Defining parameters
| Level: | \( N \) | \(=\) | \( 34 = 2 \cdot 17 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 34.b (of order \(2\) and degree \(1\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(9\) | ||
| Trace bound: | \(0\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(34, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6 | 2 | 4 | 
| Cusp forms | 2 | 2 | 0 | 
| Eisenstein series | 4 | 0 | 4 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(34, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 34.2.b.a | $2$ | $0.271$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{5}-\beta q^{6}-q^{8}+\cdots\) |