Properties

Label 3997.1.cz.a.13.1
Level 3997
Weight 1
Character 3997.13
Analytic conductor 1.995
Analytic rank 0
Dimension 144
Projective image \(D_{285}\)
CM disc. -7
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3997 = 7 \cdot 571 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 3997.cz (of order \(570\) and degree \(144\))

Newform invariants

Self dual: No
Analytic conductor: \(1.99476285549\)
Analytic rank: \(0\)
Dimension: \(144\)
Coefficient field: \(\Q(\zeta_{570})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Projective image \(D_{285}\)

Embedding invariants

Embedding label 13.1
Root \(-0.999757 - 0.0220445i\)
Character \(\chi\) = 3997.13
Dual form 3997.1.cz.a.615.1

$q$-expansion

\(f(q)\)  \(=\)  \(q\)\(+(0.341150 - 1.74650i) q^{2}\) \(+(-2.00737 - 0.815325i) q^{4}\) \(+(-0.461341 + 0.887223i) q^{7}\) \(+(-1.13548 + 1.73798i) q^{8}\) \(+(-0.739446 - 0.673216i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.341150 - 1.74650i) q^{2}\) \(+(-2.00737 - 0.815325i) q^{4}\) \(+(-0.461341 + 0.887223i) q^{7}\) \(+(-1.13548 + 1.73798i) q^{8}\) \(+(-0.739446 - 0.673216i) q^{9}\) \(+(-0.000667889 + 0.121178i) q^{11}\) \(+(1.39215 + 1.10841i) q^{14}\) \(+(1.09501 + 1.06524i) q^{16}\) \(+(-1.42803 + 1.06177i) q^{18}\) \(+(0.211410 + 0.0425064i) q^{22}\) \(+(-1.65560 + 0.448511i) q^{23}\) \(+(-0.795863 - 0.605477i) q^{25}\) \(+(1.64946 - 1.40485i) q^{28}\) \(+(-0.0415578 + 1.50764i) q^{29}\) \(+(0.527965 - 0.366083i) q^{32}\) \(+(0.935454 + 1.95429i) q^{36}\) \(+(-0.977928 - 0.0756090i) q^{37}\) \(+(0.719909 + 1.59325i) q^{43}\) \(+(0.100140 - 0.242706i) q^{44}\) \(+(0.218515 + 3.04452i) q^{46}\) \(+(-0.574329 - 0.818625i) q^{49}\) \(+(-1.32897 + 1.18341i) q^{50}\) \(+(1.39478 + 1.29826i) q^{53}\) \(+(-1.01813 - 1.80923i) q^{56}\) \(+(2.61891 + 0.586912i) q^{58}\) \(+(0.938430 - 0.345471i) q^{63}\) \(+(0.154412 + 0.352023i) q^{64}\) \(+(-0.0859078 + 0.373673i) q^{67}\) \(+(-1.46100 + 0.310546i) q^{71}\) \(+(2.00967 - 0.520720i) q^{72}\) \(+(-0.465671 + 1.68216i) q^{74}\) \(+(-0.107204 - 0.0564971i) q^{77}\) \(+(-1.77781 - 0.863058i) q^{79}\) \(+(0.0935596 + 0.995614i) q^{81}\) \(+(3.02821 - 0.713782i) q^{86}\) \(+(-0.209848 - 0.138757i) q^{88}\) \(+(3.68910 + 0.449525i) q^{92}\) \(+(-1.62566 + 0.723790i) q^{98}\) \(+(0.0820731 - 0.0891552i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\)  \(=\)  \(144q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut +\mathstrut 5q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 21q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(144q \) \(\mathstrut +\mathstrut q^{2} \) \(\mathstrut +\mathstrut 5q^{4} \) \(\mathstrut +\mathstrut 2q^{7} \) \(\mathstrut +\mathstrut 21q^{8} \) \(\mathstrut -\mathstrut q^{9} \) \(\mathstrut +\mathstrut 6q^{11} \) \(\mathstrut +\mathstrut q^{14} \) \(\mathstrut +\mathstrut 6q^{16} \) \(\mathstrut -\mathstrut 9q^{18} \) \(\mathstrut +\mathstrut 21q^{22} \) \(\mathstrut +\mathstrut 3q^{23} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut -\mathstrut 10q^{28} \) \(\mathstrut -\mathstrut 4q^{29} \) \(\mathstrut -\mathstrut 5q^{32} \) \(\mathstrut -\mathstrut 2q^{37} \) \(\mathstrut -\mathstrut 9q^{43} \) \(\mathstrut -\mathstrut 20q^{44} \) \(\mathstrut -\mathstrut 34q^{46} \) \(\mathstrut +\mathstrut 2q^{49} \) \(\mathstrut -\mathstrut 2q^{50} \) \(\mathstrut +\mathstrut 6q^{53} \) \(\mathstrut -\mathstrut 8q^{56} \) \(\mathstrut -\mathstrut q^{58} \) \(\mathstrut -\mathstrut q^{63} \) \(\mathstrut +\mathstrut 11q^{64} \) \(\mathstrut +\mathstrut 20q^{67} \) \(\mathstrut +\mathstrut 3q^{71} \) \(\mathstrut +\mathstrut 23q^{72} \) \(\mathstrut -\mathstrut 31q^{74} \) \(\mathstrut +\mathstrut q^{77} \) \(\mathstrut +\mathstrut 6q^{79} \) \(\mathstrut -\mathstrut q^{81} \) \(\mathstrut +\mathstrut 7q^{86} \) \(\mathstrut -\mathstrut 9q^{88} \) \(\mathstrut +\mathstrut 9q^{92} \) \(\mathstrut +\mathstrut 6q^{98} \) \(\mathstrut -\mathstrut 2q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3997\mathbb{Z}\right)^\times\).

