Properties

Label 4014.2.a.q
Level 4014
Weight 2
Character orbit 4014.a
Self dual Yes
Analytic conductor 32.052
Analytic rank 1
Dimension 4
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4014 = 2 \cdot 3^{2} \cdot 223 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4014.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0519513713\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10273.1
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\)  \(=\)  \( q\) \(+ q^{2}\) \(+ q^{4}\) \( + ( -1 + \beta_{1} ) q^{5} \) \( + ( -1 - \beta_{3} ) q^{7} \) \(+ q^{8}\) \(+O(q^{10})\) \( q\) \(+ q^{2}\) \(+ q^{4}\) \( + ( -1 + \beta_{1} ) q^{5} \) \( + ( -1 - \beta_{3} ) q^{7} \) \(+ q^{8}\) \( + ( -1 + \beta_{1} ) q^{10} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{11} \) \( + ( -2 - \beta_{2} + 2 \beta_{3} ) q^{13} \) \( + ( -1 - \beta_{3} ) q^{14} \) \(+ q^{16}\) \( + ( 2 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{17} \) \( + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{19} \) \( + ( -1 + \beta_{1} ) q^{20} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{22} \) \( + ( 3 - 3 \beta_{1} + \beta_{2} - \beta_{3} ) q^{23} \) \( + ( -1 + \beta_{2} - \beta_{3} ) q^{25} \) \( + ( -2 - \beta_{2} + 2 \beta_{3} ) q^{26} \) \( + ( -1 - \beta_{3} ) q^{28} \) \( + ( -3 - 2 \beta_{2} + \beta_{3} ) q^{29} \) \( + ( -1 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{31} \) \(+ q^{32}\) \( + ( 2 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{34} \) \( + ( - \beta_{1} + 2 \beta_{3} ) q^{35} \) \( + ( -4 + 2 \beta_{1} + \beta_{3} ) q^{37} \) \( + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{38} \) \( + ( -1 + \beta_{1} ) q^{40} \) \( + ( -3 + 3 \beta_{2} + \beta_{3} ) q^{41} \) \( + ( -5 + \beta_{2} - \beta_{3} ) q^{43} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{44} \) \( + ( 3 - 3 \beta_{1} + \beta_{2} - \beta_{3} ) q^{46} \) \( + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{47} \) \( + ( -1 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{49} \) \( + ( -1 + \beta_{2} - \beta_{3} ) q^{50} \) \( + ( -2 - \beta_{2} + 2 \beta_{3} ) q^{52} \) \( + ( -3 + 3 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{53} \) \( + ( -2 - 3 \beta_{1} - \beta_{2} ) q^{55} \) \( + ( -1 - \beta_{3} ) q^{56} \) \( + ( -3 - 2 \beta_{2} + \beta_{3} ) q^{58} \) \( + ( 2 + \beta_{1} - 4 \beta_{3} ) q^{59} \) \( + ( -1 - 2 \beta_{1} - \beta_{3} ) q^{61} \) \( + ( -1 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{62} \) \(+ q^{64}\) \( + ( 3 - 3 \beta_{1} - 3 \beta_{3} ) q^{65} \) \( + ( -5 - \beta_{1} ) q^{67} \) \( + ( 2 - \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{68} \) \( + ( - \beta_{1} + 2 \beta_{3} ) q^{70} \) \( + ( -3 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{71} \) \( + ( -1 - 3 \beta_{2} - 2 \beta_{3} ) q^{73} \) \( + ( -4 + 2 \beta_{1} + \beta_{3} ) q^{74} \) \( + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{76} \) \( + ( -1 + 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{77} \) \( + ( -10 + 4 \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{79} \) \( + ( -1 + \beta_{1} ) q^{80} \) \( + ( -3 + 3 \beta_{2} + \beta_{3} ) q^{82} \) \( + ( 2 - \beta_{2} + 3 \beta_{3} ) q^{83} \) \( + ( -5 + 3 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{85} \) \( + ( -5 + \beta_{2} - \beta_{3} ) q^{86} \) \( + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{88} \) \( + ( -5 + 4 \beta_{1} + 3 \beta_{3} ) q^{89} \) \( + ( -6 + 3 \beta_{1} ) q^{91} \) \( + ( 3 - 3 \beta_{1} + \beta_{2} - \beta_{3} ) q^{92} \) \( + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{94} \) \( + ( 1 - \beta_{2} - 3 \beta_{3} ) q^{95} \) \( + ( -9 + 3 \beta_{1} + \beta_{3} ) q^{97} \) \( + ( -1 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{98} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\)  \(=\)  \(4q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 5q^{7} \) \(\mathstrut +\mathstrut 4q^{8} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut +\mathstrut 4q^{2} \) \(\mathstrut +\mathstrut 4q^{4} \) \(\mathstrut -\mathstrut 2q^{5} \) \(\mathstrut -\mathstrut 5q^{7} \) \(\mathstrut +\mathstrut 4q^{8} \) \(\mathstrut -\mathstrut 2q^{10} \) \(\mathstrut -\mathstrut 4q^{11} \) \(\mathstrut -\mathstrut 5q^{13} \) \(\mathstrut -\mathstrut 5q^{14} \) \(\mathstrut +\mathstrut 4q^{16} \) \(\mathstrut +\mathstrut 2q^{17} \) \(\mathstrut -\mathstrut 7q^{19} \) \(\mathstrut -\mathstrut 2q^{20} \) \(\mathstrut -\mathstrut 4q^{22} \) \(\mathstrut +\mathstrut 4q^{23} \) \(\mathstrut -\mathstrut 6q^{25} \) \(\mathstrut -\mathstrut 5q^{26} \) \(\mathstrut -\mathstrut 5q^{28} \) \(\mathstrut -\mathstrut 9q^{29} \) \(\mathstrut -\mathstrut q^{31} \) \(\mathstrut +\mathstrut 4q^{32} \) \(\mathstrut +\mathstrut 2q^{34} \) \(\mathstrut -\mathstrut 11q^{37} \) \(\mathstrut -\mathstrut 7q^{38} \) \(\mathstrut -\mathstrut 2q^{40} \) \(\mathstrut -\mathstrut 14q^{41} \) \(\mathstrut -\mathstrut 22q^{43} \) \(\mathstrut -\mathstrut 4q^{44} \) \(\mathstrut +\mathstrut 4q^{46} \) \(\mathstrut +\mathstrut 8q^{47} \) \(\mathstrut -\mathstrut 7q^{49} \) \(\mathstrut -\mathstrut 6q^{50} \) \(\mathstrut -\mathstrut 5q^{52} \) \(\mathstrut -\mathstrut 3q^{53} \) \(\mathstrut -\mathstrut 13q^{55} \) \(\mathstrut -\mathstrut 5q^{56} \) \(\mathstrut -\mathstrut 9q^{58} \) \(\mathstrut +\mathstrut 6q^{59} \) \(\mathstrut -\mathstrut 9q^{61} \) \(\mathstrut -\mathstrut q^{62} \) \(\mathstrut +\mathstrut 4q^{64} \) \(\mathstrut +\mathstrut 3q^{65} \) \(\mathstrut -\mathstrut 22q^{67} \) \(\mathstrut +\mathstrut 2q^{68} \) \(\mathstrut -\mathstrut 5q^{71} \) \(\mathstrut -\mathstrut 3q^{73} \) \(\mathstrut -\mathstrut 11q^{74} \) \(\mathstrut -\mathstrut 7q^{76} \) \(\mathstrut -\mathstrut 2q^{77} \) \(\mathstrut -\mathstrut 29q^{79} \) \(\mathstrut -\mathstrut 2q^{80} \) \(\mathstrut -\mathstrut 14q^{82} \) \(\mathstrut +\mathstrut 12q^{83} \) \(\mathstrut -\mathstrut 10q^{85} \) \(\mathstrut -\mathstrut 22q^{86} \) \(\mathstrut -\mathstrut 4q^{88} \) \(\mathstrut -\mathstrut 9q^{89} \) \(\mathstrut -\mathstrut 18q^{91} \) \(\mathstrut +\mathstrut 4q^{92} \) \(\mathstrut +\mathstrut 8q^{94} \) \(\mathstrut +\mathstrut 2q^{95} \) \(\mathstrut -\mathstrut 29q^{97} \) \(\mathstrut -\mathstrut 7q^{98} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4}\mathstrut -\mathstrut \) \(2\) \(x^{3}\mathstrut -\mathstrut \) \(5\) \(x^{2}\mathstrut +\mathstrut \) \(x\mathstrut +\mathstrut \) \(2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{3} - 2 \nu^{2} - 4 \nu \)
\(\beta_{3}\)\(=\)\( \nu^{3} - 3 \nu^{2} - 2 \nu + 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(-\)\(\beta_{3}\mathstrut +\mathstrut \) \(\beta_{2}\mathstrut +\mathstrut \) \(2\) \(\beta_{1}\mathstrut +\mathstrut \) \(3\)
\(\nu^{3}\)\(=\)\(-\)\(2\) \(\beta_{3}\mathstrut +\mathstrut \) \(3\) \(\beta_{2}\mathstrut +\mathstrut \) \(8\) \(\beta_{1}\mathstrut +\mathstrut \) \(6\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.38266
−0.641043
0.673533
3.35017
1.00000 0 1.00000 −2.38266 0 1.61326 1.00000 0 −2.38266
1.2 1.00000 0 1.00000 −1.64104 0 −3.78585 1.00000 0 −1.64104
1.3 1.00000 0 1.00000 −0.326467 0 −1.59754 1.00000 0 −0.326467
1.4 1.00000 0 1.00000 2.35017 0 −1.22988 1.00000 0 2.35017
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(223\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4014))\):

\(T_{5}^{4} \) \(\mathstrut +\mathstrut 2 T_{5}^{3} \) \(\mathstrut -\mathstrut 5 T_{5}^{2} \) \(\mathstrut -\mathstrut 11 T_{5} \) \(\mathstrut -\mathstrut 3 \)
\(T_{7}^{4} \) \(\mathstrut +\mathstrut 5 T_{7}^{3} \) \(\mathstrut +\mathstrut 2 T_{7}^{2} \) \(\mathstrut -\mathstrut 13 T_{7} \) \(\mathstrut -\mathstrut 12 \)
\(T_{11}^{4} \) \(\mathstrut +\mathstrut 4 T_{11}^{3} \) \(\mathstrut -\mathstrut 13 T_{11}^{2} \) \(\mathstrut -\mathstrut 9 T_{11} \) \(\mathstrut +\mathstrut 16 \)