# Properties

 Label 38.4.e.a.5.1 Level $38$ Weight $4$ Character 38.5 Analytic conductor $2.242$ Analytic rank $0$ Dimension $12$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$38 = 2 \cdot 19$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 38.e (of order $$9$$, degree $$6$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.24207258022$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$2$$ over $$\Q(\zeta_{9})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 6 x^{11} - 135 x^{10} + 730 x^{9} + 7953 x^{8} - 36258 x^{7} - 262940 x^{6} + 918855 x^{5} + 5157591 x^{4} - 11890401 x^{3} - 56759508 x^{2} + 62864118 x + 272110107$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

## Embedding invariants

 Embedding label 5.1 Root $$5.05412 - 0.342020i$$ of defining polynomial Character $$\chi$$ $$=$$ 38.5 Dual form 38.4.e.a.23.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.87939 + 0.684040i) q^{2} +(-1.54081 + 8.73839i) q^{3} +(3.06418 - 2.57115i) q^{4} +(-15.3487 - 12.8791i) q^{5} +(-3.08163 - 17.4768i) q^{6} +(4.71270 + 8.16264i) q^{7} +(-4.00000 + 6.92820i) q^{8} +(-48.6136 - 17.6939i) q^{9} +O(q^{10})$$ $$q+(-1.87939 + 0.684040i) q^{2} +(-1.54081 + 8.73839i) q^{3} +(3.06418 - 2.57115i) q^{4} +(-15.3487 - 12.8791i) q^{5} +(-3.08163 - 17.4768i) q^{6} +(4.71270 + 8.16264i) q^{7} +(-4.00000 + 6.92820i) q^{8} +(-48.6136 - 17.6939i) q^{9} +(37.6558 + 13.7056i) q^{10} +(-24.7562 + 42.8791i) q^{11} +(17.7464 + 30.7376i) q^{12} +(3.93183 + 22.2985i) q^{13} +(-14.4406 - 12.1171i) q^{14} +(136.192 - 114.278i) q^{15} +(2.77837 - 15.7569i) q^{16} +(30.4142 - 11.0699i) q^{17} +103.467 q^{18} +(-28.5348 + 77.7481i) q^{19} -80.1450 q^{20} +(-78.5897 + 28.6043i) q^{21} +(17.1955 - 97.5206i) q^{22} +(-0.237340 + 0.199152i) q^{23} +(-54.3781 - 45.6286i) q^{24} +(48.0052 + 272.251i) q^{25} +(-22.6425 - 39.2180i) q^{26} +(109.733 - 190.063i) q^{27} +(35.4279 + 12.8947i) q^{28} +(-39.4741 - 14.3674i) q^{29} +(-177.785 + 307.933i) q^{30} +(-0.938479 - 1.62549i) q^{31} +(5.55674 + 31.5138i) q^{32} +(-336.549 - 282.398i) q^{33} +(-49.5877 + 41.6090i) q^{34} +(32.7934 - 185.981i) q^{35} +(-194.455 + 70.7757i) q^{36} +331.421 q^{37} +(0.445152 - 165.638i) q^{38} -200.911 q^{39} +(150.623 - 54.8224i) q^{40} +(-8.17216 + 46.3466i) q^{41} +(128.134 - 107.517i) q^{42} +(-293.235 - 246.054i) q^{43} +(34.3910 + 195.041i) q^{44} +(518.273 + 897.675i) q^{45} +(0.309825 - 0.536633i) q^{46} +(115.099 + 41.8927i) q^{47} +(133.409 + 48.5570i) q^{48} +(127.081 - 220.110i) q^{49} +(-276.451 - 478.827i) q^{50} +(49.8701 + 282.827i) q^{51} +(69.3807 + 58.2173i) q^{52} +(-71.6880 + 60.1534i) q^{53} +(-76.2196 + 432.263i) q^{54} +(932.217 - 339.299i) q^{55} -75.4033 q^{56} +(-635.426 - 369.144i) q^{57} +84.0149 q^{58} +(-517.526 + 188.364i) q^{59} +(123.489 - 700.338i) q^{60} +(-404.046 + 339.035i) q^{61} +(2.87567 + 2.41297i) q^{62} +(-84.6726 - 480.202i) q^{63} +(-32.0000 - 55.4256i) q^{64} +(226.835 - 392.891i) q^{65} +(825.678 + 300.522i) q^{66} +(605.223 + 220.283i) q^{67} +(64.7322 - 112.119i) q^{68} +(-1.37457 - 2.38082i) q^{69} +(65.5868 + 371.961i) q^{70} +(468.607 + 393.208i) q^{71} +(317.042 - 266.030i) q^{72} +(-70.7704 + 401.359i) q^{73} +(-622.867 + 226.705i) q^{74} -2453.00 q^{75} +(112.466 + 311.601i) q^{76} -466.675 q^{77} +(377.590 - 137.431i) q^{78} +(70.3461 - 398.953i) q^{79} +(-245.578 + 206.065i) q^{80} +(421.750 + 353.890i) q^{81} +(-16.3443 - 92.6933i) q^{82} +(387.299 + 670.822i) q^{83} +(-167.267 + 289.715i) q^{84} +(-609.386 - 221.798i) q^{85} +(719.413 + 261.845i) q^{86} +(186.370 - 322.803i) q^{87} +(-198.050 - 343.033i) q^{88} +(-152.983 - 867.607i) q^{89} +(-1588.08 - 1332.56i) q^{90} +(-163.485 + 137.180i) q^{91} +(-0.215202 + 1.22047i) q^{92} +(15.6502 - 5.69621i) q^{93} -244.972 q^{94} +(1439.29 - 825.827i) q^{95} -283.942 q^{96} +(-1391.18 + 506.347i) q^{97} +(-88.2694 + 500.601i) q^{98} +(1962.19 - 1646.47i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q - 9q^{3} - 18q^{6} + 21q^{7} - 48q^{8} - 27q^{9} + O(q^{10})$$ $$12q - 9q^{3} - 18q^{6} + 21q^{7} - 48q^{8} - 27q^{9} - 9q^{11} + 36q^{12} + 39q^{13} - 138q^{14} + 423q^{15} + 69q^{17} + 132q^{18} - 462q^{19} - 216q^{20} - 279q^{21} + 204q^{22} - 66q^{23} - 72q^{24} + 342q^{25} + 48q^{26} + 189q^{27} + 192q^{28} + 159q^{29} + 72q^{31} - 1560q^{33} + 408q^{34} - 135q^{35} - 108q^{36} + 1116q^{37} - 294q^{38} - 1248q^{39} + 147q^{41} + 414q^{42} - 117q^{43} + 408q^{44} + 1296q^{45} + 528q^{46} + 783q^{47} + 288q^{48} + 1413q^{49} - 354q^{50} - 2301q^{51} - 348q^{52} - 249q^{53} - 540q^{54} + 2187q^{55} - 336q^{56} - 2670q^{57} - 1932q^{58} - 4248q^{59} + 324q^{60} + 3114q^{61} - 438q^{62} + 363q^{63} - 384q^{64} + 495q^{65} + 822q^{66} + 3060q^{67} + 408q^{68} - 237q^{69} - 270q^{70} + 1686q^{71} + 432q^{72} + 1626q^{73} + 90q^{74} - 1854q^{75} - 1416q^{77} - 108q^{78} - 327q^{79} + 3483q^{81} + 294q^{82} + 927q^{83} + 204q^{84} - 3294q^{85} + 1188q^{86} + 2892q^{87} - 72q^{88} - 6366q^{89} - 5076q^{90} + 840q^{91} - 156q^{92} + 870q^{93} + 3432q^{94} + 513q^{95} - 576q^{96} - 8052q^{97} + 378q^{98} + 4494q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/38\mathbb{Z}\right)^\times$$.