\(n\) \(1716\) \(2285\)
\(\chi(n)\) \(e\left(\frac{176}{285}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.341150 1.74650i 0.341150 1.74650i −0.277403 0.960754i \(-0.589474\pi\)
0.618553 0.785743i \(-0.287719\pi\)
\(3\) 0 0 0.360939 0.932589i \(-0.382456\pi\)
−0.360939 + 0.932589i \(0.617544\pi\)
\(4\) −2.00737 0.815325i −2.00737 0.815325i
\(5\) 0 0 0.319482 0.947592i \(-0.396491\pi\)
−0.319482 + 0.947592i \(0.603509\pi\)
\(6\) 0 0
\(7\) −0.461341 + 0.887223i −0.461341 + 0.887223i
\(8\) −1.13548 + 1.73798i −1.13548 + 1.73798i
\(9\) −0.739446 0.673216i −0.739446 0.673216i
\(10\) 0 0
\(11\) −0.000667889 0.121178i −0.000667889 0.121178i 0.997814 + 0.0660906i \(0.0210526\pi\)
−0.998482 + 0.0550878i \(0.982456\pi\)
\(12\) 0 0
\(13\) 0 0 −0.381410 0.924406i \(-0.624561\pi\)
0.381410 + 0.924406i \(0.375439\pi\)
\(14\) 1.39215 + 1.10841i 1.39215 + 1.10841i
\(15\) 0 0
\(16\) 1.09501 + 1.06524i 1.09501 + 1.06524i
\(17\) 0 0 −0.989750 0.142811i \(-0.954386\pi\)
0.989750 + 0.142811i \(0.0456140\pi\)
\(18\) −1.42803 + 1.06177i −1.42803 + 1.06177i
\(19\) 0 0 −0.775409 0.631460i \(-0.782456\pi\)
0.775409 + 0.631460i \(0.217544\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.211410 + 0.0425064i 0.211410 + 0.0425064i
\(23\) −1.65560 + 0.448511i −1.65560 + 0.448511i −0.962268 0.272103i \(-0.912281\pi\)
−0.693336 + 0.720615i \(0.743860\pi\)
\(24\) 0 0
\(25\) −0.795863 0.605477i −0.795863 0.605477i
\(26\) 0 0
\(27\) 0 0
\(28\) 1.64946 1.40485i 1.64946 1.40485i
\(29\) −0.0415578 + 1.50764i −0.0415578 + 1.50764i 0.635724 + 0.771917i \(0.280702\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(30\) 0 0
\(31\) 0 0 0.245485 0.969400i \(-0.421053\pi\)
−0.245485 + 0.969400i \(0.578947\pi\)
\(32\) 0.527965 0.366083i 0.527965 0.366083i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.935454 + 1.95429i 0.935454 + 1.95429i
\(37\) −0.977928 0.0756090i −0.977928 0.0756090i −0.421786 0.906696i \(-0.638596\pi\)
−0.556143 + 0.831087i \(0.687719\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.298515 0.954405i \(-0.596491\pi\)
0.298515 + 0.954405i \(0.403509\pi\)
\(42\) 0 0
\(43\) 0.719909 + 1.59325i 0.719909 + 1.59325i 0.802489 + 0.596667i \(0.203509\pi\)
−0.0825793 + 0.996584i \(0.526316\pi\)
\(44\) 0.100140 0.242706i 0.100140 0.242706i
\(45\) 0 0
\(46\) 0.218515 + 3.04452i 0.218515 + 3.04452i
\(47\) 0 0 0.962268 0.272103i \(-0.0877193\pi\)
−0.962268 + 0.272103i \(0.912281\pi\)
\(48\) 0 0
\(49\) −0.574329 0.818625i −0.574329 0.818625i
\(50\) −1.32897 + 1.18341i −1.32897 + 1.18341i
\(51\) 0 0
\(52\) 0 0
\(53\) 1.39478 + 1.29826i 1.39478 + 1.29826i 0.904357 + 0.426776i \(0.140351\pi\)
0.490424 + 0.871484i \(0.336842\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.01813 1.80923i −1.01813 1.80923i
\(57\) 0 0
\(58\) 2.61891 + 0.586912i 2.61891 + 0.586912i
\(59\) 0 0 −0.986361 0.164595i \(-0.947368\pi\)
0.986361 + 0.164595i \(0.0526316\pi\)
\(60\) 0 0
\(61\) 0 0 0.857640 0.514250i \(-0.171930\pi\)
−0.857640 + 0.514250i \(0.828070\pi\)
\(62\) 0 0
\(63\) 0.938430 0.345471i 0.938430 0.345471i
\(64\) 0.154412 + 0.352023i 0.154412 + 0.352023i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.0859078 + 0.373673i −0.0859078 + 0.373673i −0.999453 0.0330634i \(-0.989474\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.46100 + 0.310546i −1.46100 + 0.310546i −0.868768 0.495219i \(-0.835088\pi\)
−0.592235 + 0.805765i \(0.701754\pi\)
\(72\) 2.00967 0.520720i 2.00967 0.520720i
\(73\) 0 0 0.565270 0.824906i \(-0.308772\pi\)
−0.565270 + 0.824906i \(0.691228\pi\)
\(74\) −0.465671 + 1.68216i −0.465671 + 1.68216i
\(75\) 0 0
\(76\) 0 0
\(77\) −0.107204 0.0564971i −0.107204 0.0564971i
\(78\) 0 0
\(79\) −1.77781 0.863058i −1.77781 0.863058i −0.956036 0.293250i \(-0.905263\pi\)
−0.821778 0.569808i \(-0.807018\pi\)
\(80\) 0 0
\(81\) 0.0935596 + 0.995614i 0.0935596 + 0.995614i
\(82\) 0 0
\(83\) 0 0 0.0385714 0.999256i \(-0.487719\pi\)
−0.0385714 + 0.999256i \(0.512281\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.02821 0.713782i 3.02821 0.713782i
\(87\) 0 0
\(88\) −0.209848 0.138757i −0.209848 0.138757i
