Properties

Label 4.34.a.a
Level 4
Weight 34
Character orbit 4.a
Self dual Yes
Analytic conductor 27.593
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 34 \)
Character orbit: \([\chi]\) = 4.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(27.5931315524\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{3}\cdot 7\cdot 11\cdot 29 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q\) \( + ( 30830596 + \beta_{1} ) q^{3} \) \( + ( -17960227962 - 1535 \beta_{1} + \beta_{2} ) q^{5} \) \( + ( 1513669971464 - 122346 \beta_{1} + 180 \beta_{2} ) q^{7} \) \( + ( 2010788144563341 + 75248670 \beta_{1} - 10530 \beta_{2} ) q^{9} \) \(+O(q^{10})\) \( q\) \(+(30830596 + \beta_{1}) q^{3}\) \(+(-17960227962 - 1535 \beta_{1} + \beta_{2}) q^{5}\) \(+(1513669971464 - 122346 \beta_{1} + 180 \beta_{2}) q^{7}\) \(+(2010788144563341 + 75248670 \beta_{1} - 10530 \beta_{2}) q^{9}\) \(+(75872552434149900 + 2215839115 \beta_{1} + 256840 \beta_{2}) q^{11}\) \(+(90990147405786254 + 6383188809 \beta_{1} - 3668535 \beta_{2}) q^{13}\) \(+(-10714157827080368616 - 382917087630 \beta_{1} + 33406668 \beta_{2}) q^{15}\) \(+(31012396103938905618 + 1069301430158 \beta_{1} - 184208050 \beta_{2}) q^{17}\) \(+(\)\(44\!\cdots\!76\)\( + 11850406238205 \beta_{1} + 320516280 \beta_{2}) q^{19}\) \(+(-\)\(76\!\cdots\!84\)\( - 57340224604180 \beta_{1} + 4392064620 \beta_{2}) q^{21}\) \(+(\)\(38\!\cdots\!32\)\( - 94999163347438 \beta_{1} - 49295676820 \beta_{2}) q^{23}\) \(+(\)\(86\!\cdots\!07\)\( + 615284668657260 \beta_{1} + 277757168364 \beta_{2}) q^{25}\) \(+(\)\(38\!\cdots\!08\)\( + 2919170542770738 \beta_{1} - 973938527640 \beta_{2}) q^{27}\) \(+(\)\(96\!\cdots\!26\)\( - 17291424904695515 \beta_{1} + 1814914414885 \beta_{2}) q^{29}\) \(+(\)\(52\!\cdots\!76\)\( + 3377924000980200 \beta_{1} + 1180388959200 \beta_{2}) q^{31}\) \(+(\)\(17\!\cdots\!60\)\( + 98072137402840890 \beta_{1} - 18904063453830 \beta_{2}) q^{33}\) \(+(\)\(34\!\cdots\!16\)\( + 51799596297276380 \beta_{1} + 55139397898832 \beta_{2}) q^{35}\) \(+(\)\(11\!\cdots\!14\)\( - 1038005378158598451 \beta_{1} - 52265853646515 \beta_{2}) q^{37}\) \(+(\)\(45\!\cdots\!56\)\( + 1463249000741125850 \beta_{1} - 130471960050900 \beta_{2}) q^{39}\) \(+(-\)\(22\!\cdots\!54\)\( - 641632766910683060 \beta_{1} + 448924689742540 \beta_{2}) q^{41}\) \(+(-\)\(51\!\cdots\!40\)\( + 9557870528390708475 \beta_{1} - 210366843981840 \beta_{2}) q^{43}\) \(+(-\)\(27\!\cdots\!62\)\( - 29103707165110673535 \beta_{1} - 950908515500799 \beta_{2}) q^{45}\) \(+(-\)\(24\!\cdots\!92\)\( + 13537930853481011508 \beta_{1} - 576631108849560 \beta_{2}) q^{47}\) \(+(-\)\(15\!\cdots\!03\)\( + 496168262546838840 \beta_{1} + 10601270675344440 \beta_{2}) q^{49}\) \(+(\)\(80\!\cdots\!12\)\( + \)\(13\!\cdots\!10\)\( \beta_{1} - 14436065202263640 \beta_{2}) q^{51}\) \(+(\)\(18\!\cdots\!78\)\( - 27337706038779017987 \beta_{1} - 40829066390340995 \beta_{2}) q^{53}\) \(+(\)\(24\!\cdots\!60\)\( - \)\(84\!\cdots\!50\)\( \beta_{1} + 158548384447532820 \beta_{2}) q^{55}\) \(+(\)\(92\!\cdots\!16\)\( + \)\(87\!\cdots\!06\)\( \beta_{1} - 119258077651337610 \beta_{2}) q^{57}\) \(+(\)\(67\!\cdots\!92\)\( + \)\(66\!