Properties

Label 32.3.h.a.19.6
Level $32$
Weight $3$
Character 32.19
Analytic conductor $0.872$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 32.h (of order \(8\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.871936845953\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 19.6
Character \(\chi\) \(=\) 32.19
Dual form 32.3.h.a.27.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.61758 + 1.17620i) q^{2} +(-1.37292 - 0.568682i) q^{3} +(1.23313 + 3.80518i) q^{4} +(2.28872 - 0.948019i) q^{5} +(-1.55193 - 2.53471i) q^{6} +(-6.37744 - 6.37744i) q^{7} +(-2.48095 + 7.60558i) q^{8} +(-4.80245 - 4.80245i) q^{9} +O(q^{10})\) \(q+(1.61758 + 1.17620i) q^{2} +(-1.37292 - 0.568682i) q^{3} +(1.23313 + 3.80518i) q^{4} +(2.28872 - 0.948019i) q^{5} +(-1.55193 - 2.53471i) q^{6} +(-6.37744 - 6.37744i) q^{7} +(-2.48095 + 7.60558i) q^{8} +(-4.80245 - 4.80245i) q^{9} +(4.81725 + 1.15849i) q^{10} +(-1.79646 + 0.744117i) q^{11} +(0.470949 - 5.92546i) q^{12} +(16.7036 + 6.91888i) q^{13} +(-2.81490 - 17.8171i) q^{14} -3.68135 q^{15} +(-12.9588 + 9.38456i) q^{16} +6.19811i q^{17} +(-2.11973 - 13.4170i) q^{18} +(-8.50083 + 20.5228i) q^{19} +(6.42967 + 7.53997i) q^{20} +(5.12898 + 12.3825i) q^{21} +(-3.78114 - 0.909316i) q^{22} +(23.6476 - 23.6476i) q^{23} +(7.73130 - 9.03098i) q^{24} +(-13.3382 + 13.3382i) q^{25} +(18.8815 + 30.8386i) q^{26} +(8.98045 + 21.6807i) q^{27} +(16.4031 - 32.1315i) q^{28} +(14.5725 - 35.1811i) q^{29} +(-5.95488 - 4.32999i) q^{30} +14.1609i q^{31} +(-31.9999 - 0.0617869i) q^{32} +2.88956 q^{33} +(-7.29019 + 10.0259i) q^{34} +(-20.6421 - 8.55025i) q^{35} +(12.3521 - 24.1962i) q^{36} +(-30.0695 + 12.4552i) q^{37} +(-37.8896 + 23.1987i) q^{38} +(-18.9981 - 18.9981i) q^{39} +(1.53204 + 19.7590i) q^{40} +(-56.9700 - 56.9700i) q^{41} +(-6.26765 + 26.0623i) q^{42} +(54.5034 - 22.5760i) q^{43} +(-5.04676 - 5.91825i) q^{44} +(-15.5443 - 6.43866i) q^{45} +(66.0659 - 10.4377i) q^{46} +34.8047 q^{47} +(23.1282 - 5.51482i) q^{48} +32.3435i q^{49} +(-37.2638 + 5.88726i) q^{50} +(3.52475 - 8.50951i) q^{51} +(-5.72981 + 72.0923i) q^{52} +(3.92967 + 9.48706i) q^{53} +(-10.9742 + 45.6331i) q^{54} +(-3.40615 + 3.40615i) q^{55} +(64.3263 - 32.6821i) q^{56} +(23.3419 - 23.3419i) q^{57} +(64.9521 - 39.7682i) q^{58} +(9.41777 + 22.7365i) q^{59} +(-4.53958 - 14.0082i) q^{60} +(3.00467 - 7.25391i) q^{61} +(-16.6560 + 22.9064i) q^{62} +61.2547i q^{63} +(-51.6898 - 37.7381i) q^{64} +44.7892 q^{65} +(4.67409 + 3.39868i) q^{66} +(-55.9040 - 23.1562i) q^{67} +(-23.5849 + 7.64307i) q^{68} +(-45.9141 + 19.0183i) q^{69} +(-23.3335 - 38.1099i) q^{70} +(6.27499 + 6.27499i) q^{71} +(48.4401 - 24.6108i) q^{72} +(66.4597 + 66.4597i) q^{73} +(-63.2896 - 15.2203i) q^{74} +(25.8974 - 10.7271i) q^{75} +(-88.5756 - 7.03989i) q^{76} +(16.2024 + 6.71124i) q^{77} +(-8.38548 - 53.0765i) q^{78} -75.8508 q^{79} +(-20.7623 + 33.7638i) q^{80} +26.2523i q^{81} +(-25.1457 - 159.161i) q^{82} +(-1.23390 + 2.97891i) q^{83} +(-40.7928 + 34.7859i) q^{84} +(5.87593 + 14.1857i) q^{85} +(114.717 + 27.5881i) q^{86} +(-40.0138 + 40.0138i) q^{87} +(-1.20252 - 15.5092i) q^{88} +(36.7030 - 36.7030i) q^{89} +(-17.5710 - 28.6982i) q^{90} +(-62.4018 - 150.651i) q^{91} +(119.144 + 60.8227i) q^{92} +(8.05304 - 19.4417i) q^{93} +(56.2994 + 40.9371i) q^{94} +55.0300i q^{95} +(43.8982 + 18.2826i) q^{96} +90.0528 q^{97} +(-38.0423 + 52.3182i) q^{98} +(12.2010 + 5.05381i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q - 4q^{2} - 4q^{3} - 4q^{4} - 4q^{5} - 4q^{6} - 4q^{7} - 4q^{8} - 4q^{9} + O(q^{10}) \) \( 28q - 4q^{2} - 4q^{3} - 4q^{4} - 4q^{5} - 4q^{6} - 4q^{7} - 4q^{8} - 4q^{9} - 44q^{10} - 4q^{11} - 52q^{12} - 4q^{13} - 20q^{14} - 8q^{15} + 16q^{16} + 56q^{18} - 4q^{19} + 76q^{20} - 4q^{21} + 144q^{22} - 68q^{23} + 208q^{24} - 4q^{25} + 96q^{26} - 100q^{27} + 56q^{28} - 4q^{29} + 20q^{30} - 24q^{32} - 8q^{33} - 48q^{34} + 92q^{35} - 336q^{36} - 4q^{37} - 396q^{38} + 188q^{39} - 408q^{40} - 4q^{41} - 424q^{42} + 92q^{43} - 188q^{44} - 40q^{45} - 36q^{46} - 8q^{47} + 48q^{48} + 308q^{50} + 224q^{51} + 420q^{52} - 164q^{53} + 592q^{54} + 252q^{55} + 552q^{56} - 4q^{57} + 528q^{58} + 124q^{59} + 440q^{60} - 68q^{61} + 216q^{62} - 232q^{64} - 8q^{65} - 580q^{66} - 164q^{67} - 368q^{68} + 188q^{69} - 664q^{70} - 260q^{71} - 748q^{72} - 4q^{73} - 532q^{74} - 488q^{75} - 516q^{76} + 220q^{77} - 236q^{78} - 520q^{79} + 312q^{80} + 636q^{82} - 484q^{83} + 992q^{84} + 96q^{85} + 688q^{86} - 452q^{87} + 672q^{88} - 4q^{89} + 872q^{90} - 196q^{91} + 616q^{92} + 32q^{93} + 40q^{94} - 128q^{96} - 8q^{97} - 328q^{98} + 216q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/32\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(31\)
\(\chi(n)\) \(e\left(\frac{7}{8}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61758 + 1.17620i 0.808790 + 0.588098i
\(3\) −1.37292 0.568682i −0.457640 0.189561i 0.141940 0.989875i \(-0.454666\pi\)
−0.599580 + 0.800315i \(0.704666\pi\)
\(4\) 1.23313 + 3.80518i 0.308282 + 0.951295i
\(5\) 2.28872 0.948019i 0.457744 0.189604i −0.141883 0.989883i \(-0.545316\pi\)
0.599627 + 0.800280i \(0.295316\pi\)
\(6\) −1.55193 2.53471i −0.258654 0.422452i
\(7\) −6.37744 6.37744i −0.911063 0.911063i 0.0852929 0.996356i \(-0.472817\pi\)
−0.996356 + 0.0852929i \(0.972817\pi\)
\(8\) −2.48095 + 7.60558i −0.310119 + 0.950698i
\(9\) −4.80245 4.80245i −0.533606 0.533606i
\(10\) 4.81725 + 1.15849i 0.481725 + 0.115849i
\(11\) −1.79646 + 0.744117i −0.163314 + 0.0676470i −0.462843 0.886440i \(-0.653171\pi\)
0.299529 + 0.954087i \(0.403171\pi\)
\(12\) 0.470949 5.92546i 0.0392458 0.493789i
\(13\) 16.7036 + 6.91888i 1.28490 + 0.532221i 0.917460 0.397827i \(-0.130236\pi\)
0.367436 + 0.930049i \(0.380236\pi\)
\(14\) −2.81490 17.8171i −0.201065 1.27265i
\(15\) −3.68135 −0.245423
\(16\) −12.9588 + 9.38456i −0.809924 + 0.586535i
\(17\) 6.19811i 0.364595i 0.983243 + 0.182297i \(0.0583533\pi\)
−0.983243 + 0.182297i \(0.941647\pi\)
\(18\) −2.11973 13.4170i −0.117763 0.745387i
\(19\) −8.50083 + 20.5228i −0.447412 + 1.08015i 0.525876 + 0.850561i \(0.323738\pi\)
−0.973288 + 0.229587i \(0.926262\pi\)
\(20\) 6.42967 + 7.53997i 0.321484 + 0.376998i
\(21\) 5.12898 + 12.3825i 0.244237 + 0.589641i