\(89\) 0 0 0.884667 0.466224i \(-0.154386\pi\)
−0.884667 + 0.466224i \(0.845614\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.68910 + 0.449525i 3.68910 + 0.449525i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.528360 0.849020i \(-0.677193\pi\)
0.528360 + 0.849020i \(0.322807\pi\)
\(98\) −1.62566 + 0.723790i −1.62566 + 0.723790i
\(99\) 0.0820731 0.0891552i 0.0820731 0.0891552i
\(100\) 1.10393 + 1.86431i 1.10393 + 1.86431i
\(101\) 0 0 −0.970739 0.240139i \(-0.922807\pi\)
0.970739 + 0.240139i \(0.0771930\pi\)
\(102\) 0 0
\(103\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.74324 1.99308i 2.74324 1.99308i
\(107\) 1.28265 1.24778i 1.28265 1.24778i 0.329907 0.944013i \(-0.392982\pi\)
0.952745 0.303771i \(-0.0982456\pi\)
\(108\) 0 0
\(109\) 0.0165339 + 0.0286376i 0.0165339 + 0.0286376i 0.874174 0.485613i \(-0.161404\pi\)
−0.857640 + 0.514250i \(0.828070\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.45028 + 0.480077i −1.45028 + 0.480077i
\(113\) 0.464757 1.92417i 0.464757 1.92417i 0.0935596 0.995614i \(-0.470175\pi\)
0.371197 0.928554i \(-0.378947\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1.31264 2.99252i 1.31264 2.99252i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.985256 + 0.0108610i 0.985256 + 0.0108610i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −0.283218 1.75682i −0.283218 1.75682i
\(127\) −1.36397 + 1.24180i −1.36397 + 1.24180i −0.421786 + 0.906696i \(0.638596\pi\)
−0.942181 + 0.335105i \(0.891228\pi\)
\(128\) 1.29440 0.290082i 1.29440 0.290082i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.789141 0.614213i \(-0.210526\pi\)
−0.789141 + 0.614213i \(0.789474\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.623312 + 0.277516i 0.623312 + 0.277516i
\(135\) 0 0
\(136\) 0 0
\(137\) 1.24524 0.947356i 1.24524 0.947356i 0.245485 0.969400i \(-0.421053\pi\)
0.999757 + 0.0220445i \(0.00701754\pi\)
\(138\) 0 0
\(139\) 0 0 −0.952745 0.303771i \(-0.901754\pi\)
0.952745 + 0.303771i \(0.0982456\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.0439463 + 2.65758i 0.0439463 + 2.65758i
\(143\) 0 0
\(144\) −0.0925618 1.52486i −0.0925618 1.52486i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 1.90142 + 0.949105i 1.90142 + 0.949105i
\(149\) −1.85758 0.503228i −1.85758 0.503228i −0.857640 0.514250i \(-0.828070\pi\)
−0.999939 + 0.0110229i \(0.996491\pi\)
\(150\) 0 0
\(151\) −1.82698 + 0.0201399i −1.82698 + 0.0201399i −0.917973 0.396642i \(-0.870175\pi\)
−0.909007 + 0.416782i \(0.863158\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −0.135245 + 0.167958i −0.135245 + 0.167958i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.618553 0.785743i \(-0.287719\pi\)
−0.618553 + 0.785743i \(0.712281\pi\)
\(158\) −2.11383 + 2.81051i −2.11383 + 2.81051i
\(159\) 0 0
\(160\) 0 0
\(161\) 0.365869 1.67581i 0.365869 1.67581i
\(162\) 1.77075 + 0.176252i 1.77075 + 0.176252i
\(163\) 0.918145 + 1.76572i 0.918145 + 1.76572i 0.546948 + 0.837166i \(0.315789\pi\)
0.371197 + 0.928554i \(0.378947\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(168\) 0 0
\(169\) −0.709053 + 0.705155i −0.709053 + 0.705155i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.146110 3.78521i −0.146110 3.78521i
\(173\) 0 0 0.930586 0.366074i \(-0.119298\pi\)
−0.930586 + 0.366074i \(0.880702\pi\)
\(174\) 0 0
\(175\) 0.904357 0.426776i 0.904357 0.426776i
\(176\) −0.129815 + 0.131980i −0.129815 + 0.131980i
\(177\) 0 0
\(178\) 0 0
\(179\) −1.91737 + 0.0634294i −1.91737 + 0.0634294i −0.968033 0.250825i \(-0.919298\pi\)
−0.949339 + 0.314254i \(0.898246\pi\)
\(180\) 0 0
\(181\) 0 0 −0.879474 0.475947i \(-0.842105\pi\)
0.879474 + 0.475947i \(0.157895\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.10040 3.38669i 1.10040 3.38669i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.248931 + 0.0443650i −0.248931 + 0.0443650i −0.298515 0.954405i \(-0.596491\pi\)
0.0495838 + 0.998770i \(0.484211\pi\)
\(192\) 0 0
\(193\) −1.73067 0.367865i −1.73067 0.367865i −0.768401 0.639969i \(-0.778947\pi\)