\cdots\!35\)\( \beta_{1} - 355142845670518240 \beta_{2}) q^{59}\) \(+(\)\(19\!\cdots\!22\)\( + \)\(11\!\cdots\!45\)\( \beta_{1} + 864805591092629745 \beta_{2}) q^{61}\) \(+(-\)\(41\!\cdots\!56\)\( - \)\(39\!\cdots\!06\)\( \beta_{1} - 321105448391693580 \beta_{2}) q^{63}\) \(+(-\)\(75\!\cdots\!04\)\( - \)\(25\!\cdots\!20\)\( \beta_{1} - 991922296965526108 \beta_{2}) q^{65}\) \(+(-\)\(96\!\cdots\!76\)\( + \)\(61\!\cdots\!09\)\( \beta_{1} + 745104731828763960 \beta_{2}) q^{67}\) \(+(-\)\(50\!\cdots\!72\)\( + \)\(14\!\cdots\!80\)\( \beta_{1} + 150330017751397380 \beta_{2}) q^{69}\) \(+(\)\(56\!\cdots\!48\)\( + \)\(17\!\cdots\!70\)\( \beta_{1} + 4210979720475567620 \beta_{2}) q^{71}\) \(+(\)\(43\!\cdots\!34\)\( - \)\(54\!\cdots\!86\)\( \beta_{1} - 9892260507865032810 \beta_{2}) q^{73}\) \(+(\)\(67\!\cdots\!76\)\( + \)\(30\!\cdots\!55\)\( \beta_{1} - 1689547931514628848 \beta_{2}) q^{75}\) \(+(\)\(69\!\cdots\!40\)\( - \)\(13\!\cdots\!40\)\( \beta_{1} + 25628357491802757380 \beta_{2}) q^{77}\) \(+(\)\(14\!\cdots\!68\)\( + \)\(14\!\cdots\!60\)\( \beta_{1} - 24410580389385198840 \beta_{2}) q^{79}\) \(+(\)\(20\!\cdots\!09\)\( + \)\(38\!\cdots\!30\)\( \beta_{1} + 11004304993611004530 \beta_{2}) q^{81}\) \(+(-\)\(23\!\cdots\!88\)\( - \)\(34\!\cdots\!63\)\( \beta_{1} - 30337551274260013440 \beta_{2}) q^{83}\) \(+(-\)\(45\!\cdots\!28\)\( - \)\(41\!\cdots\!90\)\( \beta_{1} - 21434939812222425306 \beta_{2}) q^{85}\) \(+(-\)\(84\!\cdots\!64\)\( - \)\(34\!\cdots\!14\)\( \beta_{1} + \)\(21\!\cdots\!80\)\( \beta_{2}) q^{87}\) \(+(-\)\(64\!\cdots\!66\)\( + \)\(68\!\cdots\!30\)\( \beta_{1} - \)\(17\!\cdots\!70\)\( \beta_{2}) q^{89}\) \(+(-\)\(12\!\cdots\!36\)\( - \)\(23\!\cdots\!40\)\( \beta_{1} - \)\(19\!\cdots\!40\)\( \beta_{2}) q^{91}\) \(+(\)\(18\!\cdots\!96\)\( + \)\(50\!\cdots\!76\)\( \beta_{1} - 15215953620938720400 \beta_{2}) q^{93}\) \(+(-\)\(68\!\cdots\!92\)\( - \)\(46\!\cdots\!10\)\( \beta_{1} + \)\(56\!\cdots\!16\)\( \beta_{2}) q^{95}\) \(+(\)\(18\!\cdots\!74\)\( - \)\(10\!\cdots\!46\)\( \beta_{1} + \)\(87\!\cdots\!90\)\( \beta_{2}) q^{97}\) \(+(\)\(75\!\cdots\!00\)\( + \)\(14\!\cdots\!15\)\( \beta_{1} - \)\(27\!\cdots\!60\)\( \beta_{2}) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(3q \) \(\mathstrut +\mathstrut 92491788q^{3} \) \(\mathstrut -\mathstrut 53880683886q^{5} \) \(\mathstrut +\mathstrut 4541009914392q^{7} \) \(\mathstrut +\mathstrut 6032364433690023q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3q \) \(\mathstrut +\mathstrut 92491788q^{3} \) \(\mathstrut -\mathstrut 53880683886q^{5} \) \(\mathstrut +\mathstrut 4541009914392q^{7} \) \(\mathstrut +\mathstrut 6032364433690023q^{9} \) \(\mathstrut +\mathstrut 227617657302449700q^{11} \) \(\mathstrut +\mathstrut 272970442217358762q^{13} \) \(\mathstrut -\mathstrut 32142473481241105848q^{15} \) \(\mathstrut +\mathstrut 93037188311816716854q^{17} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!28\)\(q^{19} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!52\)\(q^{21} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!96\)\(q^{23} \) \(\mathstrut +\mathstrut \)\(25\!\cdots\!21\)\(q^{25} \) \(\mathstrut +\mathstrut \)\(11\!