Properties

Label 4006.2.a.i
Level 4006
Weight 2
Character orbit 4006.a
Self dual Yes
Analytic conductor 31.988
Analytic rank 0
Dimension 46
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4006 = 2 \cdot 2003 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4006.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(31.9880710497\)
Analytic rank: \(0\)
Dimension: \(46\)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \(46q \) \(\mathstrut +\mathstrut 46q^{2} \) \(\mathstrut +\mathstrut 21q^{3} \) \(\mathstrut +\mathstrut 46q^{4} \) \(\mathstrut +\mathstrut 23q^{5} \) \(\mathstrut +\mathstrut 21q^{6} \) \(\mathstrut +\mathstrut 26q^{7} \) \(\mathstrut +\mathstrut 46q^{8} \) \(\mathstrut +\mathstrut 59q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \(46q \) \(\mathstrut +\mathstrut 46q^{2} \) \(\mathstrut +\mathstrut 21q^{3} \) \(\mathstrut +\mathstrut 46q^{4} \) \(\mathstrut +\mathstrut 23q^{5} \) \(\mathstrut +\mathstrut 21q^{6} \) \(\mathstrut +\mathstrut 26q^{7} \) \(\mathstrut +\mathstrut 46q^{8} \) \(\mathstrut +\mathstrut 59q^{9} \) \(\mathstrut +\mathstrut 23q^{10} \) \(\mathstrut +\mathstrut 39q^{11} \) \(\mathstrut +\mathstrut 21q^{12} \) \(\mathstrut +\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut +\mathstrut 14q^{15} \) \(\mathstrut +\mathstrut 46q^{16} \) \(\mathstrut +\mathstrut 36q^{17} \) \(\mathstrut +\mathstrut 59q^{18} \) \(\mathstrut +\mathstrut 37q^{19} \) \(\mathstrut +\mathstrut 23q^{20} \) \(\mathstrut +\mathstrut 20q^{21} \) \(\mathstrut +\mathstrut 39q^{22} \) \(\mathstrut +\mathstrut 38q^{23} \) \(\mathstrut +\mathstrut 21q^{24} \) \(\mathstrut +\mathstrut 57q^{25} \) \(\mathstrut +\mathstrut 8q^{26} \) \(\mathstrut +\mathstrut 63q^{27} \) \(\mathstrut +\mathstrut 26q^{28} \) \(\mathstrut +\mathstrut 23q^{29} \) \(\mathstrut +\mathstrut 14q^{30} \) \(\mathstrut +\mathstrut 44q^{31} \) \(\mathstrut +\mathstrut 46q^{32} \) \(\mathstrut +\mathstrut 25q^{33} \) \(\mathstrut +\mathstrut 36q^{34} \) \(\mathstrut +\mathstrut 26q^{35} \) \(\mathstrut +\mathstrut 59q^{36} \) \(\mathstrut +\mathstrut 9q^{37} \) \(\mathstrut +\mathstrut 37q^{38} \) \(\mathstrut -\mathstrut 2q^{39} \) \(\mathstrut +\mathstrut 23q^{40} \) \(\mathstrut +\mathstrut 50q^{41} \) \(\mathstrut +\mathstrut 20q^{42} \) \(\mathstrut +\mathstrut 46q^{43} \) \(\mathstrut +\mathstrut 39q^{44} \) \(\mathstrut +\mathstrut 30q^{45} \) \(\mathstrut +\mathstrut 38q^{46} \) \(\mathstrut +\mathstrut 57q^{47} \) \(\mathstrut +\mathstrut 21q^{48} \) \(\mathstrut +\mathstrut 62q^{49} \) \(\mathstrut +\mathstrut 57q^{50} \) \(\mathstrut +\mathstrut 5q^{51} \) \(\mathstrut +\mathstrut 8q^{52} \) \(\mathstrut +\mathstrut 21q^{53} \) \(\mathstrut +\mathstrut 63q^{54} \) \(\mathstrut +\mathstrut 40q^{55} \) \(\mathstrut +\mathstrut 26q^{56} \) \(\mathstrut +\mathstrut 3q^{57} \) \(\mathstrut +\mathstrut 23q^{58} \) \(\mathstrut +\mathstrut 68q^{59} \) \(\mathstrut +\mathstrut 14q^{60} \) \(\mathstrut -\mathstrut q^{61} \) \(\mathstrut +\mathstrut 44q^{62} \) \(\mathstrut +\mathstrut 40q^{63} \) \(\mathstrut +\mathstrut 46q^{64} \) \(\mathstrut +\mathstrut 18q^{65} \) \(\mathstrut +\mathstrut 