 $$n$$ $$21$$ $$\chi(n)$$ $$e\left(\frac{8}{9}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.87939 + 0.684040i −0.664463 + 0.241845i
$$3$$ −1.54081 + 8.73839i −0.296530 + 1.68170i 0.364389 + 0.931247i $$0.381278\pi$$
−0.660919 + 0.750457i $$0.729833\pi$$
$$4$$ 3.06418 2.57115i 0.383022 0.321394i
$$5$$ −15.3487 12.8791i −1.37283 1.15194i −0.971783 0.235878i $$-0.924203\pi$$
−0.401043 0.916059i $$-0.631352\pi$$
$$6$$ −3.08163 17.4768i −0.209678 1.18914i
$$7$$ 4.71270 + 8.16264i 0.254462 + 0.440741i 0.964749 0.263171i $$-0.0847683\pi$$
−0.710287 + 0.703912i $$0.751435\pi$$
$$8$$ −4.00000 + 6.92820i −0.176777 + 0.306186i
$$9$$ −48.6136 17.6939i −1.80051 0.655330i
$$10$$ 37.6558 + 13.7056i 1.19078 + 0.433409i
$$11$$ −24.7562 + 42.8791i −0.678572 + 1.17532i 0.296839 + 0.954927i $$0.404067\pi$$
−0.975411 + 0.220393i $$0.929266\pi$$
$$12$$ 17.7464 + 30.7376i 0.426912 + 0.739433i
$$13$$ 3.93183 + 22.2985i 0.0838841 + 0.475730i 0.997592 + 0.0693584i $$0.0220952\pi$$
−0.913708 + 0.406372i $$0.866794\pi$$
$$14$$ −14.4406 12.1171i −0.275672 0.231316i
$$15$$ 136.192 114.278i 2.34430 1.96710i
$$16$$ 2.77837 15.7569i 0.0434120 0.246202i
$$17$$ 30.4142 11.0699i 0.433913 0.157931i −0.115823 0.993270i $$-0.536951\pi$$
0.549736 + 0.835338i $$0.314728\pi$$
$$18$$ 103.467 1.35486
$$19$$ −28.5348 + 77.7481i −0.344544 + 0.938770i
$$20$$ −80.1450 −0.896048
$$21$$ −78.5897 + 28.6043i −0.816652 + 0.297237i
$$22$$ 17.1955 97.5206i 0.166641 0.945066i
$$23$$ −0.237340 + 0.199152i −0.00215169 + 0.00180548i −0.643863 0.765141i $$-0.722669\pi$$
0.641711 + 0.766946i $$0.278225\pi$$
$$24$$ −54.3781 45.6286i −0.462495 0.388079i
$$25$$ 48.0052 + 272.251i 0.384042 + 2.17801i
$$26$$ −22.6425 39.2180i −0.170791 0.295818i
$$27$$ 109.733 190.063i 0.782151 1.35473i
$$28$$ 35.4279 + 12.8947i 0.239116 + 0.0870312i
$$29$$ −39.4741 14.3674i −0.252764 0.0919986i 0.212531 0.977154i $$-0.431829\pi$$
−0.465295 + 0.885156i $$0.654052\pi$$
$$30$$ −177.785 + 307.933i −1.08197 + 1.87402i
$$31$$ −0.938479 1.62549i −0.00543728 0.00941765i 0.863294 0.504701i $$-0.168397\pi$$
−0.868731 + 0.495284i $$0.835064\pi$$
$$32$$ 5.55674 + 31.5138i 0.0306970 + 0.174091i
$$33$$ −336.549 282.398i −1.77532 1.48967i
$$34$$ −49.5877 + 41.6090i −0.250124 + 0.209879i
$$35$$ 32.7934 185.981i 0.158374 0.898185i
$$36$$ −194.455 + 70.7757i −0.900253 + 0.327665i
$$37$$ 331.421 1.47257 0.736287 0.676670i $$-0.236578\pi$$
0.736287 + 0.676670i $$0.236578\pi$$
$$38$$ 0.445152 165.638i 0.00190035 0.707104i
$$39$$ −200.911 −0.824912
$$40$$ 150.623 54.8224i 0.595391 0.216705i
$$41$$ −8.17216 + 46.3466i −0.0311287 + 0.176540i −0.996408 0.0846794i $$-0.973013\pi$$
0.965280 + 0.261219i $$0.0841245\pi$$
$$42$$ 128.134 107.517i 0.470750 0.395006i
$$43$$ −293.235 246.054i −1.03995 0.872624i −0.0479511 0.998850i $$-0.515269\pi$$
−0.992002 + 0.126226i $$0.959714\pi$$
$$44$$ 34.3910 + 195.041i 0.117833 + 0.668263i
$$45$$ 518.273 + 897.675i 1.71688 + 2.97372i
$$46$$ 0.309825 0.536633i 0.000993070 0.00172005i
$$47$$ 115.099 + 41.8927i 0.357212 + 0.130014i 0.514391 0.857556i $$-0.328018\pi$$
−0.157180 + 0.987570i $$0.550240\pi$$
$$48$$ 133.409 + 48.5570i 0.401166 + 0.146012i
$$49$$ 127.081 220.110i 0.370498 0.641722i
$$50$$ −276.451 478.827i −0.781922 1.35433i
$$51$$ 49.8701 + 282.827i 0.136926 + 0.776544i
$$52$$ 69.3807 + 58.2173i 0.185026 + 0.155256i
$$53$$ −71.6880 + 60.1534i −0.185795 + 0.155900i −0.730941 0.682441i $$-0.760919\pi$$
0.545146 + 0.838341i $$0.316474\pi$$
$$54$$ −76.2196 + 432.263i −0.192077 + 1.08932i
$$55$$ 932.217 339.299i 2.28546 0.831838i
$$56$$ −75.4033 −0.179932
$$57$$ −635.426 369.144i −1.47657 0.857795i
$$58$$ 84.0149 0.190202
$$59$$ −517.526 + 188.364i −1.14197 + 0.415642i −0.842624 0.538503i $$-0.818990\pi$$
−0.299345 + 0.954145i $$0.596768\pi$$
$$60$$ 123.489 700.338i 0.265705 1.50689i
$$61$$ −404.046 + 339.035i −0.848079 + 0.711623i −0.959366 0.282166i $$-0.908947\pi$$
0.111287 + 0.993788i $$0.464503\pi$$
$$62$$ 2.87567 + 2.41297i 0.00589048 + 0.00494270i
$$63$$ −84.6726 480.202i −0.169329 0.960314i
$$64$$ −32.0000 55.4256i −0.0625000 0.108253i
$$65$$ 226.835 392.891i 0.432853 0.749724i
$$66$$ 825.678 + 300.522i 1.53991 + 0.560480i
$$67$$ 605.223 + 220.283i 1.10358 + 0.401670i 0.828634 0.559790i $$-0.189118\pi$$
0.274945 + 0.961460i $$0.411340\pi$$
$$68$$ 64.7322 112.119i 0.115440 0.199948i
$$69$$ −1.37457 2.38082i −0.00239824 0.00415388i
$$70$$ 65.5868 + 371.961i 0.111988 + 0.635113i
$$71$$ 468.607 + 393.208i 0.783288 + 0.657257i 0.944074 0.329732i $$-0.106959\pi$$
−0.160786 + 0.986989i $$0.551403\pi$$
$$72$$ 317.042 266.030i 0.518940 0.435443i
$$73$$ −70.7704 + 401.359i −0.113466 + 0.643500i 0.874032 + 0.485869i $$0.161497\pi$$
−0.987498 + 0.157631i $$0.949614\pi$$
$$74$$ −622.867 + 226.705i −0.978470 + 0.356134i
$$75$$ −2453.00 −3.77665
$$76$$ 112.466 + 311.601i 0.169747 + 0.470304i
$$77$$ −466.675 −0.690683
$$78$$ 377.590 137.431i 0.548123 0.199501i
$$79$$ 70.3461 398.953i 0.100184 0.568173i −0.892851 0.450353i $$-0.851298\pi$$
0.993035 0.117820i $$-0.0375907\pi$$
$$80$$ −245.578 + 206.065i −0.343206 + 0.287984i
$$81$$ 421.750 + 353.890i 0.578532 + 0.485446i
$$82$$ −16.3443 92.6933i −0.0220113 0.124832i
$$83$$ 387.299 + 670.822i 0.512188 + 0.887136i 0.999900 + 0.0141312i $$0.00449824\pi$$
−0.487712 + 0.873005i $$0.662168\pi$$
$$84$$ −167.267 + 289.715i −0.217266 + 0.376315i
$$85$$ −609.386 221.798i −0.777614 0.283028i
$$86$$ 719.413 + 261.845i 0.902050 + 0.328319i
$$87$$ 186.370 322.803i 0.229666 0.397794i
$$88$$ −198.050 343.033i −0.239911 0.415539i
$$89$$ −152.983 867.607i −0.182204 1.03333i −0.929496 0.368832i $$-0.879758\pi$$
0.747292 0.664495i $$-0.231353\pi$$
$$90$$ −1588.08 1332.56i −1.85998 1.56071i
$$91$$ −163.485 + 137.180i −0.188329 + 0.158027i
$$92$$ −0.215202 + 1.22047i −0.000243874 + 0.00138308i
$$93$$ 15.6502 5.69621i 0.0174500 0.00635129i
$$94$$ −244.972 −0.268797
$$95$$ 1439.29 825.827i 1.55440 0.891874i
$$96$$ −283.942 −0.301872
$$97$$ −1391.18 + 506.347i −1.45621 + 0.530018i −0.944319 0.329031i $$-0.893278\pi$$
−0.511894 + 0.859049i $$0.671056\pi$$
$$98$$ −88.2694 + 500.601i −0.0909853 + 0.516003i
$$99$$ 1962.19 1646.47i 1.99199 1.67148i
$$100$$ 847.096 + 710.798i 0.847096 + 0.710798i
$$101$$ 105.822 + 600.144i 0.104254 + 0.591253i 0.991516 + 0.129987i $$0.0414935\pi$$
−0.887262 + 0.461266i $$0.847395\pi$$
$$102$$ −287.191 497.429i −0.278785 0.482870i