\cdots\!24\)\(q^{27} \) \(\mathstrut +\mathstrut \)\(28\!\cdots\!78\)\(q^{29} \) \(\mathstrut +\mathstrut \)\(15\!\cdots\!28\)\(q^{31} \) \(\mathstrut +\mathstrut \)\(51\!\cdots\!80\)\(q^{33} \) \(\mathstrut +\mathstrut \)\(10\!\cdots\!48\)\(q^{35} \) \(\mathstrut +\mathstrut \)\(34\!\cdots\!42\)\(q^{37} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!68\)\(q^{39} \) \(\mathstrut -\mathstrut \)\(67\!\cdots\!62\)\(q^{41} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!20\)\(q^{43} \) \(\mathstrut -\mathstrut \)\(82\!\cdots\!86\)\(q^{45} \) \(\mathstrut -\mathstrut \)\(72\!\cdots\!76\)\(q^{47} \) \(\mathstrut -\mathstrut \)\(47\!\cdots\!09\)\(q^{49} \) \(\mathstrut +\mathstrut \)\(24\!\cdots\!36\)\(q^{51} \) \(\mathstrut +\mathstrut \)\(54\!\cdots\!34\)\(q^{53} \) \(\mathstrut +\mathstrut \)\(72\!\cdots\!80\)\(q^{55} \) \(\mathstrut +\mathstrut \)\(27\!\cdots\!48\)\(q^{57} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!76\)\(q^{59} \) \(\mathstrut +\mathstrut \)\(59\!\cdots\!66\)\(q^{61} \) \(\mathstrut -\mathstrut \)\(12\!\cdots\!68\)\(q^{63} \) \(\mathstrut -\mathstrut \)\(22\!\cdots\!12\)\(q^{65} \) \(\mathstrut -\mathstrut \)\(29\!\cdots\!28\)\(q^{67} \) \(\mathstrut -\mathstrut \)\(15\!\cdots\!16\)\(q^{69} \) \(\mathstrut +\mathstrut \)\(16\!\cdots\!44\)\(q^{71} \) \(\mathstrut +\mathstrut \)\(13\!\cdots\!02\)\(q^{73} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!28\)\(q^{75} \) \(\mathstrut +\mathstrut \)\(20\!\cdots\!20\)\(q^{77} \) \(\mathstrut +\mathstrut \)\(43\!\cdots\!04\)\(q^{79} \) \(\mathstrut +\mathstrut \)\(60\!\cdots\!27\)\(q^{81} \) \(\mathstrut -\mathstrut \)\(71\!\cdots\!64\)\(q^{83} \) \(\mathstrut -\mathstrut \)\(13\!\cdots\!84\)\(q^{85} \) \(\mathstrut -\mathstrut \)\(25\!\cdots\!92\)\(q^{87} \) \(\mathstrut -\mathstrut \)\(19\!\cdots\!98\)\(q^{89} \) \(\mathstrut -\mathstrut \)\(38\!\cdots\!08\)\(q^{91} \) \(\mathstrut +\mathstrut \)\(55\!\cdots\!88\)\(q^{93} \) \(\mathstrut -\mathstrut \)\(20\!\cdots\!76\)\(q^{95} \) \(\mathstrut +\mathstrut \)\(56\!\cdots\!22\)\(q^{97} \) \(\mathstrut +\mathstrut \)\(22\!\cdots\!00\)\(q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3}\mathstrut -\mathstrut \) \(x^{2}\mathstrut -\mathstrut \) \(65185566\) \(x\mathstrut -\mathstrut \) \(173679864984\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -128 \nu^{2} + 542720 \nu + 5562320768 \)\()/25\)
\(\beta_{2}\)\(=\)\((\)\( 343168 \nu^{2} + 6776698880 \nu - 14915325889408 \)\()/125\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(5\) \(\beta_{2}\mathstrut +\mathstrut \) \(2681\) \(\beta_{1}\mathstrut +\mathstrut \) \(109756416\)\()/\)\(329269248\)
\(\nu^{2}\)\(=\)\((\)\(1325\) \(\beta_{2}\mathstrut -\mathstrut \) \(3308935\) \(\beta_{1}\mathstrut +\mathstrut \) \(894316769246208\)\()/20579328\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6032.20
9172.25
−3139.05
0 −6.39317e7 0 −2.18954e11 0 −4.92542e13 0 −1.47179e15 0
1.2 0 2.16957e7 0 6.04966e11 0 1.12234e14 0 −5.08836e15 0
1.3 0 1.34728e8 0 −4.39893e11 0 −5.84388e13 0 1.25925e16 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)

Hecke kernels

There are no other newforms in \(S_{34}^{\mathrm{new}}(\Gamma_0(4))\).