\(22\) −3.78114 0.909316i −0.171870 0.0413325i
\(23\) 23.6476 23.6476i 1.02815 1.02815i 0.0285625 0.999592i \(-0.490907\pi\)
0.999592 0.0285625i \(-0.00909295\pi\)
\(24\) 7.73130 9.03098i 0.322138 0.376291i
\(25\) −13.3382 + 13.3382i −0.533527 + 0.533527i
\(26\) 18.8815 + 30.8386i 0.726213 + 1.18610i
\(27\) 8.98045 + 21.6807i 0.332609 + 0.802990i
\(28\) 16.4031 32.1315i 0.585825 1.14755i
\(29\) 14.5725 35.1811i 0.502500 1.21314i −0.445618 0.895223i \(-0.647016\pi\)
0.948118 0.317919i \(-0.102984\pi\)
\(30\) −5.95488 4.32999i −0.198496 0.144333i
\(31\) 14.1609i 0.456803i 0.973567 + 0.228401i \(0.0733498\pi\)
−0.973567 + 0.228401i \(0.926650\pi\)
\(32\) −31.9999 0.0617869i −0.999998 0.00193084i
\(33\) 2.88956 0.0875623
\(34\) −7.29019 + 10.0259i −0.214417 + 0.294880i
\(35\) −20.6421 8.55025i −0.589775 0.244293i
\(36\) 12.3521 24.1962i 0.343115 0.672118i
\(37\) −30.0695 + 12.4552i −0.812689 + 0.336627i −0.750027 0.661408i \(-0.769959\pi\)
−0.0626629 + 0.998035i \(0.519959\pi\)
\(38\) −37.8896 + 23.1987i −0.997095 + 0.610491i
\(39\) −18.9981 18.9981i −0.487131 0.487131i
\(40\) 1.53204 + 19.7590i 0.0383010 + 0.493976i
\(41\) −56.9700 56.9700i −1.38951 1.38951i −0.826341 0.563170i \(-0.809582\pi\)
−0.563170 0.826341i \(-0.690418\pi\)
\(42\) −6.26765 + 26.0623i −0.149230 + 0.620531i
\(43\) 54.5034 22.5760i 1.26752 0.525024i 0.355310 0.934748i \(-0.384375\pi\)
0.912209 + 0.409724i \(0.134375\pi\)
\(44\) −5.04676 5.91825i −0.114699 0.134506i
\(45\) −15.5443 6.43866i −0.345429 0.143081i
\(46\) 66.0659 10.4377i 1.43622 0.226906i
\(47\) 34.8047 0.740525 0.370263 0.928927i \(-0.379268\pi\)
0.370263 + 0.928927i \(0.379268\pi\)
\(48\) 23.1282 5.51482i 0.481837 0.114892i
\(49\) 32.3435i 0.660072i
\(50\) −37.2638 + 5.88726i −0.745277 + 0.117745i
\(51\) 3.52475 8.50951i 0.0691128 0.166853i
\(52\) −5.72981 + 72.0923i −0.110189 + 1.38639i
\(53\) 3.92967 + 9.48706i 0.0741447 + 0.179001i 0.956606 0.291383i \(-0.0941154\pi\)
−0.882462 + 0.470384i \(0.844115\pi\)
\(54\) −10.9742 + 45.6331i −0.203225 + 0.845057i
\(55\) −3.40615 + 3.40615i −0.0619300 + 0.0619300i
\(56\) 64.3263 32.6821i 1.14868 0.583608i
\(57\) 23.3419 23.3419i 0.409507 0.409507i
\(58\) 64.9521 39.7682i 1.11986 0.685658i
\(59\) 9.41777 + 22.7365i 0.159623 + 0.385365i 0.983375 0.181586i \(-0.0581230\pi\)
−0.823752 + 0.566951i \(0.808123\pi\)
\(60\) −4.53958 14.0082i −0.0756597 0.233470i
\(61\) 3.00467 7.25391i 0.0492568 0.118916i −0.897336 0.441348i \(-0.854500\pi\)
0.946593 + 0.322432i \(0.104500\pi\)
\(62\) −16.6560 + 22.9064i −0.268644 + 0.369457i
\(63\) 61.2547i 0.972297i
\(64\) −51.6898 37.7381i −0.807653 0.589658i
\(65\) 44.7892 0.689065
\(66\) 4.67409 + 3.39868i 0.0708195 + 0.0514952i
\(67\) −55.9040 23.1562i −0.834388 0.345615i −0.0757497 0.997127i \(-0.524135\pi\)
−0.758638 + 0.651512i \(0.774135\pi\)
\(68\) −23.5849 + 7.64307i −0.346837 + 0.112398i
\(69\) −45.9141 + 19.0183i −0.665422 + 0.275627i
\(70\) −23.3335 38.1099i −0.333336 0.544427i
\(71\) 6.27499 + 6.27499i 0.0883801 + 0.0883801i 0.749915 0.661535i \(-0.230095\pi\)
−0.661535 + 0.749915i \(0.730095\pi\)
\(72\) 48.4401 24.6108i 0.672779 0.341817i
\(73\) 66.4597 + 66.4597i 0.910406 + 0.910406i 0.996304 0.0858977i \(-0.0273758\pi\)
−0.0858977 + 0.996304i \(0.527376\pi\)
\(74\) −63.2896 15.2203i −0.855265 0.205680i
\(75\) 25.8974 10.7271i 0.345299 0.143027i
\(76\) −88.5756 7.03989i −1.16547 0.0926301i
\(77\) 16.2024 + 6.71124i 0.210420 + 0.0871589i
\(78\) −8.38548 53.0765i −0.107506 0.680468i
\(79\) −75.8508 −0.960136 −0.480068 0.877231i \(-0.659388\pi\)
−0.480068 + 0.877231i \(0.659388\pi\)
\(80\) −20.7623 + 33.7638i −0.259529 + 0.422048i
\(81\) 26.2523i 0.324103i
\(82\) −25.1457 159.161i −0.306654 1.94099i
\(83\) −1.23390 + 2.97891i −0.0148663 + 0.0358905i −0.931138 0.364666i \(-0.881183\pi\)
0.916272 + 0.400556i \(0.131183\pi\)
\(84\) −40.7928 + 34.7859i −0.485628 + 0.414117i
\(85\) 5.87593 + 14.1857i 0.0691286 + 0.166891i
\(86\) 114.717 + 27.5881i 1.33392 + 0.320791i
\(87\) −40.0138 + 40.0138i −0.459928 + 0.459928i
\(88\) −1.20252 15.5092i −0.0136651 0.176241i
\(89\) 36.7030 36.7030i 0.412393 0.412393i −0.470178 0.882572i \(-0.655810\pi\)
0.882572 + 0.470178i \(0.155810\pi\)
\(90\) −17.5710 28.6982i −0.195234 0.318868i
\(91\) −62.4018 150.651i −0.685734 1.65551i
\(92\) 119.144 + 60.8227i 1.29504 + 0.661116i
\(93\) 8.05304 19.4417i 0.0865918 0.209051i
\(94\) 56.2994 + 40.9371i 0.598929 + 0.435501i
\(95\) 55.0300i 0.579263i
\(96\) 43.8982 + 18.2826i 0.457273 + 0.190444i
\(97\) 90.0528 0.928379 0.464189 0.885736i \(-0.346346\pi\)
0.464189 + 0.885736i \(0.346346\pi\)
\(98\) −38.0423 + 52.3182i −0.388187 + 0.533859i
\(99\) 12.2010 + 5.05381i 0.123242 + 0.0510486i
\(100\) −67.2018 34.3064i −0.672018 0.343064i
\(101\) −20.0870 + 8.32031i −0.198881 + 0.0823793i −0.479901 0.877323i \(-0.659327\pi\)
0.281020 + 0.959702i \(0.409327\pi\)
\(102\) 15.7104 9.61901i 0.154024 0.0943040i
\(103\) 4.88882 + 4.88882i 0.0474642 + 0.0474642i 0.730441 0.682976i \(-0.239315\pi\)
−0.682976 + 0.730441i \(0.739315\pi\)
\(104\) −94.0630 + 109.876i −0.904452 + 1.05650i
\(105\) 23.4776 + 23.4776i 0.223596 + 0.223596i
\(106\) −4.80208 + 19.9681i −0.0453027 + 0.188379i
\(107\) −51.9710 + 21.5271i −0.485710 + 0.201188i −0.612080 0.790795i \(-0.709667\pi\)
0.126371 + 0.991983i \(0.459667\pi\)
\(108\) −71.4250 + 60.9074i −0.661343 + 0.563957i
\(109\) −49.8054 20.6301i −0.456931 0.189267i 0.142333 0.989819i \(-0.454540\pi\)
−0.599263 + 0.800552i \(0.704540\pi\)
\(110\) −9.51602 + 1.50342i −0.0865093 + 0.0136675i
\(111\) 48.3661 0.435730
\(112\) 142.493 + 22.7944i 1.27226 + 0.203522i
\(113\) 62.0870i 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(114\) 65.2120 10.3028i 0.572035 0.0903751i
\(115\) 31.7043 76.5410i 0.275690 0.665574i
\(116\) 151.840 + 12.0681i 1.30897 + 0.104035i
\(117\) −46.9909 113.446i −0.401632 0.969624i
\(118\) −11.5086 + 47.8553i −0.0975304 + 0.405553i
\(119\) 39.5281 39.5281i 0.332169 0.332169i
\(120\) 9.13325 27.9988i 0.0761104 0.233324i
\(121\) −82.8864 + 82.8864i −0.685011 + 0.685011i
\(122\) 13.3923 8.19970i 0.109773 0.0672106i
\(123\) 45.8174 + 110.613i 0.372499 + 0.899292i
\(124\) −53.8847 + 17.4622i −0.434554 + 0.140824i
