Properties

Label 3600.1.dx
Level 3600
Weight 1
Character orbit dx
Rep. character \(\chi_{3600}(287,\cdot)\)
Character field \(\Q(\zeta_{20})\)
Dimension 16
Newforms 1
Sturm bound 720
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 3600.dx (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 300 \)
Character field: \(\Q(\zeta_{20})\)
Newforms: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).

Total New Old
Modular forms 256 16 240
Cusp forms 64 16 48
Eisenstein series 192 0 192

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\(16q \) \(\mathstrut +\mathstrut O(q^{10}) \) \(16q \) \(\mathstrut -\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 4q^{37} \) \(\mathstrut +\mathstrut 4q^{73} \) \(\mathstrut -\mathstrut 12q^{85} \) \(\mathstrut +\mathstrut 4q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3600.1.dx.a \(16\) \(1.797\) \(\Q(\zeta_{40})\) \(D_{20}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{40}^{7}q^{5}+(-\zeta_{40}^{4}+\zeta_{40}^{18})q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3600, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 3}\)