Properties

Label 33.5.c.a
Level $33$
Weight $5$
Character orbit 33.c
Analytic conductor $3.411$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 33 = 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 33.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.41120878177\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Defining polynomial: \(x^{8} + 102 x^{6} + 2913 x^{4} + 23292 x^{2} + 41364\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + \beta_{2} q^{3} + ( -10 - \beta_{2} - \beta_{4} + \beta_{5} ) q^{4} + ( -5 + \beta_{2} + \beta_{5} ) q^{5} + ( 2 \beta_{1} + \beta_{3} ) q^{6} + ( 6 \beta_{1} + \beta_{3} - \beta_{6} + \beta_{7} ) q^{7} + ( -14 \beta_{1} - 2 \beta_{3} + \beta_{6} + \beta_{7} ) q^{8} + 27 q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + \beta_{2} q^{3} + ( -10 - \beta_{2} - \beta_{4} + \beta_{5} ) q^{4} + ( -5 + \beta_{2} + \beta_{5} ) q^{5} + ( 2 \beta_{1} + \beta_{3} ) q^{6} + ( 6 \beta_{1} + \beta_{3} - \beta_{6} + \beta_{7} ) q^{7} + ( -14 \beta_{1} - 2 \beta_{3} + \beta_{6} + \beta_{7} ) q^{8} + 27 q^{9} + ( -15 \beta_{1} + 2 \beta_{3} + \beta_{7} ) q^{10} + ( 4 + 3 \beta_{1} + 4 \beta_{2} - \beta_{3} + 7 \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{7} ) q^{11} + ( -45 - 8 \beta_{2} - 9 \beta_{4} ) q^{12} + ( 9 \beta_{1} + 2 \beta_{3} - 2 \beta_{6} - \beta_{7} ) q^{13} + ( -143 - 17 \beta_{2} - 16 \beta_{4} + \beta_{5} ) q^{14} + ( 15 - 5 \beta_{2} - 6 \beta_{4} - 3 \beta_{5} ) q^{15} + ( 178 + 39 \beta_{2} + 33 \beta_{4} - 3 \beta_{5} ) q^{16} + ( 23 \beta_{1} - 8 \beta_{3} + \beta_{6} - 5 \beta_{7} ) q^{17} + 27 \beta_{1} q^{18} + ( -3 \beta_{1} - 9 \beta_{3} - 5 \beta_{6} - 2 \beta_{7} ) q^{19} + ( 321 - 9 \beta_{2} + 10 \beta_{4} - 9 \beta_{5} ) q^{20} + ( 22 \beta_{1} + 2 \beta_{3} + 3 \beta_{6} - 6 \beta_{7} ) q^{21} + ( -100 + 42 \beta_{1} + \beta_{2} + 19 \beta_{3} + 19 \beta_{4} + 5 \beta_{5} - 7 \beta_{6} + \beta_{7} ) q^{22} + ( 77 + 29 \beta_{2} + 2 \beta_{4} - 25 \beta_{5} ) q^{23} + ( -83 \beta_{1} - 10 \beta_{3} + 9 \beta_{6} ) q^{24} + ( -279 - 48 \beta_{2} - 6 \beta_{4} - 12 \beta_{5} ) q^{25} + ( -199 - 43 \beta_{2} - 56 \beta_{4} + 17 \beta_{5} ) q^{26} + 27 \beta_{2} q^{27} + ( -189 \beta_{1} - 32 \beta_{3} + 17 \beta_{7} ) q^{28} + ( -105 \beta_{1} + 16 \beta_{3} + 13 \beta_{6} - 11 \beta_{7} ) q^{29} + ( 5 \beta_{1} - 20 \beta_{3} + 6 \beta_{6} - 3 \beta_{7} ) q^{30} + ( 338 - 96 \beta_{2} + 18 \beta_{4} + 12 \beta_{5} ) q^{31} + ( 266 \beta_{1} + 70 \beta_{3} - 17 \beta_{6} + 13 \beta_{7} ) q^{32} + ( 138 - 2 \beta_{1} - 10 \beta_{2} + 8 \beta_{3} + 15 \beta_{4} - 24 \beta_{5} + 9 \beta_{7} ) q^{33} + ( -648 + 126 \beta_{2} + 66 \beta_{5} ) q^{34} + ( -20 \beta_{1} - 14 \beta_{3} - 8 \beta_{6} + 16 \beta_{7} ) q^{35} + ( -270 - 27 \beta_{2} - 27 \beta_{4} + 27 \beta_{5} ) q^{36} + ( 670 + 76 \beta_{2} + 34 \beta_{4} - 16 \beta_{5} ) q^{37} + ( 66 + 228 \beta_{2} - 12 \beta_{4} + 42 \beta_{5} ) q^{38} + ( 71 \beta_{1} + 4 \beta_{3} - 12 \beta_{6} - 3 \beta_{7} ) q^{39} + ( 231 \beta_{1} + 34 \beta_{3} - 10 \beta_{6} + 7 \beta_{7} ) q^{40} + ( -103 \beta_{1} - 84 \beta_{3} - 3 \beta_{6} + 3 \beta_{7} ) q^{41} + ( -567 - 111 \beta_{2} - 54 \beta_{4} + 45 \beta_{5} ) q^{42} + ( -99 \beta_{1} + 31 \beta_{3} + 27 \beta_{6} - 10 \beta_{7} ) q^{43} + ( -835 + 4 \beta_{1} - 343 \beta_{2} + 28 \beta_{3} - 138 \beta_{4} + 35 \beta_{5} + 13 \beta_{6} - 11 \beta_{7} ) q^{44} + ( -135 + 27 \beta_{2} + 27 \beta_{5} ) q^{45} + ( 447 \beta_{1} + 8 \beta_{3} - 2 \beta_{6} - 25 \beta_{7} ) q^{46} + ( 43 + 19 \beta_{2} + 156 \beta_{4} + 19 \beta_{5} ) q^{47} + ( 1287 + 112 \beta_{2} + 117 \beta_{4} - 90 \beta_{5} ) q^{48} + ( -799 + 218 \beta_{2} - 220 \beta_{4} - 110 \beta_{5} ) q^{49} + ( -267 \beta_{1} - 72 \beta_{3} + 6 \beta_{6} - 12 \beta_{7} ) q^{50} + ( -81 \beta_{1} + 45 \beta_{3} - 27 \beta_{6} + 18 \beta_{7} ) q^{51} + ( -681 \beta_{1} - 106 \beta_{3} + 24 \beta_{6} + \beta_{7} ) q^{52} + ( 489 - 453 \beta_{2} + 100 \beta_{4} - 93 \beta_{5} ) q^{53} + ( 54 \beta_{1} + 27 \beta_{3} ) q^{54} + ( 486 - 87 \beta_{1} - 292 \beta_{2} + 40 \beta_{3} - 52 \beta_{4} - 26 \beta_{5} + 16 \beta_{6} - 9 \beta_{7} ) q^{55} + ( 2351 + 689 \beta_{2} + 310 \beta_{4} - 211 \beta_{5} ) q^{56} + ( -201 \beta_{1} + 12 \beta_{3} - 27 \beta_{6} - 9 \beta_{7} ) q^{57} + ( 2758 - 382 \beta_{2} + 50 \beta_{4} - 110 \beta_{5} ) q^{58} + ( -2156 + 112 \beta_{2} + 90 \beta_{4} + 154 \beta_{5} ) q^{59} + ( -75 + 301 \beta_{2} + 84 \beta_{4} - 3 \beta_{5} ) q^{60} + ( 603 \beta_{1} - 38 \beta_{3} + 28 \beta_{6} - 63 \beta_{7} ) q^{61} + ( 110 \beta_{1} - 48 \beta_{3} - 18 \beta_{6} + 12 \beta_{7} ) q^{62} + ( 162 \beta_{1} + 27 \beta_{3} - 27 \beta_{6} + 27 \beta_{7} ) q^{63} + ( -3464 - 1011 \beta_{2} - 315 \beta_{4} + 51 \beta_{5} ) q^{64} + ( -184 \beta_{1} - 52 \beta_{3} + 2 \beta_{6} - 10 \beta_{7} ) q^{65} + ( 81 + 496 \beta_{1} - 138 \beta_{2} - 4 \beta_{3} + 27 \beta_{4} - 72 \beta_{5} - 15 \beta_{6} - 24 \beta_{7} ) q^{66} + ( -544 + 510 \beta_{2} - 342 \beta_{4} + 174 \beta_{5} ) q^{67} + ( -820 \beta_{1} + 64 \beta_{3} + 16 \beta_{6} - 14 \beta_{7} ) q^{68} + ( 1095 + 73 \beta_{2} + 156 \beta_{4} + 69 \beta_{5} ) q^{69} + ( 446 + 448 \beta_{2} + 166 \beta_{4} - 64 \beta_{5} ) q^{70} + ( -1737 + 747 \beta_{2} - 320 \beta_{4} + 