\(125\) −41.5830 + 100.390i −0.332664 + 0.803122i
\(126\) −72.0475 + 99.0844i −0.571806 + 0.786384i
\(127\) 177.045i 1.39406i −0.717043 0.697029i \(-0.754505\pi\)
0.717043 0.697029i \(-0.245495\pi\)
\(128\) −39.2250 121.842i −0.306445 0.951888i
\(129\) −87.6673 −0.679592
\(130\) 72.4502 + 52.6809i 0.557309 + 0.405238i
\(131\) 88.7654 + 36.7678i 0.677598 + 0.280670i 0.694823 0.719181i \(-0.255483\pi\)
−0.0172241 + 0.999852i \(0.505483\pi\)
\(132\) 3.56320 + 10.9953i 0.0269939 + 0.0832976i
\(133\) 185.097 76.6695i 1.39170 0.576462i
\(134\) −63.1930 103.211i −0.471589 0.770231i
\(135\) 41.1075 + 41.1075i 0.304500 + 0.304500i
\(136\) −47.1402 15.3772i −0.346619 0.113068i
\(137\) −58.5583 58.5583i −0.427433 0.427433i 0.460320 0.887753i \(-0.347735\pi\)
−0.887753 + 0.460320i \(0.847735\pi\)
\(138\) −96.6390 23.2404i −0.700282 0.168409i
\(139\) −166.832 + 69.1039i −1.20023 + 0.497151i −0.891072 0.453861i \(-0.850046\pi\)
−0.309155 + 0.951012i \(0.600046\pi\)
\(140\) 7.08082 89.0906i 0.0505773 0.636361i
\(141\) −47.7840 19.7928i −0.338894 0.140374i
\(142\) 2.76968 + 17.5309i 0.0195048 + 0.123457i
\(143\) −35.1558 −0.245845
\(144\) 107.303 + 17.1650i 0.745158 + 0.119202i
\(145\) 94.3348i 0.650585i
\(146\) 29.3343 + 185.673i 0.200920 + 1.27174i
\(147\) 18.3932 44.4050i 0.125124 0.302075i
\(148\) −84.4739 99.0610i −0.570769 0.669331i
\(149\) 18.0040 + 43.4655i 0.120832 + 0.291715i 0.972709 0.232027i \(-0.0745357\pi\)
−0.851877 + 0.523742i \(0.824536\pi\)
\(150\) 54.5082 + 13.1085i 0.363388 + 0.0873902i
\(151\) −68.3596 + 68.3596i −0.452713 + 0.452713i −0.896254 0.443541i \(-0.853722\pi\)
0.443541 + 0.896254i \(0.353722\pi\)
\(152\) −134.998 115.570i −0.888144 0.760328i
\(153\) 29.7661 29.7661i 0.194550 0.194550i
\(154\) 18.3149 + 29.9131i 0.118928 + 0.194241i
\(155\) 13.4248 + 32.4103i 0.0866115 + 0.209099i
\(156\) 48.8641 95.7184i 0.313232 0.613580i
\(157\) −74.5650 + 180.016i −0.474936 + 1.14660i 0.487020 + 0.873391i \(0.338084\pi\)
−0.961956 + 0.273206i \(0.911916\pi\)
\(158\) −122.695 89.2153i −0.776549 0.564654i
\(159\) 15.2597i 0.0959730i
\(160\) −73.2975 + 30.1952i −0.458110 + 0.188720i
\(161\) −301.622 −1.87343
\(162\) −30.8778 + 42.4652i −0.190604 + 0.262131i
\(163\) 267.123 + 110.646i 1.63879 + 0.678811i 0.996175 0.0873756i \(-0.0278480\pi\)
0.642619 + 0.766186i \(0.277848\pi\)
\(164\) 146.530 287.032i 0.893473 1.75020i
\(165\) 6.61339 2.73936i 0.0400812 0.0166022i
\(166\) −5.49972 + 3.36731i −0.0331308 + 0.0202850i
\(167\) 99.3059 + 99.3059i 0.594646 + 0.594646i 0.938883 0.344237i \(-0.111862\pi\)
−0.344237 + 0.938883i \(0.611862\pi\)
\(168\) −106.900 + 8.28865i −0.636312 + 0.0493372i
\(169\) 111.640 + 111.640i 0.660592 + 0.660592i
\(170\) −7.18042 + 29.8578i −0.0422378 + 0.175634i
\(171\) 139.385 57.7350i 0.815115 0.337632i
\(172\) 153.116 + 179.556i 0.890207 + 1.04393i
\(173\) 187.259 + 77.5652i 1.08242 + 0.448354i 0.851358 0.524585i \(-0.175780\pi\)
0.231063 + 0.972939i \(0.425780\pi\)
\(174\) −111.789 + 17.6615i −0.642468 + 0.101503i
\(175\) 170.127 0.972153
\(176\) 16.2967 26.5018i 0.0925948 0.150578i
\(177\) 36.5711i 0.206617i
\(178\) 102.540 16.2001i 0.576067 0.0910121i
\(179\) −101.230 + 244.390i −0.565528 + 1.36531i 0.339761 + 0.940512i \(0.389654\pi\)
−0.905290 + 0.424795i \(0.860346\pi\)
\(180\) 5.33212 67.0885i 0.0296229 0.372714i
\(181\) 6.07796 + 14.6735i 0.0335799 + 0.0810690i 0.939780 0.341780i \(-0.111030\pi\)
−0.906200 + 0.422849i \(0.861030\pi\)
\(182\) 76.2554 317.087i 0.418986 1.74224i
\(183\) −8.25033 + 8.25033i −0.0450838 + 0.0450838i
\(184\) 121.185 + 238.522i 0.658614 + 1.29631i
\(185\) −57.0130 + 57.0130i −0.308178 + 0.308178i
\(186\) 35.8937 21.9766i 0.192977 0.118154i
\(187\) −4.61212 11.1346i −0.0246637 0.0595435i
\(188\) 42.9187 + 132.438i 0.228291 + 0.704458i
\(189\) 80.9953 195.540i 0.428546 1.03460i
\(190\) −64.7260 + 89.0154i −0.340663 + 0.468502i
\(191\) 370.577i 1.94019i −0.242716 0.970097i \(-0.578038\pi\)
0.242716 0.970097i \(-0.421962\pi\)
\(192\) 49.5049 + 81.2065i 0.257838 + 0.422950i
\(193\) −132.679 −0.687456 −0.343728 0.939069i \(-0.611690\pi\)
−0.343728 + 0.939069i \(0.611690\pi\)
\(194\) 145.668 + 105.920i 0.750864 + 0.545977i
\(195\) −61.4920 25.4708i −0.315344 0.130620i
\(196\) −123.073 + 39.8837i −0.627923 + 0.203488i
\(197\) 116.390 48.2104i 0.590814 0.244723i −0.0671870 0.997740i \(-0.521402\pi\)
0.658001 + 0.753017i \(0.271402\pi\)
\(198\) 13.7918 + 22.5257i 0.0696555 + 0.113766i
\(199\) −89.9950 89.9950i −0.452236 0.452236i 0.443860 0.896096i \(-0.353609\pi\)
−0.896096 + 0.443860i \(0.853609\pi\)
\(200\) −68.3532 134.536i −0.341766 0.672679i
\(201\) 63.5832 + 63.5832i 0.316334 + 0.316334i
\(202\) −42.2786 10.1675i −0.209300 0.0503340i
\(203\) −317.301 + 131.430i −1.56306 + 0.647440i
\(204\) 36.7267 + 2.91899i 0.180033 + 0.0143088i
\(205\) −184.397 76.3797i −0.899498 0.372584i
\(206\) 2.15785 + 13.6582i 0.0104750 + 0.0663022i
\(207\) −227.132 −1.09726
\(208\) −281.390 + 67.0961i −1.35283 + 0.322578i
\(209\) 43.1940i 0.206670i
\(210\) 10.3627 + 65.5912i 0.0493460 + 0.312339i
\(211\) 20.9287 50.5264i 0.0991883 0.239462i −0.866494 0.499187i \(-0.833632\pi\)
0.965683 + 0.259725i \(0.0836321\pi\)
\(212\) −31.2542 + 26.6519i −0.147425 + 0.125716i
\(213\) −5.04658 12.1835i −0.0236929 0.0571996i
\(214\) −109.387 26.3062i −0.511155 0.122926i
\(215\) 103.340 103.340i 0.480653 0.480653i
\(216\) −187.175 + 14.5128i −0.866549 + 0.0671889i
\(217\) 90.3102 90.3102i 0.416176 0.416176i
\(218\) −56.2993 91.9518i −0.258254 0.421797i
\(219\) −53.4494 129.038i −0.244061 0.589215i
\(220\) −17.1612 8.76079i −0.0780057 0.0398218i
\(221\) −42.8840 + 103.531i −0.194045 + 0.468466i
\(222\) 78.2360 + 56.8879i 0.352414 + 0.256252i
\(223\) 52.7540i 0.236565i 0.992980 + 0.118283i \(0.0377388\pi\)
−0.992980 + 0.118283i \(0.962261\pi\)
\(224\) 203.684 + 204.472i 0.909302 + 0.912820i
\(225\) 128.112 0.569386
\(226\) 73.0264 100.431i 0.323126 0.444383i
\(227\) −327.101 135.490i −1.44097 0.596871i −0.480939 0.876754i \(-0.659704\pi\)
−0.960034 + 0.279883i \(0.909704\pi\)
\(228\) 117.604 + 60.0366i 0.515806 + 0.263318i
\(229\) 245.430 101.660i 1.07175 0.443932i 0.224139 0.974557i \(-0.428043\pi\)
