Properties

Label 3150.2.eo
Level 3150
Weight 2
Character orbit eo
Rep. character \(\chi_{3150}(317,\cdot)\)
Character field \(\Q(\zeta_{60})\)
Dimension 3840
Sturm bound 1440

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3150.eo (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 1575 \)
Character field: \(\Q(\zeta_{60})\)
Sturm bound: \(1440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3150, [\chi])\).

Total New Old
Modular forms 11648 3840 7808
Cusp forms 11392 3840 7552
Eisenstein series 256 0 256

Trace form

\(3840q \) \(\mathstrut +\mathstrut O(q^{10}) \) \(3840q \) \(\mathstrut -\mathstrut 12q^{15} \) \(\mathstrut -\mathstrut 480q^{16} \) \(\mathstrut -\mathstrut 36q^{17} \) \(\mathstrut -\mathstrut 16q^{18} \) \(\mathstrut -\mathstrut 36q^{27} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 20q^{33} \) \(\mathstrut +\mathstrut 40q^{39} \) \(\mathstrut +\mathstrut 4q^{42} \) \(\mathstrut +\mathstrut 140q^{45} \) \(\mathstrut +\mathstrut 48q^{50} \) \(\mathstrut -\mathstrut 32q^{57} \) \(\mathstrut -\mathstrut 24q^{58} \) \(\mathstrut -\mathstrut 8q^{60} \) \(\mathstrut +\mathstrut 228q^{63} \) \(\mathstrut -\mathstrut 24q^{65} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut -\mathstrut 8q^{72} \) \(\mathstrut -\mathstrut 232q^{75} \) \(\mathstrut +\mathstrut 48q^{77} \) \(\mathstrut +\mathstrut 16q^{78} \) \(\mathstrut +\mathstrut 120q^{84} \) \(\mathstrut -\mathstrut 40q^{87} \) \(\mathstrut +\mathstrut 300q^{89} \) \(\mathstrut +\mathstrut 80q^{90} \) \(\mathstrut +\mathstrut 24q^{92} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3150, [\chi])\) into irreducible Hecke orbits

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3150, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1575, [\chi])\)\(^{\oplus 2}\)