171 \beta_{5} ) q^{71} + ( -378 \beta_{1} - 54 \beta_{3} + 27 \beta_{6} + 27 \beta_{7} ) q^{72} + ( 588 \beta_{1} + 62 \beta_{6} - 16 \beta_{7} ) q^{73} + ( 1218 \beta_{1} + 128 \beta_{3} - 34 \beta_{6} - 16 \beta_{7} ) q^{74} + ( -1188 - 267 \beta_{2} + 54 \beta_{4} + 54 \beta_{5} ) q^{75} + ( -102 \beta_{1} + 102 \beta_{3} - 68 \beta_{6} + 10 \beta_{7} ) q^{76} + ( 2837 + 765 \beta_{1} - 421 \beta_{2} + 64 \beta_{3} + 148 \beta_{4} + 143 \beta_{5} - 71 \beta_{6} + 49 \beta_{7} ) q^{77} + ( -1701 - 87 \beta_{2} - 270 \beta_{4} + 117 \beta_{5} ) q^{78} + ( 324 \beta_{1} - 191 \beta_{3} + 95 \beta_{6} + 91 \beta_{7} ) q^{79} + ( -563 - 1025 \beta_{2} - 366 \beta_{4} + 7 \beta_{5} ) q^{80} + 729 q^{81} + ( 2108 + 1984 \beta_{2} + 682 \beta_{4} + 56 \beta_{5} ) q^{82} + ( -302 \beta_{1} + 240 \beta_{3} - 48 \beta_{6} + 150 \beta_{7} ) q^{83} + ( -1301 \beta_{1} - 142 \beta_{3} + 102 \beta_{6} - 51 \beta_{7} ) q^{84} + ( -912 \beta_{1} + 216 \beta_{3} - 10 \beta_{6} - 4 \beta_{7} ) q^{85} + ( 2578 - 812 \beta_{2} + 116 \beta_{4} - 182 \beta_{5} ) q^{86} + ( 305 \beta_{1} - 113 \beta_{3} - 27 \beta_{6} + 72 \beta_{7} ) q^{87} + ( -1592 - 2097 \beta_{1} - 739 \beta_{2} - 280 \beta_{3} + 161 \beta_{4} + 55 \beta_{5} + 26 \beta_{6} + 51 \beta_{7} ) q^{88} + ( 2044 + 946 \beta_{2} - 156 \beta_{4} - 206 \beta_{5} ) q^{89} + ( -405 \beta_{1} + 54 \beta_{3} + 27 \beta_{7} ) q^{90} + ( -2560 - 554 \beta_{2} - 302 \beta_{4} + 182 \beta_{5} ) q^{91} + ( -10241 - 245 \beta_{2} - 720 \beta_{4} + 187 \beta_{5} ) q^{92} + ( -2628 + 302 \beta_{2} - 18 \beta_{4} - 90 \beta_{5} ) q^{93} + ( 789 \beta_{1} + 350 \beta_{3} - 156 \beta_{6} + 19 \beta_{7} ) q^{94} + ( -536 \beta_{1} + 158 \beta_{3} - 82 \beta_{6} + 26 \beta_{7} ) q^{95} + ( 1965 \beta_{1} + 96 \beta_{3} + 27 \beta_{6} - 90 \beta_{7} ) q^{96} + ( 938 - 1098 \beta_{2} + 492 \beta_{4} + 30 \beta_{5} ) q^{97} + ( -363 \beta_{1} - 332 \beta_{3} + 220 \beta_{6} - 110 \beta_{7} ) q^{98} + ( 108 + 81 \beta_{1} + 108 \beta_{2} - 27 \beta_{3} + 189 \beta_{4} + 27 \beta_{5} + 54 \beta_{6} - 27 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 76q^{4} - 36q^{5} + 216q^{9} + O(q^{10}) \) \( 8q - 76q^{4} - 36q^{5} + 216q^{9} + 36q^{11} - 360q^{12} - 1140q^{14} + 108q^{15} + 1412q^{16} + 2532q^{20} - 780q^{22} + 516q^{23} - 2280q^{25} - 1524q^{26} + 2752q^{31} + 1008q^{33} - 4920q^{34} - 2052q^{36} + 5296q^{37} + 696q^{38} - 4356q^{42} - 6540q^{44} - 972q^{45} + 420q^{47} + 9936q^{48} - 6832q^{49} + 3540q^{53} + 3784q^{55} + 17964q^{56} + 21624q^{58} - 16632q^{59} - 612q^{60} - 27508q^{64} + 360q^{66} - 3656q^{67} + 9036q^{69} + 3312q^{70} - 13212q^{71} - 