0.847606 + 0.530625i \(0.178043\pi\)
\(230\) 141.311 86.5207i 0.614398 0.376177i
\(231\) −18.4280 18.4280i −0.0797748 0.0797748i
\(232\) 231.419 + 198.115i 0.997497 + 0.853944i
\(233\) −31.8772 31.8772i −0.136812 0.136812i 0.635384 0.772196i \(-0.280842\pi\)
−0.772196 + 0.635384i \(0.780842\pi\)
\(234\) 57.4232 238.779i 0.245398 1.02042i
\(235\) 79.6582 32.9955i 0.338971 0.140406i
\(236\) −74.9032 + 63.8734i −0.317386 + 0.270650i
\(237\) 104.137 + 43.1350i 0.439397 + 0.182004i
\(238\) 110.433 17.4471i 0.464002 0.0733071i
\(239\) 90.0511 0.376783 0.188391 0.982094i \(-0.439673\pi\)
0.188391 + 0.982094i \(0.439673\pi\)
\(240\) 47.7058 34.5479i 0.198774 0.143949i
\(241\) 20.9972i 0.0871252i 0.999051 + 0.0435626i \(0.0138708\pi\)
−0.999051 + 0.0435626i \(0.986129\pi\)
\(242\) −231.566 + 36.5848i −0.956884 + 0.151177i
\(243\) 95.7533 231.169i 0.394046 0.951312i
\(244\) 31.3076 + 2.48829i 0.128310 + 0.0101979i
\(245\) 30.6623 + 74.0253i 0.125152 + 0.302144i
\(246\) −55.9892 + 232.816i −0.227598 + 0.946404i
\(247\) −283.990 + 283.990i −1.14976 + 1.14976i
\(248\) −107.702 35.1324i −0.434281 0.141663i
\(249\) 3.38810 3.38810i 0.0136068 0.0136068i
\(250\) −185.342 + 113.479i −0.741369 + 0.453918i
\(251\) 105.207 + 253.991i 0.419150 + 1.01192i 0.982594 + 0.185764i \(0.0594759\pi\)
−0.563444 + 0.826154i \(0.690524\pi\)
\(252\) −233.085 + 75.5350i −0.924941 + 0.299742i
\(253\) −24.8853 + 60.0783i −0.0983607 + 0.237464i
\(254\) 208.240 286.385i 0.819842 1.12750i
\(255\) 22.8174i 0.0894801i
\(256\) 79.8601 243.225i 0.311954 0.950097i
\(257\) 236.584 0.920561 0.460281 0.887773i \(-0.347749\pi\)
0.460281 + 0.887773i \(0.347749\pi\)
\(258\) −141.809 103.114i −0.549647 0.399666i
\(259\) 271.199 + 112.334i 1.04710 + 0.433723i
\(260\) 55.2309 + 170.431i 0.212427 + 0.655504i
\(261\) −238.939 + 98.9720i −0.915477 + 0.379203i
\(262\) 100.339 + 163.880i 0.382973 + 0.625498i
\(263\) 32.0070 + 32.0070i 0.121700 + 0.121700i 0.765334 0.643634i \(-0.222574\pi\)
−0.643634 + 0.765334i \(0.722574\pi\)
\(264\) −7.16884 + 21.9768i −0.0271547 + 0.0832453i
\(265\) 17.9878 + 17.9878i 0.0678786 + 0.0678786i
\(266\) 389.587 + 93.6906i 1.46461 + 0.352220i
\(267\) −71.2626 + 29.5179i −0.266901 + 0.110554i
\(268\) 19.1766 241.279i 0.0715545 0.900296i
\(269\) 115.344 + 47.7769i 0.428787 + 0.177609i 0.586630 0.809855i \(-0.300454\pi\)
−0.157844 + 0.987464i \(0.550454\pi\)
\(270\) 18.1442 + 114.845i 0.0672008 + 0.425352i
\(271\) −55.4325 −0.204548 −0.102274 0.994756i \(-0.532612\pi\)
−0.102274 + 0.994756i \(0.532612\pi\)
\(272\) −58.1665 80.3199i −0.213847 0.295294i
\(273\) 242.319i 0.887615i
\(274\) −25.8468 163.599i −0.0943312 0.597076i
\(275\) 14.0363 33.8866i 0.0510410 0.123224i
\(276\) −128.986 151.260i −0.467340 0.548042i
\(277\) −35.7881 86.4001i −0.129199 0.311914i 0.846022 0.533148i \(-0.178991\pi\)
−0.975221 + 0.221235i \(0.928991\pi\)
\(278\) −351.143 84.4454i −1.26310 0.303761i
\(279\) 68.0069 68.0069i 0.243752 0.243752i
\(280\) 116.242 135.783i 0.415149 0.484938i
\(281\) 13.8509 13.8509i 0.0492914 0.0492914i −0.682031 0.731323i \(-0.738903\pi\)
0.731323 + 0.682031i \(0.238903\pi\)
\(282\) −54.0143 88.2198i −0.191540 0.312836i
\(283\) −135.615 327.403i −0.479205 1.15690i −0.959982 0.280060i \(-0.909646\pi\)
0.480778 0.876843i \(-0.340354\pi\)
\(284\) −16.1396 + 31.6153i −0.0568295 + 0.111322i
\(285\) 31.2945 75.5517i 0.109805 0.265094i
\(286\) −56.8674 41.3501i −0.198837 0.144581i
\(287\) 726.645i 2.53186i
\(288\) 153.381 + 153.975i 0.532574 + 0.534635i
\(289\) 250.583 0.867071
\(290\) 110.956 152.594i 0.382608 0.526187i
\(291\) −123.635 51.2114i −0.424863 0.175984i
\(292\) −170.938 + 334.844i −0.585403 + 1.14673i
\(293\) −412.791 + 170.984i −1.40884 + 0.583562i −0.952031 0.306002i \(-0.901009\pi\)
−0.456811 + 0.889564i \(0.651009\pi\)
\(294\) 81.9814 50.1947i 0.278848 0.170730i
\(295\) 43.1093 + 43.1093i 0.146133 + 0.146133i
\(296\) −20.1281 259.597i −0.0680005 0.877016i
\(297\) −32.2660 32.2660i −0.108640 0.108640i
\(298\) −22.0010 + 91.4851i −0.0738289 + 0.306997i
\(299\) 558.615 231.386i 1.86828 0.773866i
\(300\) 72.7532 + 85.3164i 0.242511 + 0.284388i
\(301\) −491.569 203.615i −1.63312 0.676461i
\(302\) −190.981 + 30.1729i −0.632389 + 0.0999102i
\(303\) 32.3094 0.106632
\(304\) −82.4372 345.727i −0.271175 1.13726i
\(305\) 19.4507i 0.0637726i
\(306\) 83.1598 13.1383i 0.271764 0.0429356i
\(307\) −42.3557 + 102.256i −0.137967 + 0.333081i −0.977728 0.209874i \(-0.932695\pi\)
0.839762 + 0.542955i \(0.182695\pi\)
\(308\) −5.55785 + 69.9287i −0.0180450 + 0.227041i
\(309\) −3.93177 9.49213i −0.0127242 0.0307189i
\(310\) −16.4052 + 68.2164i −0.0529199 + 0.220053i
\(311\) 337.326 337.326i 1.08465 1.08465i 0.0885790 0.996069i \(-0.471767\pi\)
0.996069 0.0885790i \(-0.0282326\pi\)
\(312\) 191.625 97.3585i 0.614183 0.312046i
\(313\) −70.0735 + 70.0735i −0.223877 + 0.223877i −0.810129 0.586252i \(-0.800603\pi\)
0.586252 + 0.810129i \(0.300603\pi\)
\(314\) −332.348 + 203.487i −1.05843 + 0.648047i
\(315\) 58.0707 + 140.195i 0.184351 + 0.445063i
\(316\) −93.5338 288.626i −0.295993 0.913373i
\(317\) 32.8632 79.3388i 0.103669 0.250280i −0.863530 0.504297i \(-0.831752\pi\)
0.967200 + 0.254017i \(0.0817518\pi\)
\(318\) 17.9484 24.6838i 0.0564415 0.0776220i
\(319\) 74.0450i 0.232116i
\(320\) −154.080 37.3691i −0.481500 0.116779i
\(321\) 83.5940 0.260417
\(322\) −487.897 354.766i −1.51521 1.10176i
\(323\) −127.203 52.6891i −0.393816 0.163124i
\(324\) −99.8948 + 32.3725i −0.308317 + 0.0999151i
\(325\) −315.081 + 130.511i −0.969480 + 0.401572i
\(326\) 301.952 + 493.168i 0.926233 + 1.51279i
\(327\) 56.6469 + 56.6469i 0.173232 + 0.173232i
\(328\) 574.629 291.950i 1.75192 0.890092i
\(329\) −221.965 221.965i −0.674665 0.674665i
\(330\) 13.9197 + 3.34751i 0.0421809 + 0.0101440i
\(331\) 124.865 51.7206i 0.377234 0.156256i −0.186006 0.982549i \(-0.559554\pi\)
0.563240 + 0.826293i \(0.309554\pi\)
\(332\) −12.8568 1.02185i −0.0387254 0.00307785i
\(333\) 204.223 + 84.5919i 0.613282 + 0.254030i
\(334\) 43.8321 + 277.438i 0.131234 + 0.830654i
\(335\) −149.901 −0.447466
\(336\) −182.669 112.328i −0.543658 0.334310i
\(337\) 323.529i 0.960027i −0.877261 0.480014i \(-0.840632\pi\)