$$103$$ −275.654 + 477.447i −0.263699 + 0.456740i −0.967222 0.253932i $$-0.918276\pi$$
0.703523 + 0.710673i $$0.251609\pi$$
$$104$$ −170.216 61.9536i −0.160491 0.0584139i
$$105$$ 1574.64 + 573.123i 1.46352 + 0.532677i
$$106$$ 93.5821 162.089i 0.0857500 0.148523i
$$107$$ 499.772 + 865.631i 0.451540 + 0.782091i 0.998482 0.0550801i $$-0.0175414\pi$$
−0.546942 + 0.837171i $$0.684208\pi$$
$$108$$ −152.439 864.526i −0.135819 0.770269i
$$109$$ −229.462 192.542i −0.201638 0.169194i 0.536378 0.843978i $$-0.319792\pi$$
−0.738015 + 0.674784i $$0.764237\pi$$
$$110$$ −1519.90 + 1275.35i −1.31743 + 1.10545i
$$111$$ −510.657 + 2896.08i −0.436662 + 2.47643i
$$112$$ 141.712 51.5789i 0.119558 0.0435156i
$$113$$ 1535.53 1.27833 0.639163 0.769071i $$-0.279281\pi$$
0.639163 + 0.769071i $$0.279281\pi$$
$$114$$ 1446.72 + 259.107i 1.18858 + 0.212873i
$$115$$ 6.20774 0.00503369
$$116$$ −157.896 + 57.4696i −0.126382 + 0.0459993i
$$117$$ 203.408 1153.58i 0.160727 0.911527i
$$118$$ 843.782 708.017i 0.658275 0.552358i
$$119$$ 233.692 + 196.091i 0.180021 + 0.151056i
$$120$$ 246.977 + 1400.68i 0.187882 + 1.06553i
$$121$$ −560.243 970.370i −0.420919 0.729053i
$$122$$ 527.445 913.561i 0.391415 0.677951i
$$123$$ −392.403 142.823i −0.287657 0.104699i
$$124$$ −7.05505 2.56783i −0.00510937 0.00185966i
$$125$$ 1517.26 2627.97i 1.08566 1.88042i
$$126$$ 487.610 + 844.565i 0.344760 + 0.597142i
$$127$$ −179.708 1019.17i −0.125563 0.712102i −0.980972 0.194149i $$-0.937805\pi$$
0.855409 0.517953i $$-0.173306\pi$$
$$128$$ 98.0537 + 82.2768i 0.0677094 + 0.0568149i
$$129$$ 2601.93 2183.28i 1.77587 1.49013i
$$130$$ −157.558 + 893.557i −0.106298 + 0.602847i
$$131$$ −2320.30 + 844.519i −1.54752 + 0.563252i −0.967834 0.251588i $$-0.919047\pi$$
−0.579686 + 0.814840i $$0.696825\pi$$
$$132$$ −1757.34 −1.15876
$$133$$ −769.106 + 133.484i −0.501428 + 0.0870265i
$$134$$ −1288.13 −0.830429
$$135$$ −4132.08 + 1503.95i −2.63432 + 0.958813i
$$136$$ −44.9625 + 254.995i −0.0283493 + 0.160777i
$$137$$ −41.0660 + 34.4585i −0.0256095 + 0.0214889i −0.655503 0.755193i $$-0.727543\pi$$
0.629893 + 0.776682i $$0.283099\pi$$
$$138$$ 4.21193 + 3.53423i 0.00259814 + 0.00218010i
$$139$$ −66.6697 378.103i −0.0406824 0.230721i 0.957687 0.287813i $$-0.0929283\pi$$
−0.998369 + 0.0570921i $$0.981817\pi$$
$$140$$ −377.700 654.195i −0.228010 0.394925i
$$141$$ −543.421 + 941.233i −0.324570 + 0.562171i
$$142$$ −1149.66 418.444i −0.679420 0.247289i
$$143$$ −1053.48 383.434i −0.616057 0.224226i
$$144$$ −413.868 + 716.841i −0.239507 + 0.414839i
$$145$$ 420.836 + 728.909i 0.241024 + 0.417466i
$$146$$ −141.541 802.718i −0.0802329 0.455024i
$$147$$ 1727.60 + 1449.63i 0.969322 + 0.813358i
$$148$$ 1015.53 852.132i 0.564028 0.473276i
$$149$$ −360.258 + 2043.13i −0.198077 + 1.12335i 0.709891 + 0.704312i $$0.248744\pi$$
−0.907968 + 0.419040i $$0.862367\pi$$
$$150$$ 4610.14 1677.95i 2.50944 0.913362i
$$151$$ −290.042 −0.156313 −0.0781566 0.996941i $$-0.524903\pi$$
−0.0781566 + 0.996941i $$0.524903\pi$$
$$152$$ −424.515 508.687i −0.226531 0.271447i
$$153$$ −1674.41 −0.884760
$$154$$ 877.063 319.225i 0.458933 0.167038i
$$155$$ −6.53042 + 37.0358i −0.00338410 + 0.0191922i
$$156$$ −615.628 + 516.573i −0.315960 + 0.265122i
$$157$$ −2496.06 2094.44i −1.26884 1.06468i −0.994682 0.102994i $$-0.967158\pi$$
−0.274154 0.961686i $$-0.588398\pi$$
$$158$$ 140.692 + 797.905i 0.0708410 + 0.401759i
$$159$$ −415.186 719.123i −0.207084 0.358680i
$$160$$ 320.580 555.261i 0.158400 0.274358i
$$161$$ −2.74412 0.998777i −0.00134327 0.000488911i
$$162$$ −1034.70 376.602i −0.501815 0.182646i
$$163$$ −134.000 + 232.095i −0.0643908 + 0.111528i −0.896424 0.443198i $$-0.853844\pi$$
0.832033 + 0.554726i $$0.187177\pi$$
$$164$$ 94.1232 + 163.026i 0.0448158 + 0.0776232i
$$165$$ 1528.56 + 8668.87i 0.721199 + 4.09012i
$$166$$ −1186.75 995.804i −0.554879 0.465599i
$$167$$ −1162.53 + 975.475i −0.538676 + 0.452003i −0.871085 0.491132i $$-0.836583\pi$$
0.332409 + 0.943135i $$0.392139\pi$$
$$168$$ 116.182 658.903i 0.0533551 0.302592i
$$169$$ 1582.74 576.070i 0.720410 0.262208i
$$170$$ 1296.99 0.585145
$$171$$ 2762.85 3274.72i 1.23556 1.46447i
$$172$$ −1531.17 −0.678781
$$173$$ 4176.94 1520.28i 1.83565 0.668121i 0.844465 0.535611i $$-0.179919\pi$$
0.991182 0.132510i $$-0.0423036\pi$$
$$174$$ −129.451 + 734.155i −0.0564005 + 0.319863i
$$175$$ −1996.06 + 1674.89i −0.862215 + 0.723484i
$$176$$ 606.860 + 509.216i 0.259908 + 0.218089i
$$177$$ −848.587 4812.58i −0.360360 2.04370i
$$178$$ 880.991 + 1525.92i 0.370972 + 0.642543i
$$179$$ 425.753 737.426i 0.177778 0.307921i −0.763341 0.645996i $$-0.776442\pi$$
0.941119 + 0.338075i $$0.109776\pi$$
$$180$$ 3896.14 + 1418.08i 1.61334 + 0.587208i
$$181$$ 1429.42 + 520.267i 0.587006 + 0.213653i 0.618412 0.785854i $$-0.287776\pi$$
−0.0314058 + 0.999507i $$0.509998\pi$$
$$182$$ 213.415 369.645i 0.0869196 0.150549i
$$183$$ −2340.06 4053.10i −0.945258 1.63724i
$$184$$ −0.430405 2.44095i −0.000172445 0.000977983i
$$185$$ −5086.86 4268.38i −2.02159 1.69631i
$$186$$ −25.5163 + 21.4107i −0.0100589 + 0.00844039i
$$187$$ −278.276 + 1578.18i −0.108821 + 0.617155i
$$188$$ 460.397 167.571i 0.178606 0.0650072i
$$189$$ 2068.55 0.796112
$$190$$ −2140.09 + 2536.58i −0.817149 + 0.968542i
$$191$$ 4238.50 1.60569 0.802846 0.596187i $$-0.203318\pi$$
0.802846 + 0.596187i $$0.203318\pi$$
$$192$$ 533.637 194.228i 0.200583 0.0730062i
$$193$$ 157.454 892.967i 0.0587243 0.333042i −0.941265 0.337669i $$-0.890362\pi$$
0.999989 + 0.00462659i $$0.00147269\pi$$
$$194$$ 2268.20 1903.24i 0.839418 0.704355i
$$195$$ 3083.72 + 2587.55i 1.13246 + 0.950247i
$$196$$ −176.539 1001.20i −0.0643363 0.364869i
$$197$$ 2153.26 + 3729.55i 0.778747 + 1.34883i 0.932664 + 0.360746i $$0.117478\pi$$
−0.153917 + 0.988084i $$0.549189\pi$$
$$198$$ −2561.46 + 4436.57i −0.919368 + 1.59239i
$$199$$ −2260.36 822.705i −0.805190 0.293065i −0.0935547 0.995614i $$-0.529823\pi$$
−0.711636 + 0.702549i $$0.752045\pi$$
$$200$$ −2078.23 756.415i −0.734766 0.267433i
$$201$$ −2857.46 + 4949.26i −1.00273 + 1.73679i
$$202$$ −609.402 1055.51i −0.212264 0.367652i
$$203$$ −68.7538 389.922i −0.0237713 0.134814i
$$204$$ 880.003 + 738.410i 0.302022 + 0.253427i
$$205$$ 722.333 606.109i 0.246097 0.206500i
$$206$$ 191.467 1085.87i 0.0647581 0.367261i
$$207$$ 15.0617 5.48202i 0.00505731 0.00184071i
$$208$$ 362.280 0.120767
$$209$$ −2627.35 3148.30i −0.869558 1.04197i
$$210$$ −3351.40 −1.10128
$$211$$ 5367.64 1953.66i 1.75130 0.637419i 0.751544 0.659683i $$-0.229310\pi$$
