675\) 3.50856 3.56230i 0.135045 0.137113i
\(676\) 0 0
\(677\) 21.8260i 0.838843i −0.907792 0.419422i \(-0.862233\pi\)
0.907792 0.419422i \(-0.137767\pi\)
\(678\) 0 0
\(679\) 64.8790 2.48983
\(680\) 0 0
\(681\) 25.8704 0.991356
\(682\) 0 0
\(683\) 9.52151i 0.364331i 0.983268 + 0.182165i \(0.0583106\pi\)
−0.983268 + 0.182165i \(0.941689\pi\)
\(684\) 0 0
\(685\) 18.6702 + 7.65048i 0.713353 + 0.292310i
\(686\) 0 0
\(687\) 7.38276i 0.281670i
\(688\) 0 0
\(689\) 5.92138 0.225587
\(690\) 0 0
\(691\) 0.564108 0.0214597 0.0107298 0.999942i \(-0.496585\pi\)
0.0107298 + 0.999942i \(0.496585\pi\)
\(692\) 0 0
\(693\) 14.6407i 0.556154i
\(694\) 0 0
\(695\) 2.82845 6.90256i 0.107289 0.261829i
\(696\) 0 0
\(697\) 1.93055i 0.0731247i
\(698\) 0 0
\(699\) −4.02124 −0.152097
\(700\) 0 0
\(701\) −27.9780 −1.05671 −0.528356 0.849023i \(-0.677192\pi\)
−0.528356 + 0.849023i \(0.677192\pi\)
\(702\) 0 0
\(703\) 13.8013i 0.520526i
\(704\) 0 0
\(705\) −8.64111 + 21.0878i −0.325443 + 0.794211i
\(706\) 0 0
\(707\) 20.3012i 0.763504i
\(708\) 0 0
\(709\) 18.8221 0.706881 0.353440 0.935457i \(-0.385012\pi\)
0.353440 + 0.935457i \(0.385012\pi\)
\(710\) 0 0
\(711\) −5.19345 −0.194769
\(712\) 0 0
\(713\) 0.469170i 0.0175705i
\(714\) 0 0
\(715\) −10.3024 4.22162i −0.385290 0.157880i
\(716\) 0 0
\(717\) 4.65242i 0.173748i
\(718\) 0 0
\(719\) −22.8755 −0.853112 −0.426556 0.904461i \(-0.640273\pi\)
−0.426556 + 0.904461i \(0.640273\pi\)
\(720\) 0 0
\(721\) 66.2057 2.46563
\(722\) 0 0
\(723\) 5.31972i 0.197843i
\(724\) 0 0
\(725\) −2.41201 2.37562i −0.0895797 0.0882285i
\(726\) 0 0
\(727\) 37.5873i 1.39404i −0.717053 0.697018i \(-0.754510\pi\)
0.717053 0.697018i \(-0.245490\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −3.76993 −0.139436
\(732\) 0 0
\(733\) 23.6054i 0.871886i −0.899974 0.435943i \(-0.856415\pi\)
0.899974 0.435943i \(-0.143585\pi\)
\(734\) 0 0
\(735\) −13.4323 5.50412i −0.495456 0.203023i
\(736\) 0 0
\(737\) 3.98590i 0.146822i
\(738\) 0 0
\(739\) −9.12097 −0.335520 −0.167760 0.985828i \(-0.553653\pi\)
−0.167760 + 0.985828i \(0.553653\pi\)
\(740\) 0 0
\(741\) 2.11237 0.0775999
\(742\) 0 0
\(743\) 6.75655i 0.247874i −0.992290 0.123937i \(-0.960448\pi\)
0.992290 0.123937i \(-0.0395520\pi\)
\(744\) 0 0
\(745\) −9.28803 + 22.6665i −0.340287 + 0.830436i
\(746\) 0 0
\(747\) 7.49034i 0.274057i
\(748\) 0 0
\(749\) 67.0517 2.45001
\(750\) 0 0
\(751\) −36.9238 −1.34737 −0.673683 0.739020i \(-0.735289\pi\)
−0.673683 + 0.739020i \(0.735289\pi\)
\(752\) 0 0
\(753\) 15.4986i 0.564799i
\(754\) 0 0
\(755\) 4.91054 11.9837i 0.178713 0.436131i
\(756\) 0 0
\(757\) 17.3715i 0.631378i −0.948863 0.315689i \(-0.897764\pi\)
0.948863 0.315689i \(-0.102236\pi\)
\(758\) 0 0
\(759\) 5.43419 0.197249
\(760\) 0 0
\(761\) 36.6221 1.32755 0.663775 0.747933i \(-0.268953\pi\)
0.663775 + 0.747933i \(0.268953\pi\)
\(762\) 0 0
\(763\) 42.0192i 1.52120i
\(764\) 0 0
\(765\) −0.732812 0.300284i −0.0264949 0.0108568i
\(766\) 0 0
\(767\) 6.41564i 0.231655i
\(768\) 0 0
\(769\) −35.7791 −1.29023 −0.645114 0.764086i \(-0.723190\pi\)
−0.645114 + 0.764086i \(0.723190\pi\)
\(770\) 0 0
\(771\) −11.0848 −0.399208
\(772\) 0 0
\(773\) 22.5349i 0.810524i 0.914201 + 0.405262i \(0.132820\pi\)
−0.914201 + 0.405262i \(0.867180\pi\)
\(774\) 0 0
\(775\) −1.22589 1.20740i −0.0440353 0.0433711i
\(776\) 0 0
\(777\) 29.9791i 1.07550i
\(778\) 0 0
\(779\) 9.21731 0.330244
\(780\) 0 0
\(781\) 14.1993 0.508090
\(782\) 0 0
\(783\) 0.677093i 0.0241973i
\(784\) 0 0
\(785\) −41.4710 16.9935i −1.48016 0.606525i
\(786\) 0 0
\(787\) 5.35297i 0.190813i −0.995438 0.0954064i \(-0.969585\pi\)
0.995438 0.0954064i \(-0.0304151\pi\)
\(788\) 0 0
\(789\) −18.3141 −0.652001
\(790\) 0 0
\(791\) 44.6335 1.58699
\(792\) 0