Properties

Label 3600.1.ct.a
Level 3600
Weight 1
Character orbit 3600.ct
Analytic conductor 1.797
Analytic rank 0
Dimension 4
Projective image \(D_{10}\)
CM disc. -4
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 3600.ct (of order \(10\) and degree \(4\))

Newform invariants

Self dual: No
Analytic conductor: \(1.79663404548\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Projective image \(D_{10}\)
Projective field Galois closure of 10.2.195312500000000.4

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q\) \( + \zeta_{10}^{4} q^{5} \) \(+O(q^{10})\) \( q\) \( + \zeta_{10}^{4} q^{5} \) \( + ( -\zeta_{10} + \zeta_{10}^{3} ) q^{13} \) \( + ( -\zeta_{10} - \zeta_{10}^{2} ) q^{17} \) \( -\zeta_{10}^{3} q^{25} \) \( + ( \zeta_{10}^{3} - \zeta_{10}^{4} ) q^{29} \) \( + ( -1 + \zeta_{10}^{4} ) q^{37} \) \( + ( -\zeta_{10} - \zeta_{10}^{3} ) q^{41} \) \(- q^{49}\) \( + ( 1 - \zeta_{10}^{2} ) q^{53} \) \( + ( -\zeta_{10}^{2} - \zeta_{10}^{4} ) q^{61} \) \( + ( 1 - \zeta_{10}^{2} ) q^{65} \) \( + ( -\zeta_{10}^{2} + \zeta_{10}^{4} ) q^{73} \) \( + ( 1 + \zeta_{10} ) q^{85} \) \( + ( -1 + \zeta_{10} ) q^{89} \) \( + ( -\zeta_{10}^{3} - \zeta_{10}^{4} ) q^{97} \) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(4q \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(4q \) \(\mathstrut -\mathstrut q^{5} \) \(\mathstrut -\mathstrut q^{25} \) \(\mathstrut +\mathstrut 2q^{29} \) \(\mathstrut -\mathstrut 5q^{37} \) \(\mathstrut -\mathstrut 2q^{41} \) \(\mathstrut -\mathstrut 4q^{49} \) \(\mathstrut +\mathstrut 5q^{53} \) \(\mathstrut +\mathstrut 2q^{61} \) \(\mathstrut +\mathstrut 5q^{65} \) \(\mathstrut +\mathstrut 5q^{85} \) \(\mathstrut -\mathstrut 3q^{89} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3600\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(2801\) \(3151\)
\(\chi(n)\) \(\zeta_{10}\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
559.1
−0.309017 0.951057i
0.809017 + 0.587785i
0.809017 0.587785i
−0.309017 + 0.951057i
0 0 0 0.309017 0.951057i 0 0 0 0 0
1279.1 0 0 0 −0.809017 + 0.587785i 0 0 0 0 0
2719.1 0 0 0 −0.809017 0.587785i 0 0 0 0 0
3439.1 0 0 0 0.309017 + 0.951057i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
4.b Odd 1 CM by \(\Q(\sqrt{-1}) \) yes
25.e Even 1 yes
100.h Odd 1 yes

Hecke kernels

There are no other newforms in \(S_{1}^{\mathrm{new}}(3600, [\chi])\).