0.999752 + 0.0222640i $$0.00708744\pi$$
$$212$$ −65.0014 + 368.641i −0.0210581 + 0.119426i
$$213$$ −4158.04 + 3489.01i −1.33758 + 1.12236i
$$214$$ −1531.39 1284.99i −0.489176 0.410468i
$$215$$ 1331.83 + 7553.18i 0.422465 + 2.39592i
$$216$$ 877.863 + 1520.50i 0.276532 + 0.478968i
$$217$$ 8.84554 15.3209i 0.00276716 0.00479287i
$$218$$ 562.954 + 204.899i 0.174899 + 0.0636582i
$$219$$ −3398.19 1236.84i −1.04853 0.381634i
$$220$$ 1984.09 3436.54i 0.608033 1.05314i
$$221$$ 366.425 + 634.666i 0.111531 + 0.193178i
$$222$$ −1021.31 5792.16i −0.308767 1.75110i
$$223$$ 3353.43 + 2813.86i 1.00701 + 0.844978i 0.987939 0.154841i $$-0.0494864\pi$$
0.0190656 + 0.999818i $$0.493931\pi$$
$$224$$ −231.049 + 193.873i −0.0689179 + 0.0578290i
$$225$$ 2483.48 14084.5i 0.735847 4.17319i
$$226$$ −2885.86 + 1050.37i −0.849401 + 0.309157i
$$227$$ 1546.26 0.452111 0.226055 0.974114i $$-0.427417\pi$$
0.226055 + 0.974114i $$0.427417\pi$$
$$228$$ −2896.18 + 502.653i −0.841247 + 0.146005i
$$229$$ −4754.72 −1.37206 −0.686028 0.727575i $$-0.740647\pi$$
−0.686028 + 0.727575i $$0.740647\pi$$
$$230$$ −11.6667 + 4.24634i −0.00334470 + 0.00121737i
$$231$$ 719.060 4077.99i 0.204808 1.16152i
$$232$$ 257.437 216.015i 0.0728515 0.0611297i
$$233$$ 2566.88 + 2153.87i 0.721724 + 0.605599i 0.927862 0.372924i $$-0.121645\pi$$
−0.206137 + 0.978523i $$0.566089\pi$$
$$234$$ 406.815 + 2307.16i 0.113651 + 0.644547i
$$235$$ −1227.08 2125.36i −0.340621 0.589972i
$$236$$ −1101.48 + 1907.82i −0.303814 + 0.526222i
$$237$$ 3377.81 + 1229.42i 0.925791 + 0.336960i
$$238$$ −573.332 208.676i −0.156150 0.0568338i
$$239$$ −423.111 + 732.850i −0.114514 + 0.198344i −0.917585 0.397539i $$-0.869864\pi$$
0.803072 + 0.595883i $$0.203198\pi$$
$$240$$ −1422.28 2463.47i −0.382533 0.662567i
$$241$$ 932.872 + 5290.58i 0.249343 + 1.41409i 0.810187 + 0.586171i $$0.199365\pi$$
−0.560845 + 0.827921i $$0.689523\pi$$
$$242$$ 1716.68 + 1440.47i 0.456003 + 0.382632i
$$243$$ 796.987 668.751i 0.210398 0.176545i
$$244$$ −366.359 + 2077.73i −0.0961220 + 0.545135i
$$245$$ −4785.33 + 1741.72i −1.24785 + 0.454181i
$$246$$ 835.174 0.216458
$$247$$ −1845.86 330.593i −0.475503 0.0851623i
$$248$$ 15.0157 0.00384474
$$249$$ −6458.66 + 2350.76i −1.64378 + 0.598286i
$$250$$ −1053.88 + 5976.82i −0.266612 + 1.51203i
$$251$$ −1239.04 + 1039.68i −0.311584 + 0.261450i −0.785146 0.619311i $$-0.787412\pi$$
0.473563 + 0.880760i $$0.342968\pi$$
$$252$$ −1494.12 1253.72i −0.373496 0.313400i
$$253$$ −2.66380 15.1072i −0.000661944 0.00375407i
$$254$$ 1034.89 + 1792.49i 0.255650 + 0.442799i
$$255$$ 2877.11 4983.30i 0.706555 1.22379i
$$256$$ −240.561 87.5572i −0.0587308 0.0213763i
$$257$$ −1076.02 391.639i −0.261168 0.0950574i 0.208118 0.978104i $$-0.433266\pi$$
−0.469286 + 0.883046i $$0.655489\pi$$
$$258$$ −3396.58 + 5883.05i −0.819620 + 1.41962i
$$259$$ 1561.89 + 2705.27i 0.374714 + 0.649024i
$$260$$ −315.116 1787.11i −0.0751642 0.426277i
$$261$$ 1664.76 + 1396.90i 0.394814 + 0.331288i
$$262$$ 3783.05 3174.35i 0.892051 0.748520i
$$263$$ 189.878 1076.85i 0.0445186 0.252477i −0.954424 0.298454i $$-0.903529\pi$$
0.998943 + 0.0459769i $$0.0146401\pi$$
$$264$$ 3302.71 1202.09i 0.769954 0.280240i
$$265$$ 1875.03 0.434651
$$266$$ 1354.14 776.967i 0.312134 0.179094i
$$267$$ 7817.20 1.79178
$$268$$ 2420.89 881.133i 0.551790 0.200835i
$$269$$ −22.3588 + 126.803i −0.00506782 + 0.0287410i −0.987237 0.159259i $$-0.949089\pi$$
0.982169 + 0.188000i $$0.0602006\pi$$
$$270$$ 6737.00 5653.02i 1.51852 1.27419i
$$271$$ −1908.33 1601.28i −0.427759 0.358933i 0.403346 0.915047i $$-0.367847\pi$$
−0.831106 + 0.556115i $$0.812292\pi$$
$$272$$ −89.9250 509.990i −0.0200460 0.113686i
$$273$$ −946.836 1639.97i −0.209909 0.363573i
$$274$$ 53.6078 92.8515i 0.0118196 0.0204721i
$$275$$ −12862.3 4681.50i −2.82046 1.02656i
$$276$$ −10.3334 3.76104i −0.00225361 0.000820247i
$$277$$ 3826.59 6627.85i 0.830028 1.43765i −0.0679880 0.997686i $$-0.521658\pi$$
0.898016 0.439964i $$-0.145009\pi$$
$$278$$ 383.936 + 664.996i 0.0828307 + 0.143467i
$$279$$ 16.8615 + 95.6265i 0.00361818 + 0.0205197i
$$280$$ 1157.34 + 971.122i 0.247015 + 0.207270i
$$281$$ −3650.56 + 3063.18i −0.774996 + 0.650299i −0.941983 0.335660i $$-0.891041\pi$$
0.166987 + 0.985959i $$0.446596\pi$$
$$282$$ 377.456 2140.66i 0.0797064 0.452037i
$$283$$ −644.294 + 234.504i −0.135333 + 0.0492572i −0.408799 0.912625i $$-0.634052\pi$$
0.273466 + 0.961882i $$0.411830\pi$$
$$284$$ 2446.89 0.511255
$$285$$ 4998.71 + 13849.5i 1.03894 + 2.87851i
$$286$$ 2242.17 0.463575
$$287$$ −416.824 + 151.712i −0.0857294 + 0.0312030i
$$288$$ 287.470 1630.32i 0.0588171 0.333569i
$$289$$ −2961.10 + 2484.65i −0.602706 + 0.505731i
$$290$$ −1289.52 1082.03i −0.261114 0.219100i
$$291$$ −2281.11 12936.8i −0.459523 2.60609i
$$292$$ 815.101 + 1411.80i 0.163357 + 0.282942i
$$293$$ 1109.88 1922.37i 0.221296 0.383297i −0.733905 0.679252i $$-0.762305\pi$$
0.955202 + 0.295955i $$0.0956378\pi$$
$$294$$ −4238.44 1542.67i −0.840785 0.306021i
$$295$$ 10369.3 + 3774.11i 2.04652 + 0.744871i
$$296$$ −1325.68 + 2296.15i −0.260317 + 0.450882i
$$297$$ 5433.14 + 9410.48i 1.06149 + 1.83856i
$$298$$ −720.517 4086.25i −0.140062 0.794330i
$$299$$ −5.37397 4.50930i −0.00103941 0.000872172i
$$300$$ −7516.44 + 6307.04i −1.44654 + 1.21379i
$$301$$ 626.517 3553.15i 0.119973 0.680400i
$$302$$ 545.101 198.401i 0.103864 0.0378035i
$$303$$ −5407.34 −1.02523
$$304$$ 1145.79 + 665.634i 0.216170 + 0.125581i
$$305$$ 10568.0 1.98401
$$306$$ 3146.87 1145.37i 0.587890 0.213975i
$$307$$ −1391.35 + 7890.75i −0.258660 + 1.46693i 0.527840 + 0.849344i $$0.323002\pi$$
−0.786500 + 0.617590i $$0.788109\pi$$
$$308$$ −1429.98 + 1199.89i −0.264547 + 0.221981i
$$309$$ −3747.39 3144.43i −0.689907 0.578901i
$$310$$ −13.0608 74.0717i −0.00239292 0.0135709i
$$311$$ −4591.42 7952.58i −0.837157 1.45000i −0.892262 0.451517i $$-0.850883\pi$$
0.0551056 0.998481i $$-0.482450\pi$$
$$312$$ 803.645 1391.95i 0.145825 0.252577i
$$313$$ 8755.18 + 3186.62i 1.58106 + 0.575459i 0.975434 0.220290i $$-0.0707005\pi$$
0.605626 + 0.795749i $$0.292923\pi$$
$$314$$ 6123.74 + 2228.86i 1.10058 + 0.400579i
$$315$$ −4884.94 + 8460.96i −0.873762 + 1.51340i
$$316$$ −810.214 1403.33i −0.144235 0.249822i
$$317$$ −157.014 890.472i −0.0278196 0.157773i 0.967733 0.251976i $$-0.0810806\pi$$
−0.995553 + 0.0942039i $$0.969969\pi$$
$$318$$ 1272.20 + 1067.51i 0.224345 + 0.188248i
$$319$$ 1593.29 1336.93i 0.279646 0.234651i
