Properties

Label 37.3.i.a
Level $37$
Weight $3$
Character orbit 37.i
Analytic conductor $1.008$
Analytic rank $0$
Dimension $60$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [37,3,Mod(2,37)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(37, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("37.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 37 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 37.i (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00817697813\)
Analytic rank: \(0\)
Dimension: \(60\)
Relative dimension: \(5\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 60 q - 12 q^{2} - 12 q^{3} + 6 q^{4} + 6 q^{5} - 12 q^{6} - 12 q^{7} - 78 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 60 q - 12 q^{2} - 12 q^{3} + 6 q^{4} + 6 q^{5} - 12 q^{6} - 12 q^{7} - 78 q^{8} + 18 q^{9} - 6 q^{10} - 18 q^{11} - 60 q^{12} - 12 q^{13} + 36 q^{14} - 54 q^{15} + 18 q^{16} + 12 q^{17} - 102 q^{18} - 84 q^{19} + 96 q^{20} + 6 q^{21} - 36 q^{22} - 66 q^{23} + 408 q^{24} - 138 q^{25} + 24 q^{26} + 198 q^{27} + 324 q^{28} + 72 q^{29} + 36 q^{30} + 252 q^{31} - 90 q^{32} + 6 q^{33} + 78 q^{34} + 180 q^{35} + 72 q^{37} - 156 q^{38} - 66 q^{39} - 276 q^{40} - 240 q^{41} - 492 q^{42} - 36 q^{43} - 282 q^{44} - 648 q^{45} - 192 q^{46} - 72 q^{47} - 738 q^{48} - 462 q^{49} + 246 q^{50} + 228 q^{51} - 678 q^{52} + 6 q^{53} + 780 q^{54} - 216 q^{55} - 540 q^{56} + 420 q^{57} + 450 q^{58} + 6 q^{59} + 1080 q^{60} + 636 q^{61} + 432 q^{62} + 354 q^{63} + 1116 q^{64} + 690 q^{65} + 324 q^{66} + 198 q^{67} + 630 q^{68} + 390 q^{69} + 342 q^{70} + 276 q^{71} + 174 q^{72} - 300 q^{74} - 360 q^{75} - 402 q^{76} - 162 q^{77} - 1002 q^{78} - 732 q^{79} + 168 q^{80} - 894 q^{81} - 1056 q^{82} - 432 q^{83} - 210 q^{84} - 990 q^{85} - 1614 q^{86} - 168 q^{87} - 792 q^{88} - 888 q^{89} - 1110 q^{90} + 366 q^{91} - 102 q^{92} - 672 q^{93} + 1164 q^{94} + 1062 q^{95} - 288 q^{96} + 942 q^{97} + 1746 q^{98} + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −3.66472 0.320622i −0.999087 + 1.19067i 9.38815 + 1.65538i 2.92231 6.26692i 4.04313 4.04313i 6.77942 2.46751i −19.6607 5.26807i 1.14332 + 6.48411i −12.7188 + 22.0295i
2.2 −1.27989 0.111976i −2.29345 + 2.73323i −2.31364 0.407958i −1.74871 + 3.75013i 3.24143 3.24143i −2.28808 + 0.832793i 7.87955 + 2.11132i −0.647787 3.67378i 2.65809 4.60395i
2.3 −1.25921 0.110166i 2.50948 2.99069i −2.36576 0.417148i 1.10059 2.36023i −3.48944 + 3.48944i 4.82832 1.75736i 7.81682 + 2.09451i −1.08386 6.14689i −1.64590 + 2.85078i
2.4 1.87894 + 0.164386i 0.942406 1.12312i −0.435832 0.0768489i −0.809415 + 1.73580i 1.95535 1.95535i −2.08567 + 0.759122i −8.09367 2.16869i 1.18957 + 6.74641i −1.80618 + 3.12840i
2.5 2.73696 + 0.239453i −3.30709 + 3.94124i 3.49438 + 0.616153i 3.30071 7.07840i −9.99511 + 9.99511i 2.02744 0.737927i −1.19877 0.321209i −3.03367 17.2048i 10.7289 18.5829i
5.1 −1.25404 + 2.68929i −0.554625 + 1.52382i −3.08852 3.68076i −1.33394 + 1.90507i −3.40247 3.40247i −0.324876 1.84246i 2.30696 0.618149i 4.87999 + 4.09479i −3.45047 5.97638i
