Properties

Label 3600.1.cj
Level 3600
Weight 1
Character orbit cj
Rep. character \(\chi_{3600}(271,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 8
Newform subspaces 1
Sturm bound 720
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3600.cj (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(720\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(3600, [\chi])\).

Total New Old
Modular forms 152 8 144
Cusp forms 56 8 48
Eisenstein series 96 0 96

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8q + O(q^{10}) \) \( 8q + 4q^{13} + 2q^{25} + 6q^{37} + 8q^{49} - 4q^{61} + 4q^{73} + 10q^{85} + 4q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(3600, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3600.1.cj.a \(8\) \(1.797\) \(\Q(\zeta_{20})\) \(D_{10}\) \(\Q(\sqrt{-1}) \) None \(0\) \(0\) \(0\) \(0\) \(q+\zeta_{20}^{9}q^{5}+(\zeta_{20}^{6}-\zeta_{20}^{8})q^{13}+(-\zeta_{20}+\cdots)q^{17}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(3600, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(3600, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 3}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
$7$ \( ( 1 - T )^{8}( 1 + T )^{8} \)
$11$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$13$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{4} \)
$17$ \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \)
$19$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$23$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$29$ \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \)
$31$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$37$ \( ( 1 - T )^{8}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$41$ \( ( 1 - T^{2} + T^{4} - T^{6} + T^{8} )^{2} \)
$43$ \( ( 1 - T )^{8}( 1 + T )^{8} \)
$47$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$53$ \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} - T^{6} + T^{8} ) \)
$59$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$61$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{4} \)
$67$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$71$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$73$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{4} \)
$79$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$83$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2}( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
$89$ \( ( 1 + T^{2} )^{4}( 1 - T^{2} + T^{4} - T^{6} + T^{8} ) \)
$97$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{4} \)
show more
show less