# Properties

 Label 300.3.g.b Level $300$ Weight $3$ Character orbit 300.g Self dual yes Analytic conductor $8.174$ Analytic rank $0$ Dimension $1$ CM discriminant -3 Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 300.g (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: yes Analytic conductor: $$8.17440793081$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 12) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + 3q^{3} - 2q^{7} + 9q^{9} + O(q^{10})$$ $$q + 3q^{3} - 2q^{7} + 9q^{9} + 22q^{13} + 26q^{19} - 6q^{21} + 27q^{27} - 46q^{31} - 26q^{37} + 66q^{39} + 22q^{43} - 45q^{49} + 78q^{57} + 74q^{61} - 18q^{63} - 122q^{67} + 46q^{73} - 142q^{79} + 81q^{81} - 44q^{91} - 138q^{93} - 2q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
101.1
 0
0 3.00000 0 0 0 −2.00000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.g.b 1
3.b odd 2 1 CM 300.3.g.b 1
4.b odd 2 1 1200.3.l.b 1
5.b even 2 1 12.3.c.a 1
5.c odd 4 2 300.3.b.a 2
12.b even 2 1 1200.3.l.b 1
15.d odd 2 1 12.3.c.a 1
15.e even 4 2 300.3.b.a 2
20.d odd 2 1 48.3.e.a 1
20.e even 4 2 1200.3.c.c 2
35.c odd 2 1 588.3.c.c 1
35.i odd 6 2 588.3.p.b 2
35.j even 6 2 588.3.p.c 2
40.e odd 2 1 192.3.e.a 1
40.f even 2 1 192.3.e.b 1
45.h odd 6 2 324.3.g.b 2
45.j even 6 2 324.3.g.b 2
55.d odd 2 1 1452.3.e.b 1
60.h even 2 1 48.3.e.a 1
60.l odd 4 2 1200.3.c.c 2
80.k odd 4 2 768.3.h.b 2
80.q even 4 2 768.3.h.a 2
105.g even 2 1 588.3.c.c 1
105.o odd 6 2 588.3.p.c 2
105.p even 6 2 588.3.p.b 2
120.i odd 2 1 192.3.e.b 1
120.m even 2 1 192.3.e.a 1
165.d even 2 1 1452.3.e.b 1
180.n even 6 2 1296.3.q.b 2
180.p odd 6 2 1296.3.q.b 2
240.t even 4 2 768.3.h.b 2
240.bm odd 4 2 768.3.h.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.c.a 1 5.b even 2 1
12.3.c.a 1 15.d odd 2 1
48.3.e.a 1 20.d odd 2 1
48.3.e.a 1 60.h even 2 1
192.3.e.a 1 40.e odd 2 1
192.3.e.a 1 120.m even 2 1
192.3.e.b 1 40.f even 2 1
192.3.e.b 1 120.i odd 2 1
300.3.b.a 2 5.c odd 4 2
300.3.b.a 2 15.e even 4 2
300.3.g.b 1 1.a even 1 1 trivial
300.3.g.b 1 3.b odd 2 1 CM
324.3.g.b 2 45.h odd 6 2
324.3.g.b 2 45.j even 6 2
588.3.c.c 1 35.c odd 2 1
588.3.c.c 1 105.g even 2 1
588.3.p.b 2 35.i odd 6 2
588.3.p.b 2 105.p even 6 2
588.3.p.c 2 35.j even 6 2
588.3.p.c 2 105.o odd 6 2
768.3.h.a 2 80.q even 4 2
768.3.h.a 2 240.bm odd 4 2
768.3.h.b 2 80.k odd 4 2
768.3.h.b 2 240.t even 4 2
1200.3.c.c 2 20.e even 4 2
1200.3.c.c 2 60.l odd 4 2
1200.3.l.b 1 4.b odd 2 1
1200.3.l.b 1 12.b even 2 1
1296.3.q.b 2 180.n even 6 2
1296.3.q.b 2 180.p odd 6 2
1452.3.e.b 1 55.d odd 2 1
1452.3.e.b 1 165.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(300, [\chi])$$:

 $$T_{7} + 2$$ $$T_{11}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-3 + T$$
$5$ $$T$$
$7$ $$2 + T$$
$11$ $$T$$
$13$ $$-22 + T$$
$17$ $$T$$
$19$ $$-26 + T$$
$23$ $$T$$
$29$ $$T$$
$31$ $$46 + T$$
$37$ $$26 + T$$
$41$ $$T$$
$43$ $$-22 + T$$
$47$ $$T$$
$53$ $$T$$
$59$ $$T$$
$61$ $$-74 + T$$
$67$ $$122 + T$$
$71$ $$T$$
$73$ $$-46 + T$$
$79$ $$142 + T$$
$83$ $$T$$
$89$ $$T$$
$97$ $$2 + T$$