9288q^{75} + 23268q^{77} - 13140q^{78} - 4476q^{80} + 5832q^{81} + 17088q^{82} + 19896q^{86} - 12516q^{88} + 15528q^{89} - 19752q^{91} - 81180q^{92} - 21384q^{93} + 7624q^{97} + 972q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 102 x^{6} + 2913 x^{4} + 23292 x^{2} + 41364\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( -5 \nu^{6} - 444 \nu^{4} - 9669 \nu^{2} - 38034 \)\()/3216\)
\(\beta_{3}\)\(=\)\((\)\( -5 \nu^{7} - 444 \nu^{5} - 9669 \nu^{3} - 44466 \nu \)\()/3216\)
\(\beta_{4}\)\(=\)\((\)\( 3 \nu^{6} + 320 \nu^{4} + 8535 \nu^{2} + 31182 \)\()/1608\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{6} + 196 \nu^{4} + 10617 \nu^{2} + 107946 \)\()/3216\)
\(\beta_{6}\)\(=\)\((\)\( -2 \nu^{7} - 191 \nu^{5} - 4551 \nu^{3} - 16500 \nu \)\()/402\)
\(\beta_{7}\)\(=\)\((\)\( 3 \nu^{7} + 320 \nu^{5} + 10143 \nu^{3} + 95502 \nu \)\()/1608\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{5} - \beta_{4} - \beta_{2} - 26\)
\(\nu^{3}\)\(=\)\(\beta_{7} + \beta_{6} - 2 \beta_{3} - 46 \beta_{1}\)
\(\nu^{4}\)\(=\)\(-51 \beta_{5} + 81 \beta_{4} + 87 \beta_{2} + 1170\)
\(\nu^{5}\)\(=\)\(-51 \beta_{7} - 81 \beta_{6} + 198 \beta_{3} + 2442 \beta_{1}\)
\(\nu^{6}\)\(=\)\(2595 \beta_{5} - 5259 \beta_{4} - 6435 \beta_{2} - 61224\)
\(\nu^{7}\)\(=\)\(2595 \beta_{7} + 5259 \beta_{6} - 14358 \beta_{3} - 136788 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/33\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
10.1
7.70102i
5.58567i
3.00247i
1.57474i
1.57474i
3.00247i
5.58567i
7.70102i
7.70102i 5.19615 −43.3057 −12.5296 40.0157i 63.6540i 210.281i 27.0000 96.4909i
10.2 5.58567i −5.19615 −15.1997 −29.7487 29.0240i 12.9420i 4.47031i 27.0000 166.166i
10.3 3.00247i 5.19615 6.98517 8.72578 15.6013i 1.45810i 69.0123i 27.0000 26.1989i
10.4 1.57474i −5.19615 13.5202 15.5526 8.18260i 93.8006i 46.4867i 27.0000 24.4913i
10.5 1.57474i −5.19615 13.5202 15.5526 8.18260i 93.8006i 46.4867i 27.0000 24.4913i
10.6 3.00247i 5.19615 6.98517 8.72578 15.6013i 1.45810i 69.0123i 27.0000 26.1989i
10.7 5.58567i −5.19615 −15.1997 −29.7487 29.0240i 12.9420i 4.47031i 27.0000 166.166i
10.8 7.70102i 5.19615 −43.3057 −12.5296 40.0157i 63.6540i 210.281i 27.0000 96.4909i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 10.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 33.5.c.a 8
3.b odd 2 1 99.5.c.c 8
4.b odd 2 1 528.5.j.a 8
11.b odd 2 1 inner 33.5.c.a 8
33.d even 2 1 99.5.c.c 8
44.c even 2 1 528.5.j.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.5.c.a 8 1.a even 1 1 trivial
33.5.c.a 8 11.b odd 2 1 inner
99.5.c.c 8 3.b odd 2 1
99.5.c.c 8 33.d even 2 1
528.5.j.a 8 4.b odd 2 1