25q^{66} \) \(\mathstrut +\mathstrut 42q^{67} \) \(\mathstrut +\mathstrut 36q^{68} \) \(\mathstrut -\mathstrut 7q^{69} \) \(\mathstrut +\mathstrut 26q^{70} \) \(\mathstrut +\mathstrut 67q^{71} \) \(\mathstrut +\mathstrut 59q^{72} \) \(\mathstrut +\mathstrut 48q^{73} \) \(\mathstrut +\mathstrut 9q^{74} \) \(\mathstrut +\mathstrut 71q^{75} \) \(\mathstrut +\mathstrut 37q^{76} \) \(\mathstrut -\mathstrut 5q^{77} \) \(\mathstrut -\mathstrut 2q^{78} \) \(\mathstrut +\mathstrut 40q^{79} \) \(\mathstrut +\mathstrut 23q^{80} \) \(\mathstrut +\mathstrut 82q^{81} \) \(\mathstrut +\mathstrut 50q^{82} \) \(\mathstrut +\mathstrut 48q^{83} \) \(\mathstrut +\mathstrut 20q^{84} \) \(\mathstrut -\mathstrut 68q^{85} \) \(\mathstrut +\mathstrut 46q^{86} \) \(\mathstrut +\mathstrut 18q^{87} \) \(\mathstrut +\mathstrut 39q^{88} \) \(\mathstrut +\mathstrut 90q^{89} \) \(\mathstrut +\mathstrut 30q^{90} \) \(\mathstrut +\mathstrut 9q^{91} \) \(\mathstrut +\mathstrut 38q^{92} \) \(\mathstrut -\mathstrut 42q^{93} \) \(\mathstrut +\mathstrut 57q^{94} \) \(\mathstrut +\mathstrut 6q^{95} \) \(\mathstrut +\mathstrut 21q^{96} \) \(\mathstrut +\mathstrut 46q^{97} \) \(\mathstrut +\mathstrut 62q^{98} \) \(\mathstrut +\mathstrut 61q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 1.00000 −3.34123 1.00000 −1.21966 −3.34123 1.21220 1.00000 8.16382 −1.21966
1.2 1.00000 −2.83861 1.00000 −0.543432 −2.83861 −3.69136 1.00000 5.05769 −0.543432
1.3 1.00000 −2.79379 1.00000 1.09256 −2.79379 0.952354 1.00000 4.80523 1.09256
1.4 1.00000 −2.67899 1.00000 3.78338 −2.67899 0.625122 1.00000 4.17700 3.78338
1.5 1.00000 −2.41935 1.00000 −2.86721 −2.41935 3.82612 1.00000 2.85324 −2.86721
1.6 1.00000 −2.24859 1.00000 3.12554 −2.24859 2.41821 1.00000 2.05614 3.12554
1.7 1.00000 −2.23424 1.00000 1.35082 −2.23424 1.10993 1.00000 1.99184 1.35082
1.8 1.00000 −1.96762 1.00000 −0.579208 −1.96762 −3.04888 1.00000 0.871523 −0.579208
1.9 1.00000 −1.75438 1.00000 1.48781 −1.75438 4.69044 1.00000 0.0778341 1.48781
1.10 1.00000 −1.64474 1.00000 −0.535091 −1.64474 −1.74380 1.00000 −0.294845 −0.535091
1.11 1.00000 −1.53516 1.00000 3.32650 −1.53516 2.69032 1.00000 −0.643295 3.32650
1.12 1.00000 −1.38097 1.00000 −1.46012 −1.38097 0.773639 1.00000 −1.09292 −1.46012
1.13 1.00000 −1.20020 1.00000 4.05453 −1.20020 −4.32579 1.00000 −1.55952 4.05453
1.14 1.00000 −0.857869 1.00000 −2.26962 −0.857869 −3.52222 1.00000 −2.26406 −2.26962
1.15 1.00000 −0.676583 1.00000 −1.65458 −0.676583 3.29858 1.00000 −2.54224 −1.65458
1.16 1.00000 −0.506267 1.00000 2.89870 −0.506267 0.00816549 1.00000 −2.74369 2.89870
1.17 1.00000 −0.354737 1.00000 2.50160 −0.354737 4.23908 1.00000 −2.87416 2.50160
1.18 1.00000 −0.317846 1.00000 −2.51845 −0.317846 4.77839 1.00000 −2.89897 −2.51845
1.19 1.00000 −0.151617 1.00000 −4.25887 −0.151617 0.316610 1.00000 −2.97701 −4.25887
1.20 1.00000 0.0490190 1.00000 0.547018 0.0490190 −4.51424 1.00000 −2.99760 0.547018
See all 46 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.46
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(2003\) \(1\)

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{3}^{46} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4006))\).