Properties

Label 378.2.a
Level 378
Weight 2
Character orbit a
Rep. character \(\chi_{378}(1,\cdot)\)
Character field \(\Q\)
Dimension 8
Newforms 8
Sturm bound 144
Trace bound 5

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 378.a (trivial)
Character field: \(\Q\)
Newforms: \( 8 \)
Sturm bound: \(144\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(378))\).

Total New Old
Modular forms 84 8 76
Cusp forms 61 8 53
Eisenstein series 23 0 23

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(6\)

Trace form

\(8q \) \(\mathstrut +\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 8q^{4} \) \(\mathstrut +\mathstrut 16q^{10} \) \(\mathstrut +\mathstrut 8q^{13} \) \(\mathstrut +\mathstrut 8q^{16} \) \(\mathstrut -\mathstrut 8q^{19} \) \(\mathstrut -\mathstrut 4q^{22} \) \(\mathstrut +\mathstrut 12q^{25} \) \(\mathstrut -\mathstrut 16q^{31} \) \(\mathstrut +\mathstrut 8q^{34} \) \(\mathstrut +\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 16q^{40} \) \(\mathstrut -\mathstrut 20q^{43} \) \(\mathstrut -\mathstrut 16q^{46} \) \(\mathstrut +\mathstrut 8q^{49} \) \(\mathstrut +\mathstrut 8q^{52} \) \(\mathstrut -\mathstrut 40q^{55} \) \(\mathstrut +\mathstrut 4q^{58} \) \(\mathstrut -\mathstrut 16q^{61} \) \(\mathstrut +\mathstrut 8q^{64} \) \(\mathstrut -\mathstrut 36q^{67} \) \(\mathstrut -\mathstrut 4q^{70} \) \(\mathstrut -\mathstrut 24q^{73} \) \(\mathstrut -\mathstrut 8q^{76} \) \(\mathstrut -\mathstrut 40q^{79} \) \(\mathstrut -\mathstrut 16q^{85} \) \(\mathstrut -\mathstrut 4q^{88} \) \(\mathstrut -\mathstrut 4q^{91} \) \(\mathstrut -\mathstrut 24q^{94} \) \(\mathstrut +\mathstrut 48q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(378))\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 7
378.2.a.a \(1\) \(3.018\) \(\Q\) None \(-1\) \(0\) \(-4\) \(-1\) \(+\) \(-\) \(+\) \(q-q^{2}+q^{4}-4q^{5}-q^{7}-q^{8}+4q^{10}+\cdots\)
378.2.a.b \(1\) \(3.018\) \(\Q\) None \(-1\) \(0\) \(-3\) \(1\) \(+\) \(-\) \(-\) \(q-q^{2}+q^{4}-3q^{5}+q^{7}-q^{8}+3q^{10}+\cdots\)
378.2.a.c \(1\) \(3.018\) \(\Q\) None \(-1\) \(0\) \(-1\) \(-1\) \(+\) \(+\) \(+\) \(q-q^{2}+q^{4}-q^{5}-q^{7}-q^{8}+q^{10}+\cdots\)
378.2.a.d \(1\) \(3.018\) \(\Q\) None \(-1\) \(0\) \(0\) \(1\) \(+\) \(+\) \(-\) \(q-q^{2}+q^{4}+q^{7}-q^{8}+5q^{13}-q^{14}+\cdots\)
378.2.a.e \(1\) \(3.018\) \(\Q\) None \(1\) \(0\) \(0\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{4}+q^{7}+q^{8}+5q^{13}+q^{14}+\cdots\)
378.2.a.f \(1\) \(3.018\) \(\Q\) None \(1\) \(0\) \(1\) \(-1\) \(-\) \(+\) \(+\) \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\)
378.2.a.g \(1\) \(3.018\) \(\Q\) None \(1\) \(0\) \(3\) \(1\) \(-\) \(-\) \(-\) \(q+q^{2}+q^{4}+3q^{5}+q^{7}+q^{8}+3q^{10}+\cdots\)
378.2.a.h \(1\) \(3.018\) \(\Q\) None \(1\) \(0\) \(4\) \(-1\) \(-\) \(+\) \(+\) \(q+q^{2}+q^{4}+4q^{5}-q^{7}+q^{8}+4q^{10}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(378))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(378)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(126))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 2}\)