−0.962268 + 0.272103i \(0.912281\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.485447 + 2.11155i 0.485447 + 2.11155i
\(197\) −0.422202 0.150165i −0.422202 0.150165i 0.115485 0.993309i \(-0.463158\pi\)
−0.537687 + 0.843145i \(0.680702\pi\)
\(198\) −0.127710 0.173756i −0.127710 0.173756i
\(199\) 0 0 −0.537687 0.843145i \(-0.680702\pi\)
0.537687 + 0.843145i \(0.319298\pi\)
\(200\) 1.95600 0.695689i 1.95600 0.695689i
\(201\) 0 0
\(202\) 0 0
\(203\) −1.31844 0.732408i −1.31844 0.732408i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.52617 + 0.782930i 1.52617 + 0.782930i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.0992705 + 1.38311i −0.0992705 + 1.38311i 0.669131 + 0.743145i \(0.266667\pi\)
−0.768401 + 0.639969i \(0.778947\pi\)
\(212\) −1.74134 3.74329i −1.74134 3.74329i
\(213\) 0 0
\(214\) −1.74167 2.66583i −1.74167 2.66583i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0.0556561 0.0191068i 0.0556561 0.0191068i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.709053 0.705155i \(-0.750877\pi\)
0.709053 + 0.705155i \(0.249123\pi\)
\(224\) 0.0812250 + 0.637311i 0.0812250 + 0.637311i
\(225\) 0.180881 + 0.983505i 0.180881 + 0.983505i
\(226\) −3.20200 1.46813i −3.20200 1.46813i
\(227\) 0 0 −0.988116 0.153712i \(-0.950877\pi\)
0.988116 + 0.153712i \(0.0491228\pi\)
\(228\) 0 0
\(229\) 0 0 −0.999028 0.0440782i \(-0.985965\pi\)
0.999028 + 0.0440782i \(0.0140351\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.57307 1.78412i −2.57307 1.78412i
\(233\) −0.725862 1.08471i −0.725862 1.08471i −0.992658 0.120958i \(-0.961404\pi\)
0.266796 0.963753i \(-0.414035\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.701582 1.55269i 0.701582 1.55269i −0.126427 0.991976i \(-0.540351\pi\)
0.828009 0.560715i \(-0.189474\pi\)
\(240\) 0 0
\(241\) 0 0 −0.627176 0.778877i \(-0.715789\pi\)
0.627176 + 0.778877i \(0.284211\pi\)
\(242\) 0.355089 1.71704i 0.355089 1.71704i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.996114 0.0880708i \(-0.0280702\pi\)
−0.996114 + 0.0880708i \(0.971930\pi\)
\(252\) −2.16545 0.0716362i −2.16545 0.0716362i
\(253\) −0.0532441 0.200923i −0.0532441 0.200923i
\(254\) 1.70348 + 2.80580i 1.70348 + 2.80580i
\(255\) 0 0
\(256\) −0.0544509 1.97538i −0.0544509 1.97538i
\(257\) 0 0 −0.652586 0.757715i \(-0.726316\pi\)
0.652586 + 0.757715i \(0.273684\pi\)
\(258\) 0 0
\(259\) 0.518241 0.832759i 0.518241 0.832759i
\(260\) 0 0
\(261\) 1.04570 1.08684i 1.04570 1.08684i
\(262\) 0 0
\(263\) 0.933341 + 1.10817i 0.933341 + 1.10817i 0.993931 + 0.110008i \(0.0350877\pi\)
−0.0605901 + 0.998163i \(0.519298\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.477114 0.680059i 0.477114 0.680059i
\(269\) 0 0 0.180881 0.983505i \(-0.442105\pi\)
−0.180881 + 0.983505i \(0.557895\pi\)
\(270\) 0 0
\(271\) 0 0 0.986361 0.164595i \(-0.0526316\pi\)
−0.986361 + 0.164595i \(0.947368\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −1.22974 2.49800i −1.22974 2.49800i
\(275\) 0.0739022 0.0960370i 0.0739022 0.0960370i
\(276\) 0 0
\(277\) −0.0621955 1.25281i −0.0621955 1.25281i −0.809017 0.587785i \(-0.800000\pi\)
0.746821 0.665025i \(-0.231579\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.0743051 + 0.122388i −0.0743051 + 0.122388i −0.889752 0.456444i \(-0.849123\pi\)
0.815447 + 0.578832i \(0.196491\pi\)
\(282\) 0 0
\(283\) 0 0 −0.991264 0.131892i \(-0.957895\pi\)
0.991264 + 0.131892i \(0.0421053\pi\)
\(284\) 3.18598 + 0.567811i 3.18598 + 0.567811i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.636854 0.0847363i −0.636854 0.0847363i
\(289\) 0.959210 + 0.282694i 0.959210 + 0.282694i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.480787 0.876837i \(-0.340351\pi\)
−0.480787 + 0.876837i \(0.659649\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.24183 1.61377i 1.24183 1.61377i
\(297\) 0 0
\(298\) −1.51260 + 3.07258i −1.51260 + 3.07258i
\(299\) 0 0
\(300\) 0 0
\(301\) −1.74569 0.0963126i −1.74569 0.0963126i
\(302\) −0.588100 + 3.19769i −0.588100 + 3.19769i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.815447 0.578832i \(-0.196491\pi\)
−0.815447 + 0.578832i \(0.803509\pi\)