$$320$$ −222.672 + 1262.84i −0.0388993 + 0.220609i
$$321$$ −8334.27 + 3033.43i −1.44914 + 0.527444i
$$322$$ 5.84046 0.00101080
$$323$$ −7.20391 + 2680.52i −0.00124098 + 0.461759i
$$324$$ 2202.22 0.377610
$$325$$ −5882.05 + 2140.89i −1.00393 + 0.365401i
$$326$$ 93.0755 527.858i 0.0158128 0.0896789i
$$327$$ 2036.06 1708.46i 0.344326 0.288924i
$$328$$ −288.410 242.005i −0.0485512 0.0407393i
$$329$$ 200.473 + 1136.94i 0.0335941 + 0.190522i
$$330$$ −8802.60 15246.6i −1.46839 2.54332i
$$331$$ 1481.76 2566.48i 0.246057 0.426183i −0.716371 0.697719i $$-0.754198\pi$$
0.962428 + 0.271536i $$0.0875316\pi$$
$$332$$ 2911.54 + 1059.71i 0.481299 + 0.175179i
$$333$$ −16111.6 5864.13i −2.65138 0.965022i
$$334$$ 1517.57 2628.51i 0.248616 0.430615i
$$335$$ −6452.33 11175.8i −1.05232 1.82268i
$$336$$ 232.365 + 1317.81i 0.0377278 + 0.213965i
$$337$$ 1394.43 + 1170.07i 0.225399 + 0.189132i 0.748493 0.663143i $$-0.230778\pi$$
−0.523094 + 0.852275i $$0.675222\pi$$
$$338$$ −2580.52 + 2165.32i −0.415272 + 0.348455i
$$339$$ −2365.97 + 13418.1i −0.379062 + 2.14977i
$$340$$ −2437.54 + 887.193i −0.388807 + 0.141514i
$$341$$ 92.9328 0.0147583
$$342$$ −2952.42 + 8044.37i −0.466808 + 1.27190i
$$343$$ 5628.49 0.886035
$$344$$ 2877.65 1047.38i 0.451025 0.164160i
$$345$$ −9.56496 + 54.2456i −0.00149264 + 0.00846517i
$$346$$ −6810.15 + 5714.39i −1.05814 + 0.887883i
$$347$$ −5948.14 4991.09i −0.920211 0.772148i 0.0538232 0.998550i $$-0.482859\pi$$
−0.974034 + 0.226402i $$0.927304\pi$$
$$348$$ −258.903 1468.31i −0.0398812 0.226177i
$$349$$ −3254.54 5637.03i −0.499173 0.864594i 0.500826 0.865548i $$-0.333030\pi$$
−1.00000 0.000954101i $$0.999696\pi$$
$$350$$ 2605.66 4513.14i 0.397939 0.689251i
$$351$$ 4669.57 + 1699.58i 0.710095 + 0.258453i
$$352$$ −1488.85 541.897i −0.225443 0.0820545i
$$353$$ 3799.48 6580.90i 0.572878 0.992255i −0.423390 0.905947i $$-0.639160\pi$$
0.996269 0.0863071i $$-0.0275066\pi$$
$$354$$ 4886.82 + 8464.22i 0.733705 + 1.27081i
$$355$$ −2128.34 12070.4i −0.318199 1.80460i
$$356$$ −2699.51 2265.16i −0.401893 0.337228i
$$357$$ −2073.60 + 1739.95i −0.307413 + 0.257950i
$$358$$ −295.725 + 1677.14i −0.0436580 + 0.247597i
$$359$$ 2017.65 734.365i 0.296623 0.107962i −0.189422 0.981896i $$-0.560661\pi$$
0.486045 + 0.873934i $$0.338439\pi$$
$$360$$ −8292.37 −1.21402
$$361$$ −5230.53 4437.06i −0.762578 0.646896i
$$362$$ −3042.32 −0.441715
$$363$$ 9342.70 3400.46i 1.35087 0.491675i
$$364$$ −148.236 + 840.690i −0.0213453 + 0.121055i
$$365$$ 6255.36 5248.87i 0.897042 0.752708i
$$366$$ 7170.36 + 6016.65i 1.02405 + 0.859276i
$$367$$ 536.219 + 3041.05i 0.0762681 + 0.432538i 0.998901 + 0.0468596i $$0.0149214\pi$$
−0.922633 + 0.385678i $$0.873968\pi$$
$$368$$ 2.47860 + 4.29306i 0.000351103 + 0.000608129i
$$369$$ 1217.33 2108.48i 0.171739 0.297461i
$$370$$ 12479.9 + 4542.32i 1.75351 + 0.638227i
$$371$$ −828.855 301.679i −0.115989 0.0422166i
$$372$$ 33.3092 57.6932i 0.00464248 0.00804101i
$$373$$ 4334.36 + 7507.33i 0.601675 + 1.04213i 0.992568 + 0.121695i $$0.0388330\pi$$
−0.390893 + 0.920436i $$0.627834\pi$$
$$374$$ −556.551 3156.36i −0.0769481 0.436394i
$$375$$ 20626.4 + 17307.6i 2.84038 + 2.38336i
$$376$$ −750.638 + 629.860i −0.102955 + 0.0863897i
$$377$$ 165.166 936.704i 0.0225636 0.127965i
$$378$$ −3887.61 + 1414.97i −0.528987 + 0.192535i
$$379$$ −1288.19 −0.174591 −0.0872956 0.996182i $$-0.527822\pi$$
−0.0872956 + 0.996182i $$0.527822\pi$$
$$380$$ 2286.92 6231.12i 0.308728 0.841183i
$$381$$ 9182.82 1.23478
$$382$$ −7965.77 + 2899.30i −1.06692 + 0.388328i
$$383$$ −2141.84 + 12147.0i −0.285752 + 1.62058i 0.416833 + 0.908983i $$0.363140\pi$$
−0.702586 + 0.711599i $$0.747971\pi$$
$$384$$ −870.049 + 730.058i −0.115624 + 0.0970198i
$$385$$ 7162.84 + 6010.34i 0.948187 + 0.795624i
$$386$$ 314.908 + 1785.93i 0.0415244 + 0.235496i
$$387$$ 9901.58 + 17150.0i 1.30058 + 2.25268i
$$388$$ −2960.92 + 5128.46i −0.387417 + 0.671027i
$$389$$ −4552.89 1657.11i −0.593420 0.215987i 0.0278129 0.999613i $$-0.491146\pi$$
−0.621233 + 0.783626i $$0.713368\pi$$
$$390$$ −7565.48 2753.61i −0.982290 0.357524i
$$391$$ −5.01392 + 8.68436i −0.000648503 + 0.00112324i
$$392$$ 1016.65 + 1760.88i 0.130991 + 0.226883i
$$393$$ −3804.59 21576.9i −0.488336 2.76949i
$$394$$ −6597.96 5536.35i −0.843656 0.707911i
$$395$$ −6217.85 + 5217.39i −0.792035 + 0.664597i
$$396$$ 1779.17 10090.2i 0.225774 1.28043i
$$397$$ 6469.47 2354.69i 0.817867 0.297679i 0.100998 0.994887i $$-0.467797\pi$$
0.716870 + 0.697207i $$0.245574\pi$$
$$398$$ 4810.86 0.605895
$$399$$ 18.6148 6926.42i 0.00233560 0.869060i
$$400$$ 4423.22 0.552902
$$401$$ −4592.90 + 1671.68i −0.571967 + 0.208179i −0.611780 0.791028i $$-0.709546\pi$$
0.0398128 + 0.999207i $$0.487324\pi$$
$$402$$ 1984.77 11256.2i 0.246247 1.39654i
$$403$$ 32.5561 27.3178i 0.00402416 0.00337667i
$$404$$ 1867.32 + 1566.86i 0.229956 + 0.192956i
$$405$$ −1915.52 10863.5i −0.235020 1.33286i
$$406$$ 395.937 + 685.784i 0.0483991 + 0.0838297i
$$407$$ −8204.73 + 14211.0i −0.999246 + 1.73075i
$$408$$ −2158.97 785.800i −0.261972 0.0953502i
$$409$$ 5640.45 + 2052.96i 0.681913 + 0.248196i 0.659669 0.751556i $$-0.270697\pi$$
0.0222444 + 0.999753i $$0.492919\pi$$
$$410$$ −942.938 + 1633.22i −0.113581 + 0.196729i
$$411$$ −237.836 411.945i −0.0285440 0.0494397i
$$412$$ 382.935 + 2171.73i 0.0457909 + 0.259693i
$$413$$ −3976.49 3336.67i −0.473778 0.397547i
$$414$$ −24.5569 + 20.6057i −0.00291523 + 0.00244617i
$$415$$ 2695.03 15284.3i 0.318780 1.80789i
$$416$$ −680.864 + 247.814i −0.0802454 + 0.0292069i
$$417$$ 3406.73 0.400068
$$418$$ 7091.36 + 4119.65i 0.829785 + 0.482054i
$$419$$ 2289.90 0.266990 0.133495 0.991049i $$-0.457380\pi$$
0.133495 + 0.991049i $$0.457380\pi$$
$$420$$ 6298.57 2292.49i 0.731759 0.266339i
$$421$$ 563.715 3196.99i 0.0652584 0.370099i −0.934637 0.355604i $$-0.884275\pi$$
0.999895 0.0144944i $$-0.00461386\pi$$
$$422$$ −8751.48 + 7343.36i −1.00951 + 0.847083i
$$423$$ −4854.15 4073.11i −0.557959 0.468183i
$$424$$ −130.003 737.283i −0.0148903 0.0844472i
$$425$$ 4473.82 + 7748.89i 0.510617 + 0.884414i
$$426$$ 5427.94 9401.47i 0.617335 1.06926i
$$427$$ −4671.57 1700.31i −0.529445 0.192702i
$$428$$ 3757.06 + 1367.46i 0.424309 + 0.154436i
$$429$$ 4973.81 8614.89i 0.559762 0.969536i
$$430$$ −7669.70 13284.3i −0.860154 1.48983i
$$431$$ 1501.14 + 8513.41i 0.167767 + 0.951454i 0.946165 + 0.323683i $$0.104921\pi$$
−0.778398 + 0.627771i $$0.783968\pi$$
$$432$$ −2689.93 2257.12i −0.299581 0.251379i