0.877261 0.480014i \(-0.159368\pi\)
\(338\) 49.2762 + 311.897i 0.145787 + 0.922772i
\(339\) −35.3077 + 85.2404i −0.104153 + 0.251447i
\(340\) −46.7335 + 39.8518i −0.137452 + 0.117211i
\(341\) −10.5373 25.4394i −0.0309013 0.0746024i
\(342\) 293.373 + 70.5526i 0.857817 + 0.206294i
\(343\) −106.226 + 106.226i −0.309696 + 0.309696i
\(344\) 36.4838 + 470.540i 0.106058 + 1.36785i
\(345\) −87.0550 + 87.0550i −0.252333 + 0.252333i
\(346\) 211.674 + 345.721i 0.611776 + 0.999193i
\(347\) −135.065 326.076i −0.389236 0.939700i −0.990102 0.140350i \(-0.955177\pi\)
0.600866 0.799350i \(-0.294823\pi\)
\(348\) −201.602 102.917i −0.579315 0.295740i
\(349\) 187.869 453.555i 0.538305 1.29958i −0.387600 0.921828i \(-0.626696\pi\)
0.925905 0.377756i \(-0.123304\pi\)
\(350\) 275.194 + 200.102i 0.786267 + 0.571721i
\(351\) 424.282i 1.20878i
\(352\) 57.5325 23.7007i 0.163445 0.0673315i
\(353\) −70.5556 −0.199874 −0.0999372 0.994994i \(-0.531864\pi\)
−0.0999372 + 0.994994i \(0.531864\pi\)
\(354\) 43.0148 59.1567i 0.121511 0.167109i
\(355\) 20.3105 + 8.41289i 0.0572127 + 0.0236983i
\(356\) 184.921 + 94.4020i 0.519441 + 0.265174i
\(357\) −76.7478 + 31.7900i −0.214980 + 0.0890475i
\(358\) −451.197 + 276.254i −1.26033 + 0.771660i
\(359\) −409.567 409.567i −1.14086 1.14086i −0.988294 0.152561i \(-0.951248\pi\)
−0.152561 0.988294i \(-0.548752\pi\)
\(360\) 87.5343 102.249i 0.243151 0.284026i
\(361\) −93.6563 93.6563i −0.259436 0.259436i
\(362\) −7.42731 + 30.8844i −0.0205174 + 0.0853161i
\(363\) 160.932 66.6604i 0.443340 0.183637i
\(364\) 496.306 423.223i 1.36348 1.16270i
\(365\) 215.113 + 89.1026i 0.589350 + 0.244117i
\(366\) −23.0496 + 3.64157i −0.0629770 + 0.00994964i
\(367\) 513.680 1.39967 0.699837 0.714303i \(-0.253256\pi\)
0.699837 + 0.714303i \(0.253256\pi\)
\(368\) −84.5217 + 528.365i −0.229678 + 1.43578i
\(369\) 547.191i 1.48290i
\(370\) −159.281 + 25.1646i −0.430490 + 0.0680126i
\(371\) 35.4419 85.5644i 0.0955308 0.230632i
\(372\) 83.9098 + 6.66906i 0.225564 + 0.0179276i
\(373\) −46.5164 112.301i −0.124709 0.301074i 0.849178 0.528106i \(-0.177098\pi\)
−0.973887 + 0.227032i \(0.927098\pi\)
\(374\) 5.63604 23.4359i 0.0150696 0.0626629i
\(375\) 114.180 114.180i 0.304481 0.304481i
\(376\) −86.3486 + 264.710i −0.229651 + 0.704016i
\(377\) 486.828 486.828i 1.29132 1.29132i
\(378\) 361.009 221.035i 0.955051 0.584749i
\(379\) 172.090 + 415.462i 0.454064 + 1.09621i 0.970763 + 0.240040i \(0.0771604\pi\)
−0.516699 + 0.856167i \(0.672840\pi\)
\(380\) −209.399 + 67.8591i −0.551050 + 0.178576i
\(381\) −100.683 + 243.069i −0.264259 + 0.637977i
\(382\) 435.871 599.438i 1.14102 1.56921i
\(383\) 430.627i 1.12435i −0.827017 0.562177i \(-0.809964\pi\)
0.827017 0.562177i \(-0.190036\pi\)
\(384\) −15.4365 + 189.585i −0.0401991 + 0.493712i
\(385\) 43.4451 0.112844
\(386\) −214.619 156.056i −0.556008 0.404291i
\(387\) −370.170 153.329i −0.956512 0.396200i
\(388\) 111.047 + 342.667i 0.286203 + 0.883162i
\(389\) 55.8615 23.1386i 0.143603 0.0594823i −0.309725 0.950826i \(-0.600237\pi\)
0.453327 + 0.891344i \(0.350237\pi\)
\(390\) −69.5096 113.528i −0.178230 0.291097i
\(391\) 146.570 + 146.570i 0.374860 + 0.374860i
\(392\) −245.991 80.2426i −0.627529 0.204701i
\(393\) −100.959 100.959i −0.256892 0.256892i
\(394\) 244.975 + 58.9135i 0.621765 + 0.149527i
\(395\) −173.601 + 71.9080i −0.439497 + 0.182046i
\(396\) −4.18527 + 52.6589i −0.0105689 + 0.132977i
\(397\) −67.6641 28.0274i −0.170439 0.0705979i 0.295833 0.955240i \(-0.404403\pi\)
−0.466271 + 0.884642i \(0.654403\pi\)
\(398\) −39.7224 251.426i −0.0998051 0.631723i
\(399\) −297.723 −0.746174
\(400\) 47.6736 298.019i 0.119184 0.745048i
\(401\) 536.024i 1.33672i 0.743839 + 0.668359i \(0.233003\pi\)
−0.743839 + 0.668359i \(0.766997\pi\)
\(402\) 28.0646 + 177.637i 0.0698125 + 0.441883i
\(403\) −97.9774 + 236.538i −0.243120 + 0.586944i
\(404\) −56.4301 66.1746i −0.139679 0.163799i
\(405\) 24.8877 + 60.0842i 0.0614511 + 0.148356i
\(406\) −667.847 160.609i −1.64494 0.395588i
\(407\) 44.7505 44.7505i 0.109952 0.109952i
\(408\) 55.9750 + 47.9194i 0.137194 + 0.117450i
\(409\) −540.379 + 540.379i −1.32122 + 1.32122i −0.408430 + 0.912790i \(0.633923\pi\)
−0.912790 + 0.408430i \(0.866077\pi\)
\(410\) −208.439 340.437i −0.508389 0.830335i
\(411\) 47.0948 + 113.697i 0.114586 + 0.276635i
\(412\) −12.5743 + 24.6314i −0.0305201 + 0.0597849i
\(413\) 84.9395 205.062i 0.205665 0.496518i
\(414\) −367.405 267.152i −0.887451 0.645295i
\(415\) 7.98765i 0.0192474i
\(416\) −534.088 222.436i −1.28387 0.534701i
\(417\) 268.345 0.643512
\(418\) 50.8045 69.8697i 0.121542 0.167152i
\(419\) −341.184 141.323i −0.814281 0.337286i −0.0636205 0.997974i \(-0.520265\pi\)
−0.750661 + 0.660688i \(0.770265\pi\)
\(420\) −60.3856 + 118.287i −0.143775 + 0.281637i
\(421\) 339.196 140.500i 0.805692 0.333728i 0.0584581 0.998290i \(-0.481382\pi\)
0.747234 + 0.664561i \(0.231382\pi\)
\(422\) 93.2828 57.1142i 0.221049 0.135342i
\(423\) −167.148 167.148i −0.395149 0.395149i
\(424\) −81.9039 + 6.35051i −0.193170 + 0.0149776i
\(425\) −82.6714 82.6714i −0.194521 0.194521i
\(426\) 6.16696 25.6436i 0.0144764 0.0601962i
\(427\) −65.4234 + 27.0993i −0.153216 + 0.0634643i
\(428\) −146.001 171.213i −0.341125 0.400031i
\(429\) 48.2661 + 19.9925i 0.112508 + 0.0466025i
\(430\) 288.710 45.6129i 0.671419 0.106077i
\(431\) 154.504 0.358478 0.179239 0.983806i \(-0.442637\pi\)
0.179239 + 0.983806i \(0.442637\pi\)
\(432\) −319.840 196.678i −0.740370 0.455274i
\(433\) 506.808i 1.17046i −0.810868 0.585228i \(-0.801005\pi\)
0.810868 0.585228i \(-0.198995\pi\)
\(434\) 252.306 39.8615i 0.581351 0.0918468i
\(435\) −53.6465 + 129.514i −0.123325 + 0.297734i
\(436\) 17.0846 214.958i 0.0391850 0.493023i
\(437\) 284.291 + 686.338i 0.650550 + 1.57057i
\(438\) 65.3155 271.596i 0.149122 0.620083i
\(439\) −144.746 + 144.746i −0.329718 + 0.329718i −0.852479 0.522761i \(-0.824902\pi\)
0.522761 + 0.852479i \(0.324902\pi\)
\(440\) −17.4553 34.3563i −0.0396711 0.0780824i
\(441\) 155.328 155.328i 0.352218 0.352218i
\(442\) −191.141 + 117.030i −0.432446 + 0.264773i
\(443\) 230.959 + 557.584i 0.521351 + 1.25865i 0.937064 + 0.349158i \(0.113532\pi\)
−0.415713 + 0.909496i \(0.636468\pi\)
\(444\) 59.6416 + 184.042i 0.134328 + 0.414508i
