Properties

Label 3006.2.d
Level 3006
Weight 2
Character orbit d
Rep. character \(\chi_{3006}(3005,\cdot)\)
Character field \(\Q\)
Dimension 56
Newforms 1
Sturm bound 1008
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 3006 = 2 \cdot 3^{2} \cdot 167 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 3006.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 501 \)
Character field: \(\Q\)
Newforms: \( 1 \)
Sturm bound: \(1008\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3006, [\chi])\).

Total New Old
Modular forms 512 56 456
Cusp forms 496 56 440
Eisenstein series 16 0 16

Trace form

\(56q \) \(\mathstrut -\mathstrut 56q^{4} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(56q \) \(\mathstrut -\mathstrut 56q^{4} \) \(\mathstrut +\mathstrut 56q^{16} \) \(\mathstrut -\mathstrut 16q^{19} \) \(\mathstrut +\mathstrut 40q^{25} \) \(\mathstrut -\mathstrut 32q^{31} \) \(\mathstrut +\mathstrut 56q^{49} \) \(\mathstrut +\mathstrut 16q^{61} \) \(\mathstrut -\mathstrut 56q^{64} \) \(\mathstrut +\mathstrut 16q^{76} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{94} \) \(\mathstrut +\mathstrut 96q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(3006, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
3006.2.d.a \(56\) \(24.003\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(3006, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3006, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(501, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1002, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1503, [\chi])\)\(^{\oplus 2}\)