$$433$$ −9085.03 + 7623.25i −1.00831 + 0.846073i −0.988114 0.153723i $$-0.950874\pi$$
−0.0201970 + 0.999796i $$0.506429\pi$$
$$434$$ −6.14405 + 34.8446i −0.000679548 + 0.00385391i
$$435$$ −7017.92 + 2554.32i −0.773526 + 0.281540i
$$436$$ −1198.17 −0.131610
$$437$$ −8.71121 24.1355i −0.000953579 0.00264201i
$$438$$ 7232.55 0.789006
$$439$$ 3527.14 1283.77i 0.383465 0.139570i −0.143093 0.989709i $$-0.545705\pi$$
0.526558 + 0.850139i $$0.323482\pi$$
$$440$$ −1378.13 + 7815.78i −0.149318 + 0.846825i
$$441$$ −10072.5 + 8451.81i −1.08762 + 0.912624i
$$442$$ −1122.79 942.133i −0.120827 0.101386i
$$443$$ −940.654 5334.71i −0.100884 0.572144i −0.992785 0.119912i $$-0.961739\pi$$
0.891900 0.452232i $$-0.149372\pi$$
$$444$$ 5881.52 + 10187.1i 0.628659 + 1.08887i
$$445$$ −8825.88 + 15286.9i −0.940195 + 1.62847i
$$446$$ −8227.18 2994.45i −0.873471 0.317917i
$$447$$ −17298.5 6296.16i −1.83041 0.666215i
$$448$$ 301.613 522.409i 0.0318078 0.0550927i
$$449$$ −137.961 238.955i −0.0145006 0.0251158i 0.858684 0.512505i $$-0.171283\pi$$
−0.873185 + 0.487390i $$0.837949\pi$$
$$450$$ 4966.96 + 28169.1i 0.520322 + 2.95089i
$$451$$ −1784.99 1497.78i −0.186368 0.156381i
$$452$$ 4705.15 3948.09i 0.489628 0.410846i
$$453$$ 446.901 2534.50i 0.0463515 0.262873i
$$454$$ −2906.03 + 1057.71i −0.300411 + 0.109341i
$$455$$ 4276.03 0.440579
$$456$$ 5099.21 2925.79i 0.523667 0.300466i
$$457$$ −14563.9 −1.49075 −0.745374 0.666646i $$-0.767729\pi$$
−0.745374 + 0.666646i $$0.767729\pi$$
$$458$$ 8935.95 3252.42i 0.911680 0.331824i
$$459$$ 1233.47 6995.33i 0.125432 0.711359i
$$460$$ 19.0216 15.9610i 0.00192801 0.00161780i
$$461$$ −2390.64 2005.98i −0.241525 0.202664i 0.513988 0.857798i $$-0.328168\pi$$
−0.755513 + 0.655134i $$0.772612\pi$$
$$462$$ 1438.12 + 8155.98i 0.144821 + 0.821322i
$$463$$ −4037.27 6992.76i −0.405244 0.701903i 0.589106 0.808056i $$-0.299480\pi$$
−0.994350 + 0.106153i $$0.966147\pi$$
$$464$$ −336.060 + 582.073i −0.0336232 + 0.0582372i
$$465$$ −313.571 114.131i −0.0312721 0.0113821i
$$466$$ −6297.48 2292.10i −0.626020 0.227853i
$$467$$ −9125.29 + 15805.5i −0.904214 + 1.56614i −0.0822446 + 0.996612i $$0.526209\pi$$
−0.821969 + 0.569532i $$0.807124\pi$$
$$468$$ −2342.76 4057.77i −0.231397 0.400792i
$$469$$ 1054.14 + 5978.35i 0.103787 + 0.588603i
$$470$$ 3759.99 + 3155.01i 0.369012 + 0.309637i
$$471$$ 22148.0 18584.4i 2.16672 1.81810i
$$472$$ 765.079 4338.98i 0.0746094 0.423131i
$$473$$ 17810.0 6482.29i 1.73130 0.630140i
$$474$$ −7189.19 −0.696646
$$475$$ −22536.8 4036.33i −2.17697 0.389894i
$$476$$ 1220.25 0.117501
$$477$$ 4549.37 1655.83i 0.436690 0.158942i
$$478$$ 293.890 1666.73i 0.0281218 0.159487i
$$479$$ 301.846 253.279i 0.0287927 0.0241600i −0.628278 0.777989i $$-0.716240\pi$$
0.657070 + 0.753829i $$0.271795\pi$$
$$480$$ 4358.13 + 3656.91i 0.414418 + 0.347738i
$$481$$ 1303.09 + 7390.19i 0.123526 + 0.700548i
$$482$$ −5372.20 9304.92i −0.507670 0.879310i
$$483$$ 12.9559 22.4402i 0.00122052 0.00211401i
$$484$$ −4211.65 1532.92i −0.395534 0.143963i
$$485$$ 27874.0 + 10145.3i 2.60967 + 0.949844i
$$486$$ −1040.39 + 1802.01i −0.0971052 + 0.168191i
$$487$$ 5345.83 + 9259.25i 0.497418 + 0.861553i 0.999996 0.00297872i $$-0.000948157\pi$$
−0.502577 + 0.864532i $$0.667615\pi$$
$$488$$ −732.719 4155.45i −0.0679685 0.385468i
$$489$$ −1821.67 1528.56i −0.168464 0.141358i
$$490$$ 7802.08 6546.72i 0.719310 0.603573i
$$491$$ 493.287 2797.57i 0.0453396 0.257134i −0.953710 0.300729i $$-0.902770\pi$$
0.999049 + 0.0435952i $$0.0138812\pi$$
$$492$$ −1569.61 + 571.292i −0.143829 + 0.0523493i
$$493$$ −1359.62 −0.124207
$$494$$ 3695.22 641.333i 0.336550 0.0584108i
$$495$$ −51322.0 −4.66010
$$496$$ −28.2202 + 10.2713i −0.00255469 + 0.000929830i
$$497$$ −1001.21 + 5678.15i −0.0903631 + 0.512474i
$$498$$ 10530.3 8835.97i 0.947538 0.795078i
$$499$$ 1340.63 + 1124.92i 0.120270 + 0.100919i 0.700939 0.713221i $$-0.252765\pi$$
−0.580669 + 0.814140i $$0.697209\pi$$
$$500$$ −2107.75 11953.6i −0.188523 1.06917i
$$501$$ −6732.84 11661.6i −0.600402 1.03993i
$$502$$ 1617.45 2801.51i 0.143806 0.249078i
$$503$$ 7672.22 + 2792.46i 0.680094 + 0.247534i 0.658888 0.752241i $$-0.271027\pi$$
0.0212063 + 0.999775i $$0.493249\pi$$
$$504$$ 3665.63 + 1334.18i 0.323968 + 0.117915i
$$505$$ 6105.06 10574.3i 0.537964 0.931781i
$$506$$ 15.3402 + 26.5700i 0.00134774 + 0.00233435i
$$507$$ 2595.22 + 14718.2i 0.227333 + 1.28927i
$$508$$ −3171.10 2660.87i −0.276958 0.232396i
$$509$$ 15546.6 13045.1i 1.35381 1.13598i 0.375969 0.926632i $$-0.377310\pi$$
0.977841 0.209349i $$-0.0671345\pi$$
$$510$$ −1998.42 + 11333.6i −0.173513 + 0.984040i
$$511$$ −3609.67 + 1313.81i −0.312490 + 0.113737i
$$512$$ 512.000 0.0441942
$$513$$ 11645.8 + 13954.9i 1.00229 + 1.20102i
$$514$$ 2290.15 0.196526
$$515$$ 10380.0 3778.01i 0.888149 0.323260i
$$516$$ 2359.24 13379.9i 0.201279 1.14151i
$$517$$ −4645.74 + 3898.24i −0.395202 + 0.331614i
$$518$$ −4785.90 4015.85i −0.405947 0.340630i
$$519$$ 6848.93 + 38842.2i 0.579257 + 3.28513i
$$520$$ 1814.68 + 3143.12i 0.153037 + 0.265068i
$$521$$ 6316.12 10939.8i 0.531121 0.919929i −0.468219 0.883612i $$-0.655104\pi$$
0.999340 0.0363166i $$-0.0115625\pi$$
$$522$$ −4084.27 1486.55i −0.342459 0.124645i
$$523$$ −8670.46 3155.79i −0.724919 0.263849i −0.0469064 0.998899i $$-0.514936\pi$$
−0.678012 + 0.735050i $$0.737158\pi$$
$$524$$ −4938.42 + 8553.59i −0.411709 + 0.713101i
$$525$$ −11560.3 20023.0i −0.961014 1.66452i
$$526$$ 379.756 + 2153.71i 0.0314794 + 0.178529i
$$527$$ −46.5370 39.0492i −0.00384665 0.00322772i
$$528$$ −5384.79 + 4518.37i −0.443831 + 0.372419i
$$529$$ −2112.76 + 11982.1i −0.173647 + 0.984800i
$$530$$ −3523.91 + 1282.60i −0.288809 + 0.105118i
$$531$$ 28491.7 2.32850
$$532$$ −2013.47 + 2386.51i −0.164088 + 0.194489i
$$533$$ −1065.59 −0.0865966
$$534$$ −14691.5 + 5347.28i −1.19057 + 0.433333i
$$535$$ 3477.67 19722.9i 0.281033 1.59382i
$$536$$ −3947.06 + 3311.98i −0.318073 + 0.266895i
$$537$$ 5787.91 + 4856.63i 0.465115 + 0.390278i
$$538$$ −44.7177 253.607i −0.00358349 0.0203230i
$$539$$ 6292.09 + 10898.2i 0.502819 + 0.870908i
$$540$$ −8794.54 + 15232.6i −0.700845 + 1.21390i
$$541$$ −10079.7 3668.70i −0.801032 0.291552i −0.0911182 0.995840i $$-0.529044\pi$$
−0.709914 + 0.704288i $$0.751266\pi$$
$$542$$ 4681.83 + 1704.05i 0.371036 + 0.135046i
$$543$$ −6748.77 + 11689.2i −0.533366 + 0.923817i
$$544$$ 517.857 + 896.955i 0.0408142 + 0.0706924i
$$545$$ 1042.18 + 5910.51i 0.0819123 + 0.464548i