\(308\) 0.169135 + 0.200817i 0.169135 + 0.200817i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.949339 0.314254i \(-0.898246\pi\)
0.949339 + 0.314254i \(0.101754\pi\)
\(312\) 0 0
\(313\) 0 0 0.137354 0.990522i \(-0.456140\pi\)
−0.137354 + 0.990522i \(0.543860\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.86506 + 3.18198i 2.86506 + 3.18198i
\(317\) −0.406433 0.669434i −0.406433 0.669434i 0.583317 0.812244i \(-0.301754\pi\)
−0.989750 + 0.142811i \(0.954386\pi\)
\(318\) 0 0
\(319\) −0.182666 0.00604285i −0.182666 0.00604285i
\(320\) 0 0
\(321\) 0 0
\(322\) −2.80197 1.21069i −2.80197 1.21069i
\(323\) 0 0
\(324\) 0.623940 2.07485i 0.623940 2.07485i
\(325\) 0 0
\(326\) 3.39705 1.00116i 3.39705 1.00116i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.195377 + 1.85889i 0.195377 + 1.85889i 0.451533 + 0.892254i \(0.350877\pi\)
−0.256156 + 0.966635i \(0.582456\pi\)
\(332\) 0 0
\(333\) 0.672224 + 0.714266i 0.672224 + 0.714266i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.60967 0.965176i −1.60967 0.965176i −0.982493 0.186298i \(-0.940351\pi\)
−0.627176 0.778877i \(-0.715789\pi\)
\(338\) 0.989659 + 1.47892i 0.989659 + 1.47892i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.991264 0.131892i 0.991264 0.131892i
\(344\) −3.58649 0.557917i −3.58649 0.557917i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.138298 1.08512i −0.138298 1.08512i −0.899598 0.436719i \(-0.856140\pi\)
0.761300 0.648400i \(-0.224561\pi\)
\(348\) 0 0
\(349\) 0 0 −0.802489 0.596667i \(-0.796491\pi\)
0.802489 + 0.596667i \(0.203509\pi\)
\(350\) −0.436842 1.72505i −0.436842 1.72505i
\(351\) 0 0
\(352\) 0.0440087 + 0.0642224i 0.0440087 + 0.0642224i
\(353\) 0 0 0.945817 0.324699i \(-0.105263\pi\)
−0.945817 + 0.324699i \(0.894737\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −0.543332 + 3.37032i −0.543332 + 3.37032i
\(359\) −0.507055 1.09000i −0.507055 1.09000i −0.978148 0.207912i \(-0.933333\pi\)
0.471093 0.882084i \(-0.343860\pi\)
\(360\) 0 0
\(361\) 0.202517 + 0.979279i 0.202517 + 0.979279i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.782322 0.622874i \(-0.214035\pi\)
−0.782322 + 0.622874i \(0.785965\pi\)
\(368\) −2.29067 1.27249i −2.29067 1.27249i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.79532 + 0.638540i −1.79532 + 0.638540i
\(372\) 0 0
\(373\) −0.0587305 0.0799057i −0.0587305 0.0799057i 0.775409 0.631460i \(-0.217544\pi\)
−0.834139 + 0.551554i \(0.814035\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.85936 0.0820372i 1.85936 0.0820372i 0.913545 0.406737i \(-0.133333\pi\)
0.945817 + 0.324699i \(0.105263\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.00743951 + 0.449892i −0.00743951 + 0.449892i
\(383\) 0 0 −0.993931 0.110008i \(-0.964912\pi\)
0.993931 + 0.110008i \(0.0350877\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.23289 + 2.89711i −1.23289 + 2.89711i
\(387\) 0.540269 1.66278i 0.540269 1.66278i
\(388\) 0 0
\(389\) 0.266744 0.923837i 0.266744 0.923837i −0.709053 0.705155i \(-0.750877\pi\)
0.975796 0.218681i \(-0.0701754\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.07490 0.0686406i 2.07490 0.0686406i
\(393\) 0 0
\(394\) −0.406296 + 0.686146i −0.406296 + 0.686146i
\(395\) 0 0
\(396\) −0.237442 + 0.112052i −0.237442 + 0.112052i
\(397\) 0 0 0.556143 0.831087i \(-0.312281\pi\)
−0.556143 + 0.831087i \(0.687719\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.226498 1.51079i −0.226498 1.51079i
\(401\) 0.216783 + 0.168729i 0.216783 + 0.168729i 0.716783 0.697297i \(-0.245614\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −1.72893 + 2.05279i −1.72893 + 2.05279i
\(407\) 0.00981532 0.118453i 0.00981532 0.118453i
\(408\) 0 0
\(409\) 0 0 −0.995083 0.0990455i \(-0.968421\pi\)
0.995083 + 0.0990455i \(0.0315789\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 1.88804 2.39836i 1.88804 2.39836i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.952745 0.303771i \(-0.0982456\pi\)
−0.952745 + 0.303771i \(0.901754\pi\)
\(420\) 0 0
\(421\) −0.660728 1.76473i −0.660728 1.76473i −0.644194 0.764862i \(-0.722807\pi\)
−0.0165339 0.999863i \(-0.505263\pi\)
