Properties

Label 4020.2.a.c
Level 4020
Weight 2
Character orbit 4020.a
Self dual Yes
Analytic conductor 32.100
Analytic rank 1
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4020 = 2^{2} \cdot 3 \cdot 5 \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4020.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0998616126\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.98117.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(+ q^{3}\) \(- q^{5}\) \( + \beta_{1} q^{7} \) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \(+ q^{3}\) \(- q^{5}\) \( + \beta_{1} q^{7} \) \(+ q^{9}\) \( + ( -1 - \beta_{1} + \beta_{3} ) q^{11} \) \( + ( -1 - \beta_{2} ) q^{13} \) \(- q^{15}\) \( + ( -2 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{17} \) \( + ( 1 + \beta_{2} - \beta_{3} ) q^{19} \) \( + \beta_{1} q^{21} \) \( -3 q^{23} \) \(+ q^{25}\) \(+ q^{27}\) \( + ( -1 - \beta_{1} ) q^{29} \) \( + ( -\beta_{2} - \beta_{3} ) q^{31} \) \( + ( -1 - \beta_{1} + \beta_{3} ) q^{33} \) \( -\beta_{1} q^{35} \) \( + ( 3 + 2 \beta_{1} ) q^{37} \) \( + ( -1 - \beta_{2} ) q^{39} \) \( + ( -4 - \beta_{2} + \beta_{3} ) q^{41} \) \( + ( -2 - \beta_{2} + 2 \beta_{3} ) q^{43} \) \(- q^{45}\) \( + ( -1 - 4 \beta_{1} + \beta_{2} - 2 \beta_{3} ) q^{47} \) \( + ( -3 + \beta_{2} - \beta_{3} ) q^{49} \) \( + ( -2 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{51} \) \( + ( -1 + \beta_{2} + \beta_{3} ) q^{53} \) \( + ( 1 + \beta_{1} - \beta_{3} ) q^{55} \) \( + ( 1 + \beta_{2} - \beta_{3} ) q^{57} \) \( + ( -7 + 4 \beta_{1} + \beta_{2} ) q^{59} \) \( + ( -7 + \beta_{2} - \beta_{3} ) q^{61} \) \( + \beta_{1} q^{63} \) \( + ( 1 + \beta_{2} ) q^{65} \) \(- q^{67}\) \( -3 q^{69} \) \( + ( -5 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{71} \) \( + ( -3 \beta_{1} + \beta_{2} + \beta_{3} ) q^{73} \) \(+ q^{75}\) \( + ( -5 - 2 \beta_{1} - \beta_{2} + \beta_{3} ) q^{77} \) \( + ( -4 - \beta_{2} ) q^{79} \) \(+ q^{81}\) \( + ( 3 - 2 \beta_{1} - 3 \beta_{3} ) q^{83} \) \( + ( 2 + \beta_{1} - \beta_{2} + \beta_{3} ) q^{85} \) \( + ( -1 - \beta_{1} ) q^{87} \) \( + ( -5 + 2 \beta_{1} + 5 \beta_{3} ) q^{89} \) \( + ( -4 \beta_{1} - \beta_{2} ) q^{91} \) \( + ( -\beta_{2} - \beta_{3} ) q^{93} \) \( + ( -1 - \beta_{2} + \beta_{3} ) q^{95} \) \( + ( -4 + 5 \beta_{1} + 3 \beta_{3} ) q^{97} \) \( + ( -1 - \beta_{1} + \beta_{3} ) q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut -\mathstrut 4q^{5} \) \(\mathstrut +\mathstrut q^{7} \) \(\mathstrut +\mathstrut 4q^{9} \) \(\mathstrut -\mathstrut 5q^{11} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut -\mathstrut 8q^{17} \) \(\mathstrut +\mathstrut 5q^{19} \) \(\mathstrut +\mathstrut q^{21} \) \(\mathstrut -\mathstrut 12q^{23} \) \(\mathstrut +\mathstrut 4q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 5q^{29} \) \(\mathstrut -\mathstrut q^{31} \) \(\mathstrut -\mathstrut 5q^{33} \) \(\mathstrut -\mathstrut q^{35} \) \(\mathstrut +\mathstrut 14q^{37} \) \(\mathstrut -\mathstrut 5q^{39} \) \(\mathstrut -\mathstrut 17q^{41} \) \(\mathstrut -\mathstrut 9q^{43} \) \(\mathstrut -\mathstrut 4q^{45} \) \(\mathstrut -\mathstrut 7q^{47} \) \(\mathstrut -\mathstrut 11q^{49} \) \(\mathstrut -\mathstrut 8q^{51} \) \(\mathstrut -\mathstrut 3q^{53} \) \(\mathstrut +\mathstrut 5q^{55} \) \(\mathstrut +\mathstrut 5q^{57} \) \(\mathstrut -\mathstrut 23q^{59} \) \(\mathstrut -\mathstrut 27q^{61} \) \(\mathstrut +\mathstrut q^{63} \) \(\mathstrut +\mathstrut 5q^{65} \) \(\mathstrut -\mathstrut 4q^{67} \) \(\mathstrut -\mathstrut 12q^{69} \) \(\mathstrut -\mathstrut 20q^{71} \) \(\mathstrut -\mathstrut 2q^{73} \) \(\mathstrut +\mathstrut 4q^{75} \) \(\mathstrut -\mathstrut 23q^{77} \) \(\mathstrut -\mathstrut 17q^{79} \) \(\mathstrut +\mathstrut 4q^{81} \) \(\mathstrut +\mathstrut 10q^{83} \) \(\mathstrut +\mathstrut 8q^{85} \) \(\mathstrut -\mathstrut 5q^{87} \) \(\mathstrut -\mathstrut 18q^{89} \) \(\mathstrut -\mathstrut 5q^{91} \) \(\mathstrut -\mathstrut q^{93} \) \(\mathstrut -\mathstrut 5q^{95} \) \(\mathstrut -\mathstrut 11q^{97} \) \(\mathstrut -\mathstrut 5q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4}\mathstrut -\mathstrut \) \(x^{3}\mathstrut -\mathstrut \) \(8\) \(x^{2}\mathstrut +\mathstrut \) \(4\) \(x\mathstrut +\mathstrut \) \(1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{3} - 8 \nu - 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 8 \nu + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\)\(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(4\)
\(\nu^{3}\)\(=\)\(\beta_{2}\mathstrut +\mathstrut \) \(8\) \(\beta_{1}\mathstrut +\mathstrut \) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.60457
−0.184077
0.668475
3.12017
0 1.00000 0 −1.00000 0 −2.60457 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 −0.184077 0 1.00000 0
1.3 0 1.00000 0 −1.00000 0 0.668475 0 1.00000 0
1.4 0 1.00000 0 −1.00000 0 3.12017 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(67\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{7}^{4} \) \(\mathstrut -\mathstrut T_{7}^{3} \) \(\mathstrut -\mathstrut 8 T_{7}^{2} \) \(\mathstrut +\mathstrut 4 T_{7} \) \(\mathstrut +\mathstrut 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4020))\).