$$546$$ 2901.27 + 2434.46i 0.227405 + 0.190815i
$$547$$ −7114.42 + 5969.71i −0.556107 + 0.466630i −0.877003 0.480485i $$-0.840461\pi$$
0.320895 + 0.947115i $$0.396016\pi$$
$$548$$ −37.2356 + 211.174i −0.00290260 + 0.0164615i
$$549$$ 25641.0 9332.57i 1.99332 0.725509i
$$550$$ 27375.6 2.12236
$$551$$ 2243.43 2659.06i 0.173454 0.205590i
$$552$$ 21.9931 0.00169581
$$553$$ 3588.03 1305.94i 0.275910 0.100423i
$$554$$ −2657.92 + 15073.8i −0.203835 + 1.15600i
$$555$$ 45136.7 37874.2i 3.45216 2.89670i
$$556$$ −1176.45 987.156i −0.0897346 0.0752963i
$$557$$ −2869.60 16274.3i −0.218292 1.23800i −0.875101 0.483940i $$-0.839205\pi$$
0.656809 0.754057i $$-0.271906\pi$$
$$558$$ −97.1017 168.185i −0.00736674 0.0127596i
$$559$$ 4333.68 7506.15i 0.327898 0.567936i
$$560$$ −2839.37 1033.45i −0.214260 0.0779841i
$$561$$ −13362.0 4863.36i −1.00560 0.366009i
$$562$$ 4765.46 8254.03i 0.357685 0.619529i
$$563$$ −3080.14 5334.97i −0.230573 0.399364i 0.727404 0.686210i $$-0.240727\pi$$
−0.957977 + 0.286845i $$0.907393\pi$$
$$564$$ 754.913 + 4281.32i 0.0563609 + 0.319639i
$$565$$ −23568.4 19776.2i −1.75492 1.47255i
$$566$$ 1050.47 881.446i 0.0780113 0.0654592i
$$567$$ −901.096 + 5110.37i −0.0667416 + 0.378510i
$$568$$ −4598.66 + 1673.77i −0.339710 + 0.123644i
$$569$$ −16846.5 −1.24120 −0.620599 0.784128i $$-0.713110\pi$$
−0.620599 + 0.784128i $$0.713110\pi$$
$$570$$ −18868.2 22609.3i −1.38649 1.66140i
$$571$$ 4447.37 0.325948 0.162974 0.986630i $$-0.447891\pi$$
0.162974 + 0.986630i $$0.447891\pi$$
$$572$$ −4213.91 + 1533.74i −0.308029 + 0.112113i
$$573$$ −6530.74 + 37037.7i −0.476135 + 2.70030i
$$574$$ 679.596 570.249i 0.0494178 0.0414664i
$$575$$ −65.6129 55.0558i −0.00475869 0.00399302i
$$576$$ 574.940 + 3260.65i 0.0415900 + 0.235869i
$$577$$ −456.989 791.529i −0.0329718 0.0571088i 0.849069 0.528283i $$-0.177164\pi$$
−0.882040 + 0.471174i $$0.843830\pi$$
$$578$$ 3865.44 6695.13i 0.278168 0.481801i
$$579$$ 7560.49 + 2751.79i 0.542665 + 0.197514i
$$580$$ 3163.65 + 1151.48i 0.226489 + 0.0824352i
$$581$$ −3650.45 + 6322.77i −0.260665 + 0.451485i
$$582$$ 13136.4 + 22752.9i 0.935604 + 1.62051i
$$583$$ −804.596 4563.09i −0.0571577 0.324158i
$$584$$ −2497.62 2095.75i −0.176973 0.148498i
$$585$$ −17979.1 + 15086.2i −1.27067 + 1.06622i
$$586$$ −770.914 + 4372.07i −0.0543450 + 0.308206i
$$587$$ 8478.22 3085.82i 0.596139 0.216977i −0.0262884 0.999654i $$-0.508369\pi$$
0.622427 + 0.782678i $$0.286147\pi$$
$$588$$ 9020.90 0.632680
$$589$$ 153.158 26.5817i 0.0107144 0.00185956i
$$590$$ −22069.5 −1.53998
$$591$$ −35908.0 + 13069.5i −2.49925 + 0.909654i
$$592$$ 920.809 5222.17i 0.0639274 0.362550i
$$593$$ 5322.15 4465.81i 0.368557 0.309256i −0.439633 0.898177i $$-0.644892\pi$$
0.808191 + 0.588921i $$0.200447\pi$$
$$594$$ −16648.1 13969.4i −1.14997 0.964937i
$$595$$ −1061.39 6019.47i −0.0731310 0.414746i
$$596$$ 4149.29 + 7186.78i 0.285170 + 0.493930i
$$597$$ 10671.9 18484.3i 0.731612 1.26719i
$$598$$ 13.1843 + 4.79869i 0.000901582 + 0.000328149i
$$599$$ −13743.2 5002.13i −0.937451 0.341204i −0.172292 0.985046i $$-0.555117\pi$$
−0.765159 + 0.643842i $$0.777340\pi$$
$$600$$ 9812.02 16994.9i 0.667623 1.15636i
$$601$$ 9988.09 + 17299.9i 0.677908 + 1.17417i 0.975610 + 0.219513i $$0.0704467\pi$$
−0.297701 + 0.954659i $$0.596220\pi$$
$$602$$ 1253.03 + 7106.31i 0.0848336 + 0.481115i
$$603$$ −25524.4 21417.5i −1.72377 1.44642i
$$604$$ −888.741 + 745.742i −0.0598715 + 0.0502381i
$$605$$ −3898.46 + 22109.3i −0.261975 + 1.48573i
$$606$$ 10162.5 3698.84i 0.681225 0.247946i
$$607$$ 17106.1 1.14385 0.571923 0.820307i $$-0.306198\pi$$
0.571923 + 0.820307i $$0.306198\pi$$
$$608$$ −2608.70 467.217i −0.174008 0.0311647i
$$609$$ 3513.23 0.233766
$$610$$ −19861.4 + 7228.95i −1.31830 + 0.479822i
$$611$$ −481.594 + 2731.26i −0.0318874 + 0.180843i
$$612$$ −5130.70 + 4305.17i −0.338883 + 0.284356i
$$613$$ 19079.8 + 16009.8i 1.25714 + 1.05486i 0.995981 + 0.0895677i $$0.0285486\pi$$
0.261157 + 0.965296i $$0.415896\pi$$
$$614$$ −2782.70 15781.5i −0.182900 1.03728i
$$615$$ 4183.44 + 7245.92i 0.274297 + 0.475096i
$$616$$ 1866.70 3233.22i 0.122097 0.211478i
$$617$$ −14657.1 5334.75i −0.956358 0.348086i −0.183753 0.982972i $$-0.558825\pi$$
−0.772605 + 0.634887i $$0.781047\pi$$
$$618$$ 9193.70 + 3346.23i 0.598422 + 0.217808i
$$619$$ 7588.12 13143.0i 0.492718 0.853412i −0.507247 0.861801i $$-0.669337\pi$$
0.999965 + 0.00838852i $$0.00267018\pi$$
$$620$$ 75.2144 + 130.275i 0.00487207 + 0.00843867i
$$621$$ 11.8074 + 66.9630i 0.000762985 + 0.00432710i
$$622$$ 14068.9 + 11805.2i 0.906934 + 0.761008i
$$623$$ 6361.00 5337.52i 0.409066 0.343247i
$$624$$ −558.206 + 3165.74i −0.0358111 + 0.203095i
$$625$$ −24661.2 + 8975.93i −1.57831 + 0.574459i
$$626$$ −18634.1 −1.18973
$$627$$ 31559.3 18107.9i 2.01014 1.15336i
$$628$$ −13033.5 −0.828174
$$629$$ 10079.9 3668.78i 0.638969 0.232566i
$$630$$ 3393.04 19242.9i 0.214575 1.21691i
$$631$$ −13569.0 + 11385.7i −0.856058 + 0.718318i −0.961115 0.276148i $$-0.910942\pi$$
0.105057 + 0.994466i $$0.466497\pi$$
$$632$$ 2482.64 + 2083.18i 0.156257 + 0.131115i
$$633$$ 8801.31 + 49914.7i 0.552640 + 3.13417i
$$634$$ 904.209 + 1566.14i 0.0566415 + 0.0981060i
$$635$$ −10367.7 + 17957.4i −0.647921 + 1.12223i
$$636$$ −3121.18 1136.02i −0.194596 0.0708270i
$$637$$ 5407.80 + 1968.28i 0.336365 + 0.122427i
$$638$$ −2079.89 + 3602.48i −0.129066 + 0.223548i
$$639$$ −15823.3 27406.8i −0.979594 1.69671i
$$640$$ −445.345 2525.68i −0.0275059 0.155994i
$$641$$ −5020.83 4212.98i −0.309377 0.259598i 0.474857 0.880063i $$-0.342500\pi$$
−0.784235 + 0.620464i $$0.786944\pi$$
$$642$$ 13588.3 11402.0i 0.835340 0.700934i
$$643$$ −1042.67 + 5913.29i −0.0639486 + 0.362671i 0.935995 + 0.352014i $$0.114503\pi$$
−0.999943 + 0.0106563i $$0.996608\pi$$
$$644$$ −10.9765 + 3.99511i −0.000671636 + 0.000244455i
$$645$$ −68054.8 −4.15450
$$646$$ −1820.04 5042.66i −0.110849 0.307122i
$$647$$ 17229.0 1.04690 0.523448 0.852058i $$-0.324646\pi$$
0.523448 + 0.852058i $$0.324646\pi$$
$$648$$ −4138.82 + 1506.41i −0.250908 + 0.0913229i
$$649$$ 4735.12 26854.2i 0.286394 1.62422i
$$650$$ 9590.18 8047.12i 0.578705 0.485591i
$$651$$ 120.251 + 100.903i 0.00723964 + 0.00607478i
$$652$$ 186.151 + 1055.72i 0.0111813 + 0.0634126i
$$653$$ −8926.03 15460.3i −0.534920 0.926508i −0.999167 0.0408027i $$-0.987008\pi$$
0.464247 0.885706i $$-0.346325\pi$$
$$654$$ −2657.89 + 4603.60i −0.158917 + 0.275252i
$$655$$ 46490.0 + 16921.0i 2.77331 + 1.00940i