\(445\) 49.2078 118.798i 0.110579 0.266962i
\(446\) −62.0490 + 85.3338i −0.139123 + 0.191331i
\(447\) 69.9132i 0.156405i
\(448\) 88.9759 + 570.321i 0.198607 + 1.27304i
\(449\) −0.201052 −0.000447778 −0.000223889 1.00000i \(-0.500071\pi\)
−0.000223889 1.00000i \(0.500071\pi\)
\(450\) 207.231 + 150.684i 0.460513 + 0.334854i
\(451\) 144.736 + 59.9518i 0.320923 + 0.132931i
\(452\) 236.252 76.5613i 0.522681 0.169383i
\(453\) 132.727 54.9774i 0.292996 0.121363i
\(454\) −369.750 603.900i −0.814427 1.33018i
\(455\) −285.641 285.641i −0.627782 0.627782i
\(456\) 119.619 + 235.439i 0.262322 + 0.516313i
\(457\) 226.835 + 226.835i 0.496358 + 0.496358i 0.910302 0.413944i \(-0.135849\pi\)
−0.413944 + 0.910302i \(0.635849\pi\)
\(458\) 516.575 + 124.230i 1.12789 + 0.271244i
\(459\) −134.379 + 55.6618i −0.292766 + 0.121268i
\(460\) 330.348 + 26.2557i 0.718147 + 0.0570775i
\(461\) 496.600 + 205.699i 1.07722 + 0.446201i 0.849535 0.527533i \(-0.176883\pi\)
0.227690 + 0.973734i \(0.426883\pi\)
\(462\) −8.13383 51.4836i −0.0176057 0.111436i
\(463\) −520.019 −1.12315 −0.561576 0.827425i \(-0.689805\pi\)
−0.561576 + 0.827425i \(0.689805\pi\)
\(464\) 141.317 + 592.661i 0.304564 + 1.27729i
\(465\) 52.1312i 0.112110i
\(466\) −14.0701 89.0576i −0.0301933 0.191111i
\(467\) 35.4966 85.6964i 0.0760099 0.183504i −0.881307 0.472544i \(-0.843336\pi\)
0.957317 + 0.289040i \(0.0933359\pi\)
\(468\) 373.737 318.702i 0.798583 0.680988i
\(469\) 208.847 + 504.202i 0.445303 + 1.07506i
\(470\) 167.663 + 40.3207i 0.356729 + 0.0857888i
\(471\) 204.743 204.743i 0.434699 0.434699i
\(472\) −196.289 + 15.2195i −0.415868 + 0.0322448i
\(473\) −81.1137 + 81.1137i −0.171488 + 0.171488i
\(474\) 117.715 + 192.260i 0.248343 + 0.405611i
\(475\) −160.351 387.122i −0.337582 0.814994i
\(476\) 199.155 + 101.668i 0.418392 + 0.213589i
\(477\) 26.6891 64.4332i 0.0559520 0.135080i
\(478\) 145.665 + 105.918i 0.304738 + 0.221585i
\(479\) 163.116i 0.340535i −0.985398 0.170268i \(-0.945537\pi\)
0.985398 0.170268i \(-0.0544632\pi\)
\(480\) 117.803 + 0.227459i 0.245423 + 0.000473874i
\(481\) −588.447 −1.22338
\(482\) −24.6968 + 33.9646i −0.0512381 + 0.0704660i
\(483\) 414.102 + 171.527i 0.857355 + 0.355128i
\(484\) −417.607 213.188i −0.862825 0.440471i
\(485\) 206.106 85.3718i 0.424960 0.176024i
\(486\) 426.788 261.310i 0.878165 0.537674i
\(487\) 371.724 + 371.724i 0.763294 + 0.763294i 0.976916 0.213622i \(-0.0685262\pi\)
−0.213622 + 0.976916i \(0.568526\pi\)
\(488\) 47.7158 + 40.8488i 0.0977782 + 0.0837066i
\(489\) −303.817 303.817i −0.621302 0.621302i
\(490\) −37.4695 + 155.807i −0.0764684 + 0.317973i
\(491\) 281.201 116.477i 0.572710 0.237224i −0.0774824 0.996994i \(-0.524688\pi\)
0.650193 + 0.759769i \(0.274688\pi\)
\(492\) −364.403 + 310.743i −0.740657 + 0.631592i
\(493\) 218.056 + 90.3220i 0.442305 + 0.183209i
\(494\) −793.403 + 125.349i −1.60608 + 0.253742i
\(495\) 32.7158 0.0660924
\(496\) −132.894 183.508i −0.267931 0.369975i
\(497\) 80.0367i 0.161040i
\(498\) 9.46560 1.49546i 0.0190072 0.00300292i
\(499\) −236.126 + 570.059i −0.473199 + 1.14240i 0.489542 + 0.871980i \(0.337164\pi\)
−0.962741 + 0.270424i \(0.912836\pi\)
\(500\) −433.280 34.4366i −0.866560 0.0688732i
\(501\) −79.8656 192.813i −0.159412 0.384855i
\(502\) −128.563 + 534.595i −0.256102 + 1.06493i
\(503\) 12.8902 12.8902i 0.0256266 0.0256266i −0.694177 0.719804i \(-0.744232\pi\)
0.719804 + 0.694177i \(0.244232\pi\)
\(504\) −465.878 151.970i −0.924361 0.301527i
\(505\) −38.0857 + 38.0857i −0.0754173 + 0.0754173i
\(506\) −110.918 + 67.9116i −0.219205 + 0.134213i
\(507\) −89.7851 216.760i −0.177091 0.427535i
\(508\) 673.690 218.320i 1.32616 0.429764i
\(509\) 59.1272 142.746i 0.116163 0.280443i −0.855095 0.518472i \(-0.826501\pi\)
0.971258 + 0.238028i \(0.0765011\pi\)
\(510\) 26.8377 36.9090i 0.0526230 0.0723706i
\(511\) 847.685i 1.65888i
\(512\) 415.260 299.505i 0.811055 0.584970i
\(513\) −521.291 −1.01616
\(514\) 382.694 + 278.269i 0.744541 + 0.541380i
\(515\) 15.8238 + 6.55444i 0.0307259 + 0.0127271i
\(516\) −108.105 333.590i −0.209506 0.646492i
\(517\) −62.5251 + 25.8988i −0.120938 + 0.0500943i
\(518\) 306.559 + 500.692i 0.591812 + 0.966588i
\(519\) −212.982 212.982i −0.410369 0.410369i
\(520\) −111.120 + 340.648i −0.213692 + 0.655093i
\(521\) 119.838 + 119.838i 0.230015 + 0.230015i 0.812699 0.582684i \(-0.197997\pi\)
−0.582684 + 0.812699i \(0.697997\pi\)
\(522\) −502.914 120.944i −0.963437 0.231694i
\(523\) −689.004 + 285.395i −1.31741 + 0.545688i −0.927037 0.374970i \(-0.877653\pi\)
−0.390370 + 0.920658i \(0.627653\pi\)
\(524\) −30.4490 + 383.108i −0.0581087 + 0.731122i
\(525\) −233.570 96.7480i −0.444896 0.184282i
\(526\) 14.1274 + 89.4203i 0.0268582 + 0.170001i
\(527\) −87.7707 −0.166548
\(528\) −37.4451 + 27.1172i −0.0709188 + 0.0513584i
\(529\) 589.413i 1.11420i
\(530\) 7.93955 + 50.2540i 0.0149803 + 0.0948188i
\(531\) 63.9626 154.419i 0.120457 0.290809i
\(532\) 519.989 + 609.782i 0.977423 + 1.14621i
\(533\) −557.438 1345.77i −1.04585 2.52490i
\(534\) −149.992 36.0711i −0.280884 0.0675489i
\(535\) −98.5390 + 98.5390i −0.184185 + 0.184185i
\(536\) 314.811 367.733i 0.587334 0.686069i
\(537\) 277.960 277.960i 0.517617 0.517617i
\(538\) 130.383 + 212.950i 0.242347 + 0.395817i
\(539\) −24.0673 58.1037i −0.0446519 0.107799i
\(540\) −105.731 + 207.112i −0.195797 + 0.383541i
\(541\) −294.810 + 711.735i −0.544936 + 1.31559i 0.376267 + 0.926511i \(0.377207\pi\)
−0.921204 + 0.389081i \(0.872793\pi\)
\(542\) −89.6665 65.1995i −0.165436 0.120294i
\(543\) 23.6020i 0.0434658i
\(544\) 0.382962 198.339i 0.000703974 0.364594i
\(545\) −133.549 −0.245043
\(546\) −285.014 + 391.970i −0.522004 + 0.717894i
\(547\) 518.930 + 214.948i 0.948683 + 0.392957i 0.802736 0.596335i \(-0.203377\pi\)
0.145948 + 0.989292i \(0.453377\pi\)
\(548\) 150.615 295.035i 0.274845 0.538385i
\(549\) −49.2663 + 20.4068i −0.0897382 + 0.0371708i
\(550\) 62.5621 38.3049i 0.113749 0.0696452i
\(551\) 598.138 + 598.138i 1.08555 + 1.08555i
\(552\) −30.7343 396.387i −0.0556781 0.718092i
\(553\) 483.734 + 483.734i 0.874745 + 0.874745i
\(554\) 43.7333 181.853i 0.0789410 0.328254i
\(555\) 110.696 45.8520i 0.199453 0.0826162i
\(556\) −468.678 549.610i −0.842946 0.988508i
