Properties

Label 4002.2.a.y
Level 4002
Weight 2
Character orbit 4002.a
Self dual Yes
Analytic conductor 31.956
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4002.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( - \beta_{1} q^{5} \) \(+ q^{6}\) \( + ( 2 + \beta_{2} ) q^{7} \) \(- q^{8}\) \(+ q^{9}\) \(+O(q^{10})\) \( q\) \(- q^{2}\) \(- q^{3}\) \(+ q^{4}\) \( - \beta_{1} q^{5} \) \(+ q^{6}\) \( + ( 2 + \beta_{2} ) q^{7} \) \(- q^{8}\) \(+ q^{9}\) \( + \beta_{1} q^{10} \) \( - \beta_{1} q^{11} \) \(- q^{12}\) \( + ( 2 + \beta_{1} ) q^{13} \) \( + ( -2 - \beta_{2} ) q^{14} \) \( + \beta_{1} q^{15} \) \(+ q^{16}\) \( + 4 q^{17} \) \(- q^{18}\) \( + ( 2 - \beta_{2} ) q^{19} \) \( - \beta_{1} q^{20} \) \( + ( -2 - \beta_{2} ) q^{21} \) \( + \beta_{1} q^{22} \) \(+ q^{23}\) \(+ q^{24}\) \( + ( 3 + \beta_{1} + 2 \beta_{2} ) q^{25} \) \( + ( -2 - \beta_{1} ) q^{26} \) \(- q^{27}\) \( + ( 2 + \beta_{2} ) q^{28} \) \(- q^{29}\) \( - \beta_{1} q^{30} \) \( + ( 2 + \beta_{1} ) q^{31} \) \(- q^{32}\) \( + \beta_{1} q^{33} \) \( -4 q^{34} \) \( + ( 4 - 4 \beta_{1} ) q^{35} \) \(+ q^{36}\) \( + ( -2 - \beta_{1} - 2 \beta_{2} ) q^{37} \) \( + ( -2 + \beta_{2} ) q^{38} \) \( + ( -2 - \beta_{1} ) q^{39} \) \( + \beta_{1} q^{40} \) \( + ( -4 + \beta_{1} + 2 \beta_{2} ) q^{41} \) \( + ( 2 + \beta_{2} ) q^{42} \) \( + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{43} \) \( - \beta_{1} q^{44} \) \( - \beta_{1} q^{45} \) \(- q^{46}\) \( + ( -4 + 2 \beta_{1} ) q^{47} \) \(- q^{48}\) \( + ( 7 - 2 \beta_{1} + 2 \beta_{2} ) q^{49} \) \( + ( -3 - \beta_{1} - 2 \beta_{2} ) q^{50} \) \( -4 q^{51} \) \( + ( 2 + \beta_{1} ) q^{52} \) \( -2 \beta_{1} q^{53} \) \(+ q^{54}\) \( + ( 8 + \beta_{1} + 2 \beta_{2} ) q^{55} \) \( + ( -2 - \beta_{2} ) q^{56} \) \( + ( -2 + \beta_{2} ) q^{57} \) \(+ q^{58}\) \( + ( 8 - \beta_{1} ) q^{59} \) \( + \beta_{1} q^{60} \) \( + ( -2 - \beta_{1} ) q^{61} \) \( + ( -2 - \beta_{1} ) q^{62} \) \( + ( 2 + \beta_{2} ) q^{63} \) \(+ q^{64}\) \( + ( -8 - 3 \beta_{1} - 2 \beta_{2} ) q^{65} \) \( - \beta_{1} q^{66} \) \( + ( -2 - \beta_{1} ) q^{67} \) \( + 4 q^{68} \) \(- q^{69}\) \( + ( -4 + 4 \beta_{1} ) q^{70} \) \( + ( -6 + 3 \beta_{1} + 2 \beta_{2} ) q^{71} \) \(- q^{72}\) \( + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{73} \) \( + ( 2 + \beta_{1} + 2 \beta_{2} ) q^{74} \) \( + ( -3 - \beta_{1} - 2 \beta_{2} ) q^{75} \) \( + ( 2 - \beta_{2} ) q^{76} \) \( + ( 4 - 4 \beta_{1} ) q^{77} \) \( + ( 2 + \beta_{1} ) q^{78} \) \( + ( -2 - 2 \beta_{2} ) q^{79} \) \( - \beta_{1} q^{80} \) \(+ q^{81}\) \( + ( 4 - \beta_{1} - 2 \beta_{2} ) q^{82} \) \( -3 \beta_{2} q^{83} \) \( + ( -2 - \beta_{2} ) q^{84} \) \( -4 \beta_{1} q^{85} \) \( + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{86} \) \(+ q^{87}\) \( + \beta_{1} q^{88} \) \( + ( -4 + 2 \beta_{1} ) q^{89} \) \( + \beta_{1} q^{90} \) \( + ( 4 \beta_{1} + 2 \beta_{2} ) q^{91} \) \(+ q^{92}\) \( + ( -2 - \beta_{1} ) q^{93} \) \( + ( 4 - 2 \beta_{1} ) q^{94} \) \( -4 q^{95} \) \(+ q^{96}\) \( + ( 10 - 2 \beta_{1} - \beta_{2} ) q^{97} \) \( + ( -7 + 2 \beta_{1} - 2 \beta_{2} ) q^{98} \) \( - \beta_{1} q^{99} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(3q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3q \) \(\mathstrut -\mathstrut 3q^{2} \) \(\mathstrut -\mathstrut 3q^{3} \) \(\mathstrut +\mathstrut 3q^{4} \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut 3q^{6} \) \(\mathstrut +\mathstrut 6q^{7} \) \(\mathstrut -\mathstrut 3q^{8} \) \(\mathstrut +\mathstrut 3q^{9} \) \(\mathstrut +\mathstrut q^{10} \) \(\mathstrut -\mathstrut q^{11} \) \(\mathstrut -\mathstrut 3q^{12} \) \(\mathstrut +\mathstrut 7q^{13} \) \(\mathstrut -\mathstrut 6q^{14} \) \(\mathstrut +\mathstrut q^{15} \) \(\mathstrut +\mathstrut 3q^{16} \) \(\mathstrut +\mathstrut 12q^{17} \) \(\mathstrut -\mathstrut 3q^{18} \) \(\mathstrut +\mathstrut 6q^{19} \) \(\mathstrut -\mathstrut q^{20} \) \(\mathstrut -\mathstrut 6q^{21} \) \(\mathstrut +\mathstrut q^{22} \) \(\mathstrut +\mathstrut 3q^{23} \) \(\mathstrut +\mathstrut 3q^{24} \) \(\mathstrut +\mathstrut 10q^{25} \) \(\mathstrut -\mathstrut 7q^{26} \) \(\mathstrut -\mathstrut 3q^{27} \) \(\mathstrut +\mathstrut 6q^{28} \) \(\mathstrut -\mathstrut 3q^{29} \) \(\mathstrut -\mathstrut q^{30} \) \(\mathstrut +\mathstrut 7q^{31} \) \(\mathstrut -\mathstrut 3q^{32} \) \(\mathstrut +\mathstrut q^{33} \) \(\mathstrut -\mathstrut 12q^{34} \) \(\mathstrut +\mathstrut 8q^{35} \) \(\mathstrut +\mathstrut 3q^{36} \) \(\mathstrut -\mathstrut 7q^{37} \) \(\mathstrut -\mathstrut 6q^{38} \) \(\mathstrut -\mathstrut 7q^{39} \) \(\mathstrut +\mathstrut q^{40} \) \(\mathstrut -\mathstrut 11q^{41} \) \(\mathstrut +\mathstrut 6q^{42} \) \(\mathstrut +\mathstrut 4q^{43} \) \(\mathstrut -\mathstrut q^{44} \) \(\mathstrut -\mathstrut q^{45} \) \(\mathstrut -\mathstrut 3q^{46} \) \(\mathstrut -\mathstrut 10q^{47} \) \(\mathstrut -\mathstrut 3q^{48} \) \(\mathstrut +\mathstrut 19q^{49} \) \(\mathstrut -\mathstrut 10q^{50} \) \(\mathstrut -\mathstrut 12q^{51} \) \(\mathstrut +\mathstrut 7q^{52} \) \(\mathstrut -\mathstrut 2q^{53} \) \(\mathstrut +\mathstrut 3q^{54} \) \(\mathstrut +\mathstrut 25q^{55} \) \(\mathstrut -\mathstrut 6q^{56} \) \(\mathstrut -\mathstrut 6q^{57} \) \(\mathstrut +\mathstrut 3q^{58} \) \(\mathstrut +\mathstrut 23q^{59} \) \(\mathstrut +\mathstrut q^{60} \) \(\mathstrut -\mathstrut 7q^{61} \) \(\mathstrut -\mathstrut 7q^{62} \) \(\mathstrut +\mathstrut 6q^{63} \) \(\mathstrut +\mathstrut 3q^{64} \) \(\mathstrut -\mathstrut 27q^{65} \) \(\mathstrut -\mathstrut q^{66} \) \(\mathstrut -\mathstrut 7q^{67} \) \(\mathstrut +\mathstrut 12q^{68} \) \(\mathstrut -\mathstrut 3q^{69} \) \(\mathstrut -\mathstrut 8q^{70} \) \(\mathstrut -\mathstrut 15q^{71} \) \(\mathstrut -\mathstrut 3q^{72} \) \(\mathstrut -\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 7q^{74} \) \(\mathstrut -\mathstrut 10q^{75} \) \(\mathstrut +\mathstrut 6q^{76} \) \(\mathstrut +\mathstrut 8q^{77} \) \(\mathstrut +\mathstrut 7q^{78} \) \(\mathstrut -\mathstrut 6q^{79} \) \(\mathstrut -\mathstrut q^{80} \) \(\mathstrut +\mathstrut 3q^{81} \) \(\mathstrut +\mathstrut 11q^{82} \) \(\mathstrut -\mathstrut 6q^{84} \) \(\mathstrut -\mathstrut 4q^{85} \) \(\mathstrut -\mathstrut 4q^{86} \) \(\mathstrut +\mathstrut 3q^{87} \) \(\mathstrut +\mathstrut q^{88} \) \(\mathstrut -\mathstrut 10q^{89} \) \(\mathstrut +\mathstrut q^{90} \) \(\mathstrut +\mathstrut 4q^{91} \) \(\mathstrut +\mathstrut 3q^{92} \) \(\mathstrut -\mathstrut 7q^{93} \) \(\mathstrut +\mathstrut 10q^{94} \) \(\mathstrut -\mathstrut 12q^{95} \) \(\mathstrut +\mathstrut 3q^{96} \) \(\mathstrut +\mathstrut 28q^{97} \) \(\mathstrut -\mathstrut 19q^{98} \) \(\mathstrut -\mathstrut q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3}\mathstrut -\mathstrut \) \(x^{2}\mathstrut -\mathstrut \) \(12\) \(x\mathstrut +\mathstrut \) \(8\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{2} - \nu - 8 \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2\) \(\beta_{2}\mathstrut +\mathstrut \) \(\beta_{1}\mathstrut +\mathstrut \) \(8\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.67370
0.654334
−3.32803
−1.00000 −1.00000 1.00000 −3.67370 1.00000 2.91118 −1.00000 1.00000 3.67370
1.2 −1.00000 −1.00000 1.00000 −0.654334 1.00000 −2.11309 −1.00000 1.00000 0.654334
1.3 −1.00000 −1.00000 1.00000 3.32803 1.00000 5.20191 −1.00000 1.00000 −3.32803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(23\) \(-1\)
\(29\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4002))\):

\(T_{5}^{3} \) \(\mathstrut +\mathstrut T_{5}^{2} \) \(\mathstrut -\mathstrut 12 T_{5} \) \(\mathstrut -\mathstrut 8 \)
\(T_{7}^{3} \) \(\mathstrut -\mathstrut 6 T_{7}^{2} \) \(\mathstrut -\mathstrut 2 T_{7} \) \(\mathstrut +\mathstrut 32 \)
\(T_{11}^{3} \) \(\mathstrut +\mathstrut T_{11}^{2} \) \(\mathstrut -\mathstrut 12 T_{11} \) \(\mathstrut -\mathstrut 8 \)