Properties

Label 3600.1.cj
Level 3600
Weight 1
Character orbit cj
Rep. character \(\chi_{3600}(271,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 8
Newforms 1
Sturm bound 720
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 3600.cj (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newforms: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).

Total New Old
Modular forms 152 8 144
Cusp forms 56 8 48
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\(8q \) \(\mathstrut +\mathstrut O(q^{10}) \) \(8q \) \(\mathstrut +\mathstrut 4q^{13} \) \(\mathstrut +\mathstrut 2q^{25} \) \(\mathstrut +\mathstrut 6q^{37} \) \(\mathstrut +\mathstrut 8q^{49} \) \(\mathstrut -\mathstrut 4q^{61} \) \(\mathstrut +\mathstrut 4q^{73} \) \(\mathstrut +\mathstrut 10q^{85} \) \(\mathstrut +\mathstrut 4q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3600.1.cj.a \(8\) \(1.797\) \(\Q(\zeta_{20})\) \(D_{10}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{20}^{9}q^{5}+(\zeta_{20}^{6}-\zeta_{20}^{8})q^{13}+(-\zeta_{20}+\cdots)q^{17}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3600, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 3}\)