\(557\) −883.511 365.962i −1.58620 0.657024i −0.596816 0.802378i \(-0.703568\pi\)
−0.989380 + 0.145355i \(0.953568\pi\)
\(558\) 189.996 30.0172i 0.340495 0.0537943i
\(559\) 1066.61 1.90806
\(560\) 347.737 82.9164i 0.620959 0.148065i
\(561\) 17.9098i 0.0319248i
\(562\) 38.6963 6.11357i 0.0688546 0.0108782i
\(563\) 385.055 929.606i 0.683935 1.65117i −0.0727214 0.997352i \(-0.523168\pi\)
0.756656 0.653813i \(-0.226832\pi\)
\(564\) 16.3912 206.234i 0.0290625 0.365663i
\(565\) −58.8596 142.100i −0.104176 0.251504i
\(566\) 165.722 689.111i 0.292796 1.21751i
\(567\) 167.423 167.423i 0.295278 0.295278i
\(568\) −63.2928 + 32.1570i −0.111431 + 0.0566145i
\(569\) −503.029 + 503.029i −0.884058 + 0.884058i −0.993944 0.109886i \(-0.964951\pi\)
0.109886 + 0.993944i \(0.464951\pi\)
\(570\) 139.485 85.4024i 0.244711 0.149829i
\(571\) −48.1525 116.250i −0.0843301 0.203591i 0.876089 0.482149i \(-0.160144\pi\)
−0.960419 + 0.278558i \(0.910144\pi\)
\(572\) −43.3517 133.774i −0.0757897 0.233871i
\(573\) −210.741 + 508.773i −0.367785 + 0.887910i
\(574\) −854.677 + 1175.41i −1.48898 + 2.04775i
\(575\) 630.830i 1.09710i
\(576\) 67.0022 + 429.473i 0.116323 + 0.745613i
\(577\) −11.8629 −0.0205595 −0.0102798 0.999947i \(-0.503272\pi\)
−0.0102798 + 0.999947i \(0.503272\pi\)
\(578\) 405.339 + 294.735i 0.701278 + 0.509922i
\(579\) 182.158 + 75.4522i 0.314607 + 0.130315i
\(580\) 358.961 116.327i 0.618898 0.200564i
\(581\) 26.8670 11.1287i 0.0462426 0.0191543i
\(582\) −139.755 228.258i −0.240129 0.392195i
\(583\) −14.1190 14.1190i −0.0242178 0.0242178i
\(584\) −670.347 + 340.581i −1.14786 + 0.583187i
\(585\) −215.098 215.098i −0.367689 0.367689i
\(586\) −868.832 208.943i −1.48265 0.356558i
\(587\) −496.631 + 205.711i −0.846049 + 0.350445i −0.763236 0.646120i \(-0.776390\pi\)
−0.0828132 + 0.996565i \(0.526390\pi\)
\(588\) 191.650 + 15.2322i 0.325936 + 0.0259050i
\(589\) −290.621 120.379i −0.493414 0.204379i
\(590\) 19.0278 + 120.438i 0.0322505 + 0.204132i
\(591\) −187.211 −0.316770
\(592\) 272.778 443.593i 0.460773 0.749313i
\(593\) 410.471i 0.692193i 0.938199 + 0.346097i \(0.112493\pi\)
−0.938199 + 0.346097i \(0.887507\pi\)
\(594\) −14.2417 90.1439i −0.0239759 0.151757i
\(595\) 52.9954 127.942i 0.0890678 0.215029i
\(596\) −143.193 + 122.107i −0.240256 + 0.204878i
\(597\) 72.3774 + 174.735i 0.121235 + 0.292688i
\(598\) 1175.76 + 282.755i 1.96615 + 0.472835i
\(599\) −565.778 + 565.778i −0.944537 + 0.944537i −0.998541 0.0540033i \(-0.982802\pi\)
0.0540033 + 0.998541i \(0.482802\pi\)
\(600\) 17.3354 + 223.578i 0.0288923 + 0.372630i
\(601\) 224.391 224.391i 0.373362 0.373362i −0.495338 0.868700i \(-0.664956\pi\)
0.868700 + 0.495338i \(0.164956\pi\)
\(602\) −555.662 907.544i −0.923026 1.50755i
\(603\) 157.270 + 379.683i 0.260812 + 0.629656i
\(604\) −344.417 175.824i −0.570226 0.291100i
\(605\) −111.126 + 268.282i −0.183679 + 0.443441i
\(606\) 52.2631 + 38.0022i 0.0862427 + 0.0627099i
\(607\) 19.8654i 0.0327271i −0.999866 0.0163636i \(-0.994791\pi\)
0.999866 0.0163636i \(-0.00520892\pi\)
\(608\) 273.294 656.204i 0.449497 1.07928i
\(609\) 510.371 0.838047
\(610\) 22.8778 31.4630i 0.0375045 0.0515787i
\(611\) 581.365 + 240.809i 0.951498 + 0.394123i
\(612\) 149.971 + 76.5599i 0.245050 + 0.125098i
\(613\) 905.460 375.054i 1.47710 0.611833i 0.508631 0.860985i \(-0.330152\pi\)
0.968464 + 0.249152i \(0.0801518\pi\)
\(614\) −188.787 + 115.588i −0.307470 + 0.188255i
\(615\) 209.726 + 209.726i 0.341019 + 0.341019i
\(616\) −91.2401 + 106.578i −0.148117 + 0.173016i
\(617\) 673.907 + 673.907i 1.09223 + 1.09223i 0.995290 + 0.0969409i \(0.0309058\pi\)
0.0969409 + 0.995290i \(0.469094\pi\)
\(618\) 4.80465 19.9788i 0.00777451 0.0323282i
\(619\) 354.963 147.030i 0.573446 0.237529i −0.0770649 0.997026i \(-0.524555\pi\)
0.650511 + 0.759497i \(0.274555\pi\)
\(620\) −106.773 + 91.0498i −0.172214 + 0.146855i
\(621\) 725.062 + 300.330i 1.16757 + 0.483624i
\(622\) 942.412 148.890i 1.51513 0.239374i
\(623\) −468.143 −0.751433
\(624\) 424.482 + 67.9036i 0.680259 + 0.108820i
\(625\) 202.389i 0.323822i
\(626\) −195.770 + 30.9294i −0.312731 + 0.0494080i
\(627\) −24.5636 + 59.3018i −0.0391764 + 0.0945803i
\(628\) −776.940 61.7503i −1.23717 0.0983286i
\(629\) −77.1987 186.374i −0.122732 0.296302i
\(630\) −70.9627 + 295.079i −0.112639 + 0.468379i
\(631\) −494.698 + 494.698i −0.783991 + 0.783991i −0.980502 0.196511i \(-0.937039\pi\)
0.196511 + 0.980502i \(0.437039\pi\)
\(632\) 188.182 576.889i 0.297756 0.912800i
\(633\) −57.4669 + 57.4669i −0.0907850 + 0.0907850i
\(634\) 146.477 89.6833i 0.231036 0.141456i
\(635\) −167.843 405.208i −0.264319 0.638122i
\(636\) 58.0659 18.8172i 0.0912986 0.0295868i
\(637\) −223.781 + 540.255i −0.351304 + 0.848124i
\(638\) −87.0914 + 119.774i −0.136507 + 0.187733i
\(639\) 60.2706i 0.0943202i
\(640\) −205.283 241.676i −0.320755 0.377618i
\(641\) 440.457 0.687141 0.343571 0.939127i \(-0.388364\pi\)
0.343571 + 0.939127i \(0.388364\pi\)
\(642\) 135.220 + 98.3229i 0.210623 + 0.153151i
\(643\) −211.055 87.4220i −0.328235 0.135960i 0.212479 0.977166i \(-0.431846\pi\)
−0.540715 + 0.841206i \(0.681846\pi\)
\(644\) −371.939 1147.72i −0.577545 1.78218i
\(645\) −200.646 + 83.1103i −0.311079 + 0.128853i
\(646\) −143.788 234.844i −0.222582 0.363535i
\(647\) 515.935 + 515.935i 0.797426 + 0.797426i 0.982689 0.185263i \(-0.0593136\pi\)
−0.185263 + 0.982689i \(0.559314\pi\)
\(648\) −199.664 65.1306i −0.308124 0.100510i
\(649\) −33.8372 33.8372i −0.0521375 0.0521375i
\(650\) −663.175 159.485i −1.02027 0.245362i
\(651\) −175.346 + 72.6309i −0.269349 + 0.111568i
\(652\) −91.6307 + 1152.89i −0.140538 + 1.76824i
\(653\) −613.161 253.980i −0.938991 0.388943i −0.139909 0.990164i \(-0.544681\pi\)
−0.799082 + 0.601222i \(0.794681\pi\)
\(654\) 25.0031 + 158.259i 0.0382310 + 0.241986i
\(655\) 238.016 0.363383
\(656\) 1272.90 + 203.623i 1.94040 + 0.310402i
\(657\) 638.339i 0.971596i
\(658\) −97.9719 620.120i −0.148893 0.942431i
\(659\) −19.4679 + 46.9996i −0.0295416 + 0.0713196i −0.937962 0.346738i \(-0.887289\pi\)
0.908420 + 0.418058i \(0.137289\pi\)
\(660\) 18.5789 + 21.7872i 0.0281499 + 0.0330108i
\(661\) 46.1458 + 111.406i 0.0698122 + 0.168541i 0.954934 0.296817i \(-0.0959253\pi\)
