Properties

Label 4012.2.b.a
Level 4012
Weight 2
Character orbit 4012.b
Analytic conductor 32.036
Analytic rank 0
Dimension 40
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4012 = 2^{2} \cdot 17 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4012.b (of order \(2\) and degree \(1\))

Newform invariants

Self dual: No
Analytic conductor: \(32.0359812909\)
Analytic rank: \(0\)
Dimension: \(40\)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(40q \) \(\mathstrut -\mathstrut 36q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(40q \) \(\mathstrut -\mathstrut 36q^{9} \) \(\mathstrut +\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 20q^{15} \) \(\mathstrut -\mathstrut 8q^{17} \) \(\mathstrut +\mathstrut 20q^{19} \) \(\mathstrut +\mathstrut 6q^{21} \) \(\mathstrut -\mathstrut 24q^{25} \) \(\mathstrut -\mathstrut 14q^{33} \) \(\mathstrut -\mathstrut 52q^{35} \) \(\mathstrut +\mathstrut 22q^{43} \) \(\mathstrut -\mathstrut 10q^{47} \) \(\mathstrut +\mathstrut 8q^{49} \) \(\mathstrut -\mathstrut 6q^{51} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 40q^{59} \) \(\mathstrut -\mathstrut 24q^{67} \) \(\mathstrut -\mathstrut 36q^{69} \) \(\mathstrut -\mathstrut 38q^{77} \) \(\mathstrut +\mathstrut 16q^{81} \) \(\mathstrut +\mathstrut 32q^{83} \) \(\mathstrut -\mathstrut 22q^{85} \) \(\mathstrut -\mathstrut 18q^{87} \) \(\mathstrut +\mathstrut 40q^{89} \) \(\mathstrut +\mathstrut 22q^{93} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
237.1 0 3.27953i 0 4.21610i 0 0.547734i 0 −7.75529 0
237.2 0 3.07288i 0 1.34148i 0 0.0167420i 0 −6.44259 0
237.3 0 2.97688i 0 2.24434i 0 1.80545i 0 −5.86181 0
237.4 0 2.95725i 0 2.24490i 0 1.49294i 0 −5.74532 0
237.5 0 2.44713i 0 1.66009i 0 3.65944i 0 −2.98842 0
237.6 0 2.32869i 0 4.13581i 0 2.86231i 0 −2.42278 0
237.7 0 2.23721i 0 0.538464i 0 0.0679637i 0 −2.00513 0
237.8 0 2.21522i 0 2.69018i 0 2.88510i 0 −1.90721 0
237.9 0 2.18094i 0 0.351694i 0 3.15514i 0 −1.75651 0
237.10 0 1.86007i 0 2.89135i 0 5.10759i 0 −0.459864 0
237.11 0 1.67902i 0 0.714826i 0 1.81204i 0 0.180890 0
237.12 0 1.51601i 0 1.74989i 0 0.991299i 0 0.701704 0
237.13 0 1.46162i 0 3.03678i 0 1.90612i 0 0.863667 0
237.14 0 1.18944i 0 0.609716i 0 4.31103i 0 1.58523 0
237.15 0 1.02370i 0 3.54148i 0 0.166941i 0 1.95203 0
237.16 0 0.622620i 0 0.657734i 0 2.30157i 0 2.61234 0
237.17 0 0.510359i 0 1.04821i 0 1.04964i 0 2.73953 0
237.18 0 0.409767i 0 0.188112i 0 3.66007i 0 2.83209 0
237.19 0 0.346659i 0 2.94947i 0 4.18117i 0 2.87983 0
237.20 0 0.0489925i 0 3.24065i 0 0.683113i 0 2.99760 0
See all 40 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 237.40
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.