\(422\) 2.38174 + 0.645225i 2.38174 + 0.645225i
\(423\) 0 0
\(424\) −3.84010 + 0.949955i −3.84010 + 0.949955i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −3.59211 + 1.45899i −3.59211 + 1.45899i
\(429\) 0 0
\(430\) 0 0
\(431\) −0.190169 0.475710i −0.190169 0.475710i 0.802489 0.596667i \(-0.203509\pi\)
−0.992658 + 0.120958i \(0.961404\pi\)
\(432\) 0 0
\(433\) 0 0 −0.956036 0.293250i \(-0.905263\pi\)
0.956036 + 0.293250i \(0.0947368\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.00984084 0.0709670i −0.00984084 0.0709670i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.724425 0.689353i \(-0.757895\pi\)
0.724425 + 0.689353i \(0.242105\pi\)
\(440\) 0 0
\(441\) −0.126427 + 0.991976i −0.126427 + 0.991976i
\(442\) 0 0
\(443\) 1.24067 0.278042i 1.24067 0.278042i 0.451533 0.892254i \(-0.350877\pi\)
0.789141 + 0.614213i \(0.210526\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.383560 0.0254052i −0.383560 0.0254052i
\(449\) 0.115719 + 0.319762i 0.115719 + 0.319762i 0.984487 0.175457i \(-0.0561404\pi\)
−0.868768 + 0.495219i \(0.835088\pi\)
\(450\) 1.77940 + 0.0196153i 1.77940 + 0.0196153i
\(451\) 0 0
\(452\) −2.50176 + 3.48360i −2.50176 + 3.48360i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.580822 + 1.72274i 0.580822 + 1.72274i 0.685350 + 0.728214i \(0.259649\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) −1.94579 + 0.150439i −1.94579 + 0.150439i −0.989750 0.142811i \(-0.954386\pi\)
−0.956036 + 0.293250i \(0.905263\pi\)
\(464\) −1.65151 + 1.60661i −1.65151 + 1.60661i
\(465\) 0 0
\(466\) −2.14207 + 0.897667i −2.14207 + 0.897667i
\(467\) 0 0 −0.982493 0.186298i \(-0.940351\pi\)
0.982493 + 0.186298i \(0.0596491\pi\)
\(468\) 0 0
\(469\) −0.291899 0.248610i −0.291899 0.248610i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.193548 + 0.0861733i −0.193548 + 0.0861733i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.157354 1.89898i −0.157354 1.89898i
\(478\) −2.47243 1.75501i −2.47243 1.75501i
\(479\) 0 0 −0.992658 0.120958i \(-0.961404\pi\)
0.992658 + 0.120958i \(0.0385965\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.96892 0.825106i −1.96892 0.825106i
\(485\) 0 0
\(486\) 0 0
\(487\) 0.636859 + 1.82234i 0.636859 + 1.82234i 0.565270 + 0.824906i \(0.308772\pi\)
0.0715891 + 0.997434i \(0.477193\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.205505 + 0.105425i −0.205505 + 0.105425i −0.556143 0.831087i \(-0.687719\pi\)
0.350638 + 0.936511i \(0.385965\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.398498 1.43950i 0.398498 1.43950i
\(498\) 0 0
\(499\) −0.516534 + 0.133838i −0.516534 + 0.133838i −0.500000 0.866025i \(-0.666667\pi\)
−0.0165339 + 0.999863i \(0.505263\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.863256 0.504766i \(-0.831579\pi\)
0.863256 + 0.504766i \(0.168421\pi\)
\(504\) −0.465147 + 2.02325i −0.465147 + 2.02325i
\(505\) 0 0
\(506\) −0.369075 + 0.0244459i −0.369075 + 0.0244459i
\(507\) 0 0
\(508\) 3.75046 1.38068i 3.75046 1.38068i
\(509\) 0 0 −0.904357 0.426776i \(-0.859649\pi\)
0.904357 + 0.426776i \(0.140351\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2.16015 0.360465i −2.16015 0.360465i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −1.27761 1.18920i −1.27761 1.18920i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.746821 0.665025i \(-0.231579\pi\)
−0.746821 + 0.665025i \(0.768421\pi\)
\(522\) −1.54142 2.19708i −1.54142 2.19708i
\(523\) 0 0 0.909007 0.416782i \(-0.136842\pi\)
−0.909007 + 0.416782i \(0.863158\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.25383 1.25202i 2.25383 1.25202i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.67660 0.980348i 1.67660 0.980348i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −0.551891 0.573605i −0.551891 0.573605i
\(537\) 0 0
\(538\) 0 0
\(539\) 0.0995832 0.0690494i 0.0995832 0.0690494i
\(540\) 0 0
\(541\) −1.27443 + 1.03784i −1.27443 + 1.03784i −0.277403 + 0.960754i \(0.589474\pi\)
−0.997024 + 0.0770854i \(0.975439\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.943827 1.31424i −0.943827 1.31424i −0.949339 0.314254i \(-0.898246\pi\)