528.5.j.a 8 44.c even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(33, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 26 T^{2} + 289 T^{4} - 836 T^{6} + 2068 T^{8} - 214016 T^{10} + 18939904 T^{12} - 436207616 T^{14} + 4294967296 T^{16} \)
$3$ \( ( 1 - 27 T^{2} )^{4} \)
$5$ \( ( 1 + 18 T + 1982 T^{2} + 30438 T^{3} + 1746834 T^{4} + 19023750 T^{5} + 774218750 T^{6} + 4394531250 T^{7} + 152587890625 T^{8} )^{2} \)
$7$ \( 1 - 6188 T^{2} + 11678572 T^{4} - 6516669572 T^{6} + 1490364730198 T^{8} - 37567303265335172 T^{10} + \)\(38\!\cdots\!72\)\( T^{12} - \)\(11\!\cdots\!88\)\( T^{14} + \)\(11\!\cdots\!01\)\( T^{16} \)
$11$ \( 1 - 36 T - 4816 T^{2} - 1121340 T^{3} + 160159230 T^{4} - 16417538940 T^{5} - 1032352370896 T^{6} - 112983421561956 T^{7} + 45949729863572161 T^{8} \)
$13$ \( 1 - 162008 T^{2} + 12590117968 T^{4} - 619436460996728 T^{6} + 21062441542359634558 T^{8} - \)\(50\!\cdots\!88\)\( T^{10} + \)\(83\!\cdots\!88\)\( T^{12} - \)\(87\!\cdots\!88\)\( T^{14} + \)\(44\!\cdots\!81\)\( T^{16} \)
$17$ \( 1 - 341468 T^{2} + 59012100712 T^{4} - 6828905158505300 T^{6} + \)\(62\!\cdots\!46\)\( T^{8} - \)\(47\!\cdots\!00\)\( T^{10} + \)\(28\!\cdots\!72\)\( T^{12} - \)\(11\!\cdots\!28\)\( T^{14} + \)\(23\!\cdots\!61\)\( T^{16} \)
$19$ \( 1 - 575396 T^{2} + 152808356152 T^{4} - 26685780964652108 T^{6} + \)\(37\!\cdots\!98\)\( T^{8} - \)\(45\!\cdots\!28\)\( T^{10} + \)\(44\!\cdots\!12\)\( T^{12} - \)\(28\!\cdots\!16\)\( T^{14} + \)\(83\!\cdots\!61\)\( T^{16} \)
$23$ \( ( 1 - 258 T + 660806 T^{2} - 61700622 T^{3} + 215285764002 T^{4} - 17266363761102 T^{5} + 51748368939596486 T^{6} - 5653973103461242818 T^{7} + \)\(61\!\cdots\!61\)\( T^{8} )^{2} \)
$29$ \( 1 - 2005364 T^{2} + 2077725355336 T^{4} - 1841644838469189788 T^{6} + \)\(14\!\cdots\!54\)\( T^{8} - \)\(92\!\cdots\!68\)\( T^{10} + \)\(51\!\cdots\!56\)\( T^{12} - \)\(25\!\cdots\!84\)\( T^{14} + \)\(62\!\cdots\!41\)\( T^{16} \)
$31$ \( ( 1 - 1376 T + 3679672 T^{2} - 3640691072 T^{3} + 5096962849966 T^{4} - 3362254659504512 T^{5} + 3138359269522599352 T^{6} - \)\(10\!\cdots\!36\)\( T^{7} + \)\(72\!\cdots\!81\)\( T^{8} )^{2} \)
$37$ \( ( 1 - 2648 T + 9245032 T^{2} - 15286625576 T^{3} + 27654983547214 T^{4} - 28649597476141736 T^{5} + 32472984950842170472 T^{6} - \)\(17\!\cdots\!88\)\( T^{7} + \)\(12\!\cdots\!41\)\( T^{8} )^{2} \)
$41$ \( 1 - 3972980 T^{2} + 15101282902792 T^{4} - 53462970682481231900 T^{6} + \)\(21\!\cdots\!90\)\( T^{8} - \)\(42\!\cdots\!00\)\( T^{10} + \)\(96\!\cdots\!72\)\( T^{12} - \)\(20\!\cdots\!80\)\( T^{14} + \)\(40\!\cdots\!81\)\( T^{16} \)