$$656$$ 707.575 + 257.536i 0.0421131 + 0.0153279i
$$657$$ 10542.0 18259.3i 0.626002 1.08427i
$$658$$ −1154.48 1999.62i −0.0683987 0.118470i
$$659$$ −325.099 1843.73i −0.0192171 0.108985i 0.973690 0.227875i $$-0.0731777\pi$$
−0.992907 + 0.118889i $$0.962067\pi$$
$$660$$ 26972.7 + 22632.8i 1.59078 + 1.33482i
$$661$$ 12577.8 10554.1i 0.740123 0.621037i −0.192748 0.981248i $$-0.561740\pi$$
0.932871 + 0.360211i $$0.117295\pi$$
$$662$$ −1029.22 + 5836.99i −0.0604256 + 0.342691i
$$663$$ −6110.55 + 2224.06i −0.357940 + 0.130279i
$$664$$ −6196.79 −0.362172
$$665$$ 13523.9 + 7856.56i 0.788622 + 0.458142i
$$666$$ 34291.1 1.99513
$$667$$ 12.2301 4.45138i 0.000709971 0.000258408i
$$668$$ −1054.09 + 5978.06i −0.0610540 + 0.346254i
$$669$$ −29755.6 + 24967.9i −1.71961 + 1.44292i
$$670$$ 19771.1 + 16589.9i 1.14003 + 0.956603i
$$671$$ −4534.84 25718.4i −0.260903 1.47965i
$$672$$ −1338.14 2317.72i −0.0768150 0.133048i
$$673$$ 299.310 518.421i 0.0171435 0.0296934i −0.857326 0.514773i $$-0.827876\pi$$
0.874470 + 0.485080i $$0.161209\pi$$
$$674$$ −3421.04 1245.16i −0.195510 0.0711598i
$$675$$ 57012.6 + 20750.9i 3.25099 + 1.18326i
$$676$$ 3368.63 5834.64i 0.191661 0.331967i
$$677$$ −5081.46 8801.35i −0.288473 0.499651i 0.684972 0.728569i $$-0.259814\pi$$
−0.973446 + 0.228919i $$0.926481\pi$$
$$678$$ −4731.95 26836.2i −0.268037 1.52011i
$$679$$ −10689.3 8969.42i −0.604152 0.506944i
$$680$$ 3974.21 3334.76i 0.224123 0.188062i
$$681$$ −2382.51 + 13511.9i −0.134064 + 0.760317i
$$682$$ −174.657 + 63.5698i −0.00980637 + 0.00356923i
$$683$$ −18327.0 −1.02674 −0.513371 0.858167i $$-0.671603\pi$$
−0.513371 + 0.858167i $$0.671603\pi$$
$$684$$ 46.0586 17138.0i 0.00257470 0.958025i
$$685$$ 1074.10 0.0599113
$$686$$ −10578.1 + 3850.12i −0.588737 + 0.214283i
$$687$$ 7326.14 41548.6i 0.406855 2.30739i
$$688$$ −4691.76 + 3936.86i −0.259988 + 0.218156i
$$689$$ −1623.20 1362.02i −0.0897516 0.0753106i
$$690$$ −19.1299 108.491i −0.00105545 0.00598578i
$$691$$ 54.8896 + 95.0716i 0.00302185 + 0.00523400i 0.867532 0.497381i $$-0.165705\pi$$
−0.864511 + 0.502615i $$0.832371\pi$$
$$692$$ 8890.01 15398.0i 0.488364 0.845871i
$$693$$ 22686.8 + 8257.32i 1.24358 + 0.452625i
$$694$$ 14593.0 + 5311.40i 0.798186 + 0.290516i
$$695$$ −3846.31 + 6662.01i −0.209927 + 0.363604i
$$696$$ 1490.96 + 2582.42i 0.0811993 + 0.140641i
$$697$$ 264.501 + 1500.06i 0.0143740 + 0.0815191i
$$698$$ 9972.49 + 8367.91i 0.540780 + 0.453768i
$$699$$ −22776.4 + 19111.7i −1.23245 + 1.03415i
$$700$$ −1809.88 + 10264.3i −0.0977241 + 0.554221i
$$701$$ 21318.7 7759.36i 1.14864 0.418070i 0.303612 0.952796i $$-0.401807\pi$$
0.845026 + 0.534726i $$0.179585\pi$$
$$702$$ −9938.50 −0.534337
$$703$$ −9457.04 + 25767.3i −0.507367 + 1.38241i
$$704$$ 3168.80 0.169643
$$705$$ 20463.0 7447.91i 1.09316 0.397879i
$$706$$ −2639.09 + 14967.0i −0.140685 + 0.797864i
$$707$$ −4400.05 + 3692.08i −0.234061 + 0.196400i
$$708$$ −14974.1 12564.7i −0.794859 0.666966i
$$709$$ −1633.44 9263.71i −0.0865235 0.490699i −0.997017 0.0771768i $$-0.975409\pi$$
0.910494 0.413522i $$-0.135702\pi$$
$$710$$ 12256.6 + 21229.1i 0.647864 + 1.12213i
$$711$$ −10478.8 + 18149.8i −0.552723 + 0.957345i
$$712$$ 6622.89 + 2410.53i 0.348600 + 0.126880i
$$713$$ 0.546458 + 0.198895i 2.87027e−5 + 1.04469e-5i
$$714$$ 2706.89 4688.47i 0.141881 0.245744i
$$715$$ 11231.2 + 19453.0i 0.587444 + 1.01748i
$$716$$ −591.450 3354.28i −0.0308708 0.175077i
$$717$$ −5751.99 4826.50i −0.299599 0.251393i
$$718$$ −3289.61 + 2760.31i −0.170985 + 0.143473i
$$719$$ −3550.99 + 20138.6i −0.184186 + 1.04457i 0.742812 + 0.669500i $$0.233492\pi$$
−0.926997 + 0.375068i $$0.877619\pi$$
$$720$$ 15584.6 5672.32i 0.806670 0.293604i
$$721$$ −5196.31 −0.268406
$$722$$ 12865.3 + 4761.05i 0.663154 + 0.245413i
$$723$$ −47668.5 −2.45202
$$724$$ 5717.69 2081.07i 0.293503 0.106826i
$$725$$ 2016.58 11436.6i 0.103302 0.585854i
$$726$$ −15232.5 + 12781.6i −0.778692 + 0.653400i
$$727$$ −11246.2 9436.70i −0.573727 0.481414i 0.309154 0.951012i $$-0.399954\pi$$
−0.882880 + 0.469598i $$0.844399\pi$$
$$728$$ −296.473 1681.38i −0.0150934 0.0855991i
$$729$$ 12048.3 + 20868.3i 0.612117 + 1.06022i
$$730$$ −8165.79 + 14143.6i −0.414013 + 0.717091i
$$731$$ −11642.3 4237.45i −0.589064 0.214402i
$$732$$ −17591.5 6402.78i −0.888252 0.323297i
$$733$$ −8525.63 + 14766.8i −0.429606 + 0.744099i −0.996838 0.0794585i $$-0.974681\pi$$
0.567232 + 0.823558i $$0.308014\pi$$
$$734$$ −3087.96 5348.50i −0.155284 0.268960i
$$735$$ −7846.51 44499.8i −0.393773 2.23320i
$$736$$ −7.59488 6.37286i −0.000380368 0.000319167i
$$737$$ −24428.6 + 20498.0i −1.22095 + 1.02450i
$$738$$ −845.550 + 4795.35i −0.0421750 + 0.239186i
$$739$$ −18432.0 + 6708.68i −0.917497 + 0.333942i −0.757242 0.653134i $$-0.773454\pi$$
−0.160255 + 0.987076i $$0.551232\pi$$
$$740$$ −26561.7 −1.31950
$$741$$ 5732.97 15620.5i 0.284219 0.774403i
$$742$$ 1764.10 0.0872804
$$743$$ 29984.0 10913.3i 1.48049 0.538856i 0.529566 0.848269i $$-0.322355\pi$$
0.950928 + 0.309413i $$0.100133\pi$$
$$744$$ −23.1363 + 131.213i −0.00114008 + 0.00646571i
$$745$$ 31843.0 26719.5i 1.56596 1.31399i
$$746$$ −13281.3 11144.3i −0.651825 0.546946i
$$747$$ −6958.56 39463.9i −0.340830 1.93294i
$$748$$ 3205.05 + 5551.31i 0.156669 + 0.271358i
$$749$$ −4710.56 + 8158.92i −0.229800 + 0.398025i
$$750$$ −50604.0 18418.3i −2.46373 0.896724i
$$751$$ 30660.9 + 11159.6i 1.48979 + 0.542239i 0.953394 0.301728i $$-0.0975636\pi$$
0.536395 + 0.843967i $$0.319786\pi$$
$$752$$ 979.888 1697.22i 0.0475171 0.0823020i
$$753$$ −7175.98 12429.2i −0.347287 0.601519i
$$754$$ 330.332 + 1873.41i 0.0159549 + 0.0904848i
$$755$$ 4451.76 + 3735.47i 0.214591 + 0.180063i
$$756$$ 6338.41 5318.56i 0.304928 0.255865i
$$757$$ 4285.83 24306.1i 0.205774 1.16700i −0.690443 0.723387i $$-0.742584\pi$$
0.896217 0.443616i $$-0.146305\pi$$
$$758$$ 2421.01 881.177i 0.116009 0.0422240i
$$759$$ 136.117 0.00650952
$$760$$ −35.6767 + 13275.0i −0.00170280 + 0.633599i
$$761$$ 12530.3 0.596876 0.298438 0.954429i $$-0.403534\pi$$
0.298438 + 0.954429i $$0.403534\pi$$
$$762$$ −17258.1 + 6281.42i −0.820464 + 0.298624i
$$763$$ 490.261 2780.41i 0.0232617 0.131923i
$$764$$ 12987.5 10897.8i 0.615016 0.516059i
$$765$$ 25700.0 + 21564.8i 1.21462 + 1.01919i
$$766$$ −4283.69 24294.0i −0.202057 1.14592i
$$767$$ −6235.06 10799.4i −0.293527 0.508403i
$$768$$ 1135.77 1967.21i 0.0533640 0.0924291i
$$769$$ 19987.7 + 7274.94i 0.937290 + 0.341145i 0.765095 0.643917i