0.00551154 0.999985i \(-0.498246\pi\)
\(548\) −3.27207 + 0.886420i −3.27207 + 0.886420i
\(549\) 0 0
\(550\) −0.142517 0.161833i −0.142517 0.161833i
\(551\) 0 0
\(552\) 0 0
\(553\) 1.58590 1.17915i 1.58590 1.17915i
\(554\) −2.20925 0.318772i −2.20925 0.318772i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.659944 + 0.525439i 0.659944 + 0.525439i 0.894729 0.446609i \(-0.147368\pi\)
−0.234785 + 0.972047i \(0.575439\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0.188400 + 0.171526i 0.188400 + 0.171526i
\(563\) 0 0 0.546948 0.837166i \(-0.315789\pi\)
−0.546948 + 0.837166i \(0.684211\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.926494 0.376309i −0.926494 0.376309i
\(568\) 1.11922 2.89182i 1.11922 2.89182i
\(569\) −0.383328 + 1.96243i −0.383328 + 1.96243i −0.170028 + 0.985439i \(0.554386\pi\)
−0.213300 + 0.976987i \(0.568421\pi\)
\(570\) 0 0
\(571\) 0.716783 + 0.697297i 0.716783 + 0.697297i
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.58920 + 0.645476i 1.58920 + 0.645476i
\(576\) 0.122809 0.364255i 0.122809 0.364255i
\(577\) 0 0 −0.846095 0.533032i \(-0.821053\pi\)
0.846095 + 0.533032i \(0.178947\pi\)
\(578\) 0.820958 1.57882i 0.820958 1.57882i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.158253 + 0.168150i −0.158253 + 0.168150i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.716783 0.697297i \(-0.754386\pi\)
0.716783 + 0.697297i \(0.245614\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.990298 1.12452i −0.990298 1.12452i
\(593\) 0 0 −0.980380 0.197117i \(-0.936842\pi\)
0.980380 + 0.197117i \(0.0631579\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.31856 + 2.52470i 3.31856 + 2.52470i
\(597\) 0 0
\(598\) 0 0
\(599\) −1.32279 + 1.12662i −1.32279 + 1.12662i −0.340293 + 0.940319i \(0.610526\pi\)
−0.982493 + 0.186298i \(0.940351\pi\)
\(600\) 0 0
\(601\) 0 0 0.775409 0.631460i \(-0.217544\pi\)
−0.775409 + 0.631460i \(0.782456\pi\)
\(602\) −0.763753 + 3.01599i −0.763753 + 3.01599i
\(603\) 0.315087 0.218477i 0.315087 0.218477i
\(604\) 3.68385 + 1.44915i 3.68385 + 1.44915i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.431754 0.901991i \(-0.642105\pi\)
0.431754 + 0.901991i \(0.357895\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.478940 + 0.280047i −0.478940 + 0.280047i −0.724425 0.689353i \(-0.757895\pi\)
0.245485 + 0.969400i \(0.421053\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.219919 0.122167i 0.219919 0.122167i
\(617\) −0.113950 1.58764i −0.113950 1.58764i −0.660898 0.750475i \(-0.729825\pi\)
0.546948 0.837166i \(-0.315789\pi\)
\(618\) 0 0
\(619\) 0 0 0.909007 0.416782i \(-0.136842\pi\)
−0.909007 + 0.416782i \(0.863158\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.266796 + 0.963753i 0.266796 + 0.963753i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0.941270 + 1.76245i 0.941270 + 1.76245i 0.509516 + 0.860461i \(0.329825\pi\)
0.431754 + 0.901991i \(0.357895\pi\)
\(632\) 3.51866 2.10982i 3.51866 2.10982i
\(633\) 0 0
\(634\) −1.30782 + 0.481456i −1.30782 + 0.481456i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −0.0728702 + 0.316963i −0.0728702 + 0.316963i
\(639\) 1.28940 + 0.753939i 1.28940 + 0.753939i
\(640\) 0 0
\(641\) 0.758728 0.489756i 0.758728 0.489756i −0.104528 0.994522i \(-0.533333\pi\)
0.863256 + 0.504766i \(0.168421\pi\)
\(642\) 0 0
\(643\) 0 0 0.968033 0.250825i \(-0.0807018\pi\)
−0.968033 + 0.250825i \(0.919298\pi\)
\(644\) −2.10076 + 3.06567i −2.10076 + 3.06567i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.480787 0.876837i \(-0.659649\pi\)
0.480787 + 0.876837i \(0.340351\pi\)
\(648\) −1.83660 0.967896i −1.83660 0.967896i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.403425 4.29305i −0.403425 4.29305i
\(653\) 0.572457 0.0633595i 0.572457 0.0633595i 0.180881 0.983505i \(-0.442105\pi\)
0.391577 + 0.920146i \(0.371930\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.445090 0.294304i −0.445090 0.294304i 0.309017 0.951057i \(-0.400000\pi\)
−0.754107 + 0.656752i \(0.771930\pi\)
\(660\) 0 0