5.2 −0.521767 + 1.11893i 1.27672 3.50777i 1.59138 + 1.89653i 1.42566 2.03605i 3.25881 + 3.25881i 0.576187 + 3.26772i −7.72257 + 2.06926i −3.78004 3.17183i 1.53434 + 2.65756i
5.3 0.177583 0.380827i −1.22784 + 3.37346i 2.45766 + 2.92892i 1.10020 1.57124i 1.06666 + 1.06666i −1.07559 6.09995i 3.17536 0.850836i −2.97822 2.49903i −0.402996 0.698010i
5.4 0.982348 2.10665i 0.787979 2.16495i −0.901828 1.07476i −4.57941 + 6.54008i −3.78674 3.78674i −0.559720 3.17433i 5.83088 1.56238i 2.82828 + 2.37321i 9.27910 + 16.0719i
5.5 1.54871 3.32122i −0.989811 + 2.71948i −6.06084 7.22303i 2.51995 3.59886i 7.49907 + 7.49907i 1.86029 + 10.5502i −19.2170 + 5.14918i 0.478540 + 0.401543i −8.04993 13.9429i
13.1 −1.46611 2.09382i 3.56464 0.628542i −0.866532 + 2.38078i −2.56671 0.224558i −6.54221 6.54221i 2.83735 2.38082i −3.62060 + 0.970137i 3.85436 1.40287i 3.29289 + 5.70346i
13.2 −0.818690 1.16921i −4.94995 + 0.872809i 0.671281 1.84433i −6.45824 0.565023i 5.07297 + 5.07297i 3.38170 2.83759i −8.22081 + 2.20276i 15.2829 5.56253i 4.62666 + 8.01361i
13.3 −0.195548 0.279271i −0.415666 + 0.0732932i 1.32833 3.64955i 6.96283 + 0.609169i 0.101751 + 0.101751i −3.27638 + 2.74921i −2.59620 + 0.695651i −8.28983 + 3.01725i −1.19144 2.06364i
13.4 1.01975 + 1.45635i 2.47251 0.435970i 0.287008 0.788548i −6.49045 0.567841i 3.15626 + 3.15626i −5.51447 + 4.62719i 8.31027 2.22673i −2.53400 + 0.922300i −5.79165 10.0314i
13.5 1.71376 + 2.44750i −2.41431 + 0.425707i −1.68522 + 4.63009i 0.958478 + 0.0838560i −5.17946 5.17946i 8.02061 6.73009i −2.67606 + 0.717049i −2.80959 + 1.02261i 1.43736 + 2.48959i
15.1 −1.25404 2.68929i −0.554625 1.52382i −3.08852 + 3.68076i −1.33394 1.90507i −3.40247 + 3.40247i −0.324876 + 1.84246i 2.30696 + 0.618149i 4.87999 4.09479i −3.45047 + 5.97638i
15.2 −0.521767 1.11893i 1.27672 + 3.50777i 1.59138 1.89653i 1.42566 + 2.03605i 3.25881 3.25881i 0.576187 3.26772i −7.72257 2.06926i −3.78004 + 3.17183i 1.53434 2.65756i
15.3 0.177583 + 0.380827i −1.22784 3.37346i 2.45766 2.92892i 1.10020 + 1.57124i 1.06666 1.06666i −1.07559 + 6.09995i 3.17536 + 0.850836i −2.97822 + 2.49903i −0.402996 + 0.698010i
15.4 0.982348 + 2.10665i 0.787979 + 2.16495i −0.901828 + 1.07476i −4.57941 6.54008i −3.78674 + 3.78674i −0.559720 + 3.17433i 5.83088 + 1.56238i 2.82828 2.37321i 9.27910 16.0719i
15.5 1.54871 + 3.32122i −0.989811 2.71948i −6.06084 + 7.22303i 2.51995 + 3.59886i 7.49907 7.49907i 1.86029 10.5502i −19.2170 5.14918i 0.478540 0.401543i −8.04993 + 13.9429i
See all 60 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.i odd 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 37.3.i.a 60
3.b odd 2 1 333.3.bu.b 60
37.i odd 36 1 inner 37.3.i.a 60
111.q even 36 1 333.3.bu.b 60
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
37.3.i.a 60 1.a even 1 1 trivial
37.3.i.a 60 37.i odd 36 1 inner
333.3.bu.b 60 3.b odd 2 1
333.3.bu.b 60 111.q even 36 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(37, [\chi])\).