$43$ \( 1 - 18385892 T^{2} + 170175980842552 T^{4} - \)\(10\!\cdots\!76\)\( T^{6} + \)\(40\!\cdots\!14\)\( T^{8} - \)\(11\!\cdots\!76\)\( T^{10} + \)\(23\!\cdots\!52\)\( T^{12} - \)\(29\!\cdots\!92\)\( T^{14} + \)\(18\!\cdots\!01\)\( T^{16} \)
$47$ \( ( 1 - 210 T + 12240722 T^{2} - 2782593654 T^{3} + 84242391941250 T^{4} - 13578169384144374 T^{5} + \)\(29\!\cdots\!42\)\( T^{6} - \)\(24\!\cdots\!10\)\( T^{7} + \)\(56\!\cdots\!21\)\( T^{8} )^{2} \)
$53$ \( ( 1 - 1770 T + 16944206 T^{2} - 10757127678 T^{3} + 127498934985138 T^{4} - 84878911557833118 T^{5} + \)\(10\!\cdots\!66\)\( T^{6} - \)\(86\!\cdots\!70\)\( T^{7} + \)\(38\!\cdots\!21\)\( T^{8} )^{2} \)
$59$ \( ( 1 + 8316 T + 56229104 T^{2} + 271941082596 T^{3} + 1029158018743038 T^{4} + 3295208268546549156 T^{5} + \)\(82\!\cdots\!84\)\( T^{6} + \)\(14\!\cdots\!96\)\( T^{7} + \)\(21\!\cdots\!41\)\( T^{8} )^{2} \)
$61$ \( 1 - 45292376 T^{2} + 1317023575398064 T^{4} - \)\(27\!\cdots\!16\)\( T^{6} + \)\(43\!\cdots\!50\)\( T^{8} - \)\(53\!\cdots\!96\)\( T^{10} + \)\(48\!\cdots\!04\)\( T^{12} - \)\(31\!\cdots\!16\)\( T^{14} + \)\(13\!\cdots\!21\)\( T^{16} \)
$67$ \( ( 1 + 1828 T + 26966776 T^{2} - 111245917268 T^{3} + 82170182924782 T^{4} - 2241729939623457428 T^{5} + \)\(10\!\cdots\!16\)\( T^{6} + \)\(14\!\cdots\!08\)\( T^{7} + \)\(16\!\cdots\!81\)\( T^{8} )^{2} \)
$71$ \( ( 1 + 6606 T + 54779210 T^{2} + 58180973226 T^{3} + 636995684602866 T^{4} + 1478476331888652906 T^{5} + \)\(35\!\cdots\!10\)\( T^{6} + \)\(10\!\cdots\!46\)\( T^{7} + \)\(41\!\cdots\!21\)\( T^{8} )^{2} \)
$73$ \( 1 - 165039416 T^{2} + 13195111482415036 T^{4} - \)\(65\!\cdots\!96\)\( T^{6} + \)\(22\!\cdots\!74\)\( T^{8} - \)\(53\!\cdots\!76\)\( T^{10} + \)\(85\!\cdots\!96\)\( T^{12} - \)\(86\!\cdots\!56\)\( T^{14} + \)\(42\!\cdots\!21\)\( T^{16} \)
$79$ \( 1 + 7078036 T^{2} + 3829765928741164 T^{4} + \)\(41\!\cdots\!64\)\( T^{6} + \)\(77\!\cdots\!14\)\( T^{8} + \)\(62\!\cdots\!04\)\( T^{10} + \)\(88\!\cdots\!44\)\( T^{12} + \)\(24\!\cdots\!16\)\( T^{14} + \)\(52\!\cdots\!41\)\( T^{16} \)
$83$ \( 1 - 135574280 T^{2} + 10334922471866332 T^{4} - \)\(61\!\cdots\!96\)\( T^{6} + \)\(30\!\cdots\!50\)\( T^{8} - \)\(13\!\cdots\!36\)\( T^{10} + \)\(52\!\cdots\!92\)\( T^{12} - \)\(15\!\cdots\!80\)\( T^{14} + \)\(25\!\cdots\!61\)\( T^{16} \)
$89$ \( ( 1 - 7764 T + 181541324 T^{2} - 755869455948 T^{3} + 13637128342858662 T^{4} - 47424943569628299468 T^{5} + \)\(71\!\cdots\!44\)\( T^{6} - \)\(19\!\cdots\!44\)\( T^{7} + \)\(15\!\cdots\!61\)\( T^{8} )^{2} \)
$97$ \( ( 1 - 3812 T + 232957276 T^{2} - 518258717228 T^{3} + 25105593700183222 T^{4} - 45881071608177153068 T^{5} + \)\(18\!\cdots\!36\)\( T^{6} - \)\(26\!\cdots\!92\)\( T^{7} + \)\(61\!\cdots\!21\)\( T^{8} )^{2} \)
show more
show less