\(661\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(662\) 3.31320 + 0.292934i 3.31320 + 0.292934i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 1.47679 0.930365i 1.47679 0.930365i
\(667\) −0.607391 2.51469i −0.607391 2.51469i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.901738 0.768010i −0.901738 0.768010i 0.0715891 0.997434i \(-0.477193\pi\)
−0.973327 + 0.229424i \(0.926316\pi\)
\(674\) −2.23481 + 2.48201i −2.23481 + 2.48201i
\(675\) 0 0
\(676\) 1.99827 0.837403i 1.99827 0.837403i
\(677\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.89579 0.627554i 1.89579 0.627554i 0.930586 0.366074i \(-0.119298\pi\)
0.965209 0.261480i \(-0.0842105\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.107820 1.77623i 0.107820 1.77623i
\(687\) 0 0
\(688\) −0.908890 + 2.51150i −0.908890 + 2.51150i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.956036 0.293250i \(-0.0947368\pi\)
−0.956036 + 0.293250i \(0.905263\pi\)
\(692\) 0 0
\(693\) 0.0412368 + 0.113948i 0.0412368 + 0.113948i
\(694\) −1.94234 0.128651i −1.94234 0.128651i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −2.16334 + 0.119355i −2.16334 + 0.119355i
\(701\) −0.252792 + 1.98347i −0.252792 + 1.98347i −0.104528 + 0.994522i \(0.533333\pi\)
−0.148264 + 0.988948i \(0.547368\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.0427607 + 0.0184762i −0.0427607 + 0.0184762i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.31044 0.401958i −1.31044 0.401958i −0.441671 0.897177i \(-0.645614\pi\)
−0.868768 + 0.495219i \(0.835088\pi\)
\(710\) 0 0
\(711\) 0.733572 + 1.83504i 0.733572 + 1.83504i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 3.90060 + 1.43595i 3.90060 + 1.43595i
\(717\) 0 0
\(718\) −2.07666 + 0.513718i −2.07666 + 0.513718i
\(719\) 0 0 −0.894729 0.446609i \(-0.852632\pi\)
0.894729 + 0.446609i \(0.147368\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.77940 0.0196153i 1.77940 0.0196153i
\(723\) 0 0
\(724\) 0 0
\(725\) 0.945916 1.17471i 0.945916 1.17471i
\(726\) 0 0
\(727\) 0 0 −0.934564 0.355794i \(-0.884211\pi\)
0.934564 + 0.355794i \(0.115789\pi\)
\(728\) 0 0
\(729\) 0.601081 0.799188i 0.601081 0.799188i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.995083 0.0990455i \(-0.968421\pi\)
0.995083 + 0.0990455i \(0.0315789\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −0.709908 + 0.842886i −0.709908 + 0.842886i
\(737\) −0.0452237 0.0106597i −0.0452237 0.0106597i
\(738\) 0 0
\(739\) −0.0545438 + 0.00787011i −0.0545438 + 0.00787011i −0.170028 0.985439i \(-0.554386\pi\)
0.115485 + 0.993309i \(0.463158\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.502737 + 3.35335i 0.502737 + 3.35335i
\(743\) −0.0638749 1.65479i −0.0638749 1.65479i −0.592235 0.805765i \(-0.701754\pi\)
0.528360 0.849020i \(-0.322807\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.159591 + 0.0753128i −0.159591 + 0.0753128i
\(747\) 0 0
\(748\) 0 0
\(749\) 0.515322 + 1.71365i 0.515322 + 1.71365i
\(750\) 0 0
\(751\) 1.74603 0.212758i 1.74603 0.212758i 0.815447 0.578832i \(-0.196491\pi\)
0.930586 + 0.366074i \(0.119298\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.43619 + 1.36666i −1.43619 + 1.36666i −0.627176 + 0.778877i \(0.715789\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(758\) 0.491044 3.27536i 0.491044 3.27536i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.360939 0.932589i \(-0.617544\pi\)
0.360939 + 0.932589i \(0.382456\pi\)
\(762\) 0 0
\(763\) −0.0330358 + 0.00145757i −0.0330358 + 0.00145757i
\(764\) 0.535870 + 0.113903i 0.535870 + 0.113903i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 −0.592235 0.805765i \(-0.701754\pi\)
0.592235 + 0.805765i \(0.298246\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 3.17417 + 2.14950i 3.17417 + 2.14950i
\(773\) 0 0 0.421786 0.906696i \(-0.361404\pi\)
−0.421786 + 0.906696i \(0.638596\pi\)
\(774\) −2.71972 1.51083i −2.71972 1.51083i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −1.52248 0.781034i −1.52248 0.781034i
\(779\) 0 0
\(780\) 0 0
\(781\) −0.0366556 0.177249i −0.0366556 0.177249i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.