−0.885122 + 0.465359i \(0.845925\pi\)
\(662\) 262.812 + 63.2029i 0.396997 + 0.0954726i
\(663\) 117.752 117.752i 0.177606 0.177606i
\(664\) −19.5951 16.7751i −0.0295107 0.0252637i
\(665\) 350.950 350.950i 0.527745 0.527745i
\(666\) 230.850 + 377.040i 0.346622 + 0.566126i
\(667\) −487.344 1176.55i −0.730650 1.76395i
\(668\) −255.420 + 500.334i −0.382365 + 0.749003i
\(669\) 30.0002 72.4270i 0.0448434 0.108262i
\(670\) −242.477 176.313i −0.361906 0.263154i
\(671\) 15.2672i 0.0227528i
\(672\) −163.362 396.555i −0.243098 0.590111i
\(673\) −352.344 −0.523542 −0.261771 0.965130i \(-0.584306\pi\)
−0.261771 + 0.965130i \(0.584306\pi\)
\(674\) 380.533 523.334i 0.564590 0.776460i
\(675\) −408.964 169.398i −0.605872 0.250961i
\(676\) −287.144 + 562.477i −0.424769 + 0.832066i
\(677\) −1178.26 + 488.051i −1.74041 + 0.720902i −0.741669 + 0.670766i \(0.765965\pi\)
−0.998742 + 0.0501357i \(0.984035\pi\)
\(678\) −157.372 + 96.3544i −0.232113 + 0.142116i
\(679\) −574.306 574.306i −0.845812 0.845812i
\(680\) −122.469 + 9.49575i −0.180101 + 0.0139643i
\(681\) 372.033 + 372.033i 0.546304 + 0.546304i
\(682\) 12.8767 53.5443i 0.0188808 0.0785106i
\(683\) −414.446 + 171.669i −0.606802 + 0.251346i −0.664861 0.746967i \(-0.731509\pi\)
0.0580582 + 0.998313i \(0.481509\pi\)
\(684\) 391.571 + 459.189i 0.572473 + 0.671329i
\(685\) −189.538 78.5093i −0.276698 0.114612i
\(686\) −296.771 + 46.8864i −0.432611 + 0.0683476i
\(687\) −394.768 −0.574626
\(688\) −494.431 + 804.048i −0.718650 + 1.16867i
\(689\) 185.657i 0.269459i
\(690\) −243.212 + 38.4247i −0.352481 + 0.0556880i
\(691\) 268.707 648.715i 0.388866 0.938806i −0.601314 0.799012i \(-0.705356\pi\)
0.990181 0.139794i \(-0.0446439\pi\)
\(692\) −64.2350 + 808.202i −0.0928251 + 1.16792i
\(693\) −45.5807 110.041i −0.0657729 0.158790i
\(694\) 165.050 686.316i 0.237825 0.988928i
\(695\) −316.319 + 316.319i −0.455136 + 0.455136i
\(696\) −205.056 403.600i −0.294620 0.579885i
\(697\) 353.106 353.106i 0.506608 0.506608i
\(698\) 837.361 512.691i 1.19966 0.734514i
\(699\) 25.6368 + 61.8927i 0.0366764 + 0.0885447i
\(700\) 209.788 + 647.363i 0.299698 + 0.924804i
\(701\) 464.382 1121.12i 0.662457 1.59931i −0.131484 0.991318i \(-0.541974\pi\)
0.793941 0.607995i \(-0.208026\pi\)
\(702\) −499.038 + 686.310i −0.710881 + 0.977649i
\(703\) 722.990i 1.02844i
\(704\) 120.940 + 29.3317i 0.171790 + 0.0416643i
\(705\) −128.128 −0.181742
\(706\) −114.129 82.9872i −0.161656 0.117546i
\(707\) 181.166 + 75.0414i 0.256246 + 0.106141i
\(708\) 139.160 45.0969i 0.196553 0.0636962i
\(709\) 591.984 245.208i 0.834957 0.345850i 0.0760937 0.997101i \(-0.475755\pi\)
0.758863 + 0.651250i \(0.225755\pi\)
\(710\) 22.9587 + 37.4976i 0.0323362 + 0.0528136i
\(711\) 364.270 + 364.270i 0.512334 + 0.512334i
\(712\) 188.090 + 370.206i 0.264171 + 0.519952i
\(713\) 334.870 + 334.870i 0.469664 + 0.469664i
\(714\) −161.537 38.8476i −0.226242 0.0544083i
\(715\) −80.4619 + 33.3284i −0.112534 + 0.0466132i
\(716\) −1054.78 83.8325i −1.47315 0.117084i
\(717\) −123.633 51.2104i −0.172431 0.0714232i
\(718\) −180.777 1144.24i −0.251778 1.59365i
\(719\) −906.230 −1.26040 −0.630202 0.776432i \(-0.717028\pi\)
−0.630202 + 0.776432i \(0.717028\pi\)
\(720\) 261.859 62.4392i 0.363693 0.0867211i
\(721\) 62.3563i 0.0864858i
\(722\) −41.3384 261.655i −0.0572555 0.362402i
\(723\) 11.9407 28.8274i 0.0165155 0.0398720i
\(724\) −48.3404 + 41.2220i −0.0667685 + 0.0569365i
\(725\) 274.881 + 663.622i 0.379147 + 0.915341i
\(726\) 338.726 + 81.4594i 0.466565 + 0.112203i
\(727\) 317.957 317.957i 0.437355 0.437355i −0.453766 0.891121i \(-0.649920\pi\)
0.891121 + 0.453766i \(0.149920\pi\)
\(728\) 1300.61 100.844i 1.78655 0.138522i
\(729\) −95.8544 + 95.8544i −0.131488 + 0.131488i
\(730\) 243.160 + 397.145i 0.333096 + 0.544034i
\(731\) 139.929 + 337.818i 0.191421 + 0.462131i
\(732\) −41.5677 21.2203i −0.0567865 0.0289894i
\(733\) −159.623 + 385.363i −0.217766 + 0.525734i −0.994577 0.103999i \(-0.966836\pi\)
0.776811 + 0.629734i \(0.216836\pi\)
\(734\) 830.919 + 604.188i 1.13204 + 0.823145i
\(735\) 119.068i 0.161997i
\(736\) −758.181 + 755.259i −1.03014 + 1.02617i
\(737\) 117.660 0.159647
\(738\) −643.603 + 885.125i −0.872091 + 1.19936i
\(739\) −380.514 157.614i −0.514904 0.213280i 0.110073 0.993924i \(-0.464892\pi\)
−0.624977 + 0.780643i \(0.714892\pi\)
\(740\) −287.249 146.640i −0.388174 0.198162i
\(741\) 551.395 228.395i 0.744123 0.308226i
\(742\) 157.971 96.7206i 0.212898 0.130351i
\(743\) 5.76228 + 5.76228i 0.00775542 + 0.00775542i 0.710974 0.703218i \(-0.248254\pi\)
−0.703218 + 0.710974i \(0.748254\pi\)
\(744\) 127.887 + 109.482i 0.171891 + 0.147153i
\(745\) 82.4123 + 82.4123i 0.110620 + 0.110620i
\(746\) 56.8434 236.367i 0.0761975 0.316847i
\(747\) 20.2318 8.38030i 0.0270841 0.0112186i
\(748\) 36.6819 31.2804i 0.0490400 0.0418187i
\(749\) 468.729 + 194.154i 0.625807 + 0.259218i
\(750\) 318.994 50.3974i 0.425325 0.0671965i
\(751\) −302.377 −0.402632 −0.201316 0.979526i \(-0.564522\pi\)
−0.201316 + 0.979526i \(0.564522\pi\)
\(752\) −451.026 + 326.627i −0.599769 + 0.434344i
\(753\) 408.539i 0.542548i
\(754\) 1360.09 214.878i 1.80383 0.284985i
\(755\) −91.6499 + 221.262i −0.121391 + 0.293063i
\(756\) 843.942 + 67.0756i 1.11633 + 0.0887243i
\(757\) −9.31627 22.4915i −0.0123068 0.0297113i 0.917607 0.397490i \(-0.130119\pi\)
−0.929914 + 0.367778i \(0.880119\pi\)
\(758\) −210.295 + 874.455i −0.277434 + 1.15363i
\(759\) 68.3309 68.3309i 0.0900276 0.0900276i
\(760\) −418.535 136.526i −0.550704 0.179640i
\(761\) −163.034 + 163.034i −0.214236 + 0.214236i −0.806064 0.591828i \(-0.798406\pi\)
0.591828 + 0.806064i \(0.298406\pi\)
\(762\) −448.759 + 274.761i −0.588922 + 0.360579i
\(763\) 186.064 + 449.198i 0.243859 + 0.588727i
\(764\) 1410.11 456.970i 1.84570 0.598128i
\(765\) 39.9075 96.3452i 0.0521667 0.125941i
\(766\) 506.502 696.574i 0.661229 0.909365i
\(767\) 444.943i 0.580109i
\(768\) −247.959 + 288.513i −0.322864 + 0.375668i
\(769\) 180.205 0.234337 0.117168 0.993112i \(-0.462618\pi\)
0.117168 + 0.993112i \(0.462618\pi\)
\(770\) 70.2759 + 51.0999i 0.0912674 + 0.0663635i
\(771\) −324.811 134.541i −0.421286 0.174502i
\(772\) −163.610 504.868i −0.211931 0.653974i
\(773\) 196.725 81.4860i 0.254495 &minu