Properties

Label 4012.2.a.j
Level 4012
Weight 2
Character orbit 4012.a
Self dual Yes
Analytic conductor 32.036
Analytic rank 0
Dimension 21
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4012 = 2^{2} \cdot 17 \cdot 59 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4012.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(32.0359812909\)
Analytic rank: \(0\)
Dimension: \(21\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(21q \) \(\mathstrut +\mathstrut 9q^{3} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut 11q^{7} \) \(\mathstrut +\mathstrut 26q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(21q \) \(\mathstrut +\mathstrut 9q^{3} \) \(\mathstrut +\mathstrut q^{5} \) \(\mathstrut +\mathstrut 11q^{7} \) \(\mathstrut +\mathstrut 26q^{9} \) \(\mathstrut +\mathstrut 12q^{11} \) \(\mathstrut -\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 9q^{15} \) \(\mathstrut +\mathstrut 21q^{17} \) \(\mathstrut +\mathstrut 4q^{19} \) \(\mathstrut +\mathstrut 8q^{21} \) \(\mathstrut +\mathstrut 19q^{23} \) \(\mathstrut +\mathstrut 26q^{25} \) \(\mathstrut +\mathstrut 33q^{27} \) \(\mathstrut -\mathstrut q^{29} \) \(\mathstrut +\mathstrut 13q^{31} \) \(\mathstrut +\mathstrut 11q^{33} \) \(\mathstrut +\mathstrut 15q^{35} \) \(\mathstrut -\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 18q^{39} \) \(\mathstrut +\mathstrut 9q^{41} \) \(\mathstrut +\mathstrut 7q^{43} \) \(\mathstrut +\mathstrut 7q^{45} \) \(\mathstrut +\mathstrut 33q^{47} \) \(\mathstrut +\mathstrut 36q^{49} \) \(\mathstrut +\mathstrut 9q^{51} \) \(\mathstrut +\mathstrut 7q^{53} \) \(\mathstrut +\mathstrut 12q^{55} \) \(\mathstrut +\mathstrut 26q^{57} \) \(\mathstrut +\mathstrut 21q^{59} \) \(\mathstrut +\mathstrut 3q^{61} \) \(\mathstrut +\mathstrut 51q^{63} \) \(\mathstrut +\mathstrut q^{65} \) \(\mathstrut +\mathstrut 8q^{69} \) \(\mathstrut +\mathstrut 55q^{71} \) \(\mathstrut +\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 14q^{75} \) \(\mathstrut -\mathstrut 15q^{77} \) \(\mathstrut +\mathstrut 28q^{79} \) \(\mathstrut +\mathstrut 25q^{81} \) \(\mathstrut +\mathstrut 54q^{83} \) \(\mathstrut +\mathstrut q^{85} \) \(\mathstrut +\mathstrut 34q^{87} \) \(\mathstrut +\mathstrut 30q^{89} \) \(\mathstrut +\mathstrut 35q^{91} \) \(\mathstrut -\mathstrut 5q^{93} \) \(\mathstrut +\mathstrut 42q^{95} \) \(\mathstrut +\mathstrut 9q^{97} \) \(\mathstrut +\mathstrut 20q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 0 −2.75827 0 0.760103 0 0.427165 0 4.60804 0
1.2 0 −2.52360 0 −3.46979 0 1.96229 0 3.36854 0
1.3 0 −2.50436 0 2.93974 0 −0.515336 0 3.27181 0
1.4 0 −1.96950 0 −1.93705 0 −2.26754 0 0.878948 0
1.5 0 −1.89300 0 −2.37849 0 4.40428 0 0.583446 0
1.6 0 −1.58435 0 2.56834 0 3.40444 0 −0.489844 0
1.7 0 −1.03698 0 0.719057 0 −1.71880 0 −1.92468 0
1.8 0 0.0134244 0 3.34756 0 −3.13615 0 −2.99982 0
1.9 0 0.188519 0 −3.21916 0 −0.179540 0 −2.96446 0
1.10 0 0.210829 0 0.593138 0 −1.60715 0 −2.95555 0
1.11 0 0.461334 0 1.69592 0 4.42760 0 −2.78717 0
1.12 0 0.765447 0 −3.22340 0 −4.55619 0 −2.41409 0
1.13 0 0.967697 0 −3.19923 0 3.75414 0 −2.06356 0
1.14 0 1.90340 0 1.03137 0 0.216287 0 0.622916 0
1.15 0 1.97354 0 3.25764 0 2.36478 0 0.894844 0
1.16 0 2.22137 0 −1.27900 0 0.396716 0 1.93446 0
1.17 0 2.29806 0 4.01491 0 4.07651 0 2.28106 0
1.18 0 2.45518 0 −1.72896 0 −4.96392 0 3.02793 0
1.19 0 3.11094 0 3.12050 0 −1.63406 0 6.67797 0
1.20 0 3.31779 0 −0.252330 0 4.50552 0 8.00775 0
See all 21 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.21
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(17\) \(-1\)
\(59\) \(-1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4012))\):

\(T_{3}^{21} - \cdots\)
\(T_{5}^{21} - \cdots\)