Properties

 Label 300.3.c.a Level $300$ Weight $3$ Character orbit 300.c Analytic conductor $8.174$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Learn more about

Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 300.c (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.17440793081$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 60) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -2 \zeta_{6} q^{2} + ( -1 + 2 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + ( 4 - 2 \zeta_{6} ) q^{6} + ( -6 + 12 \zeta_{6} ) q^{7} + 8 q^{8} -3 q^{9} +O(q^{10})$$ $$q -2 \zeta_{6} q^{2} + ( -1 + 2 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + ( 4 - 2 \zeta_{6} ) q^{6} + ( -6 + 12 \zeta_{6} ) q^{7} + 8 q^{8} -3 q^{9} + ( 6 - 12 \zeta_{6} ) q^{11} + ( -4 - 4 \zeta_{6} ) q^{12} -18 q^{13} + ( 24 - 12 \zeta_{6} ) q^{14} -16 \zeta_{6} q^{16} -10 q^{17} + 6 \zeta_{6} q^{18} + ( 8 - 16 \zeta_{6} ) q^{19} -18 q^{21} + ( -24 + 12 \zeta_{6} ) q^{22} + ( -4 + 8 \zeta_{6} ) q^{23} + ( -8 + 16 \zeta_{6} ) q^{24} + 36 \zeta_{6} q^{26} + ( 3 - 6 \zeta_{6} ) q^{27} + ( -24 - 24 \zeta_{6} ) q^{28} -36 q^{29} + ( -4 + 8 \zeta_{6} ) q^{31} + ( -32 + 32 \zeta_{6} ) q^{32} + 18 q^{33} + 20 \zeta_{6} q^{34} + ( 12 - 12 \zeta_{6} ) q^{36} -54 q^{37} + ( -32 + 16 \zeta_{6} ) q^{38} + ( 18 - 36 \zeta_{6} ) q^{39} + 18 q^{41} + 36 \zeta_{6} q^{42} + ( -12 + 24 \zeta_{6} ) q^{43} + ( 24 + 24 \zeta_{6} ) q^{44} + ( 16 - 8 \zeta_{6} ) q^{46} + ( 32 - 16 \zeta_{6} ) q^{48} -59 q^{49} + ( 10 - 20 \zeta_{6} ) q^{51} + ( 72 - 72 \zeta_{6} ) q^{52} + 26 q^{53} + ( -12 + 6 \zeta_{6} ) q^{54} + ( -48 + 96 \zeta_{6} ) q^{56} + 24 q^{57} + 72 \zeta_{6} q^{58} + ( -18 + 36 \zeta_{6} ) q^{59} -74 q^{61} + ( 16 - 8 \zeta_{6} ) q^{62} + ( 18 - 36 \zeta_{6} ) q^{63} + 64 q^{64} -36 \zeta_{6} q^{66} + ( -24 + 48 \zeta_{6} ) q^{67} + ( 40 - 40 \zeta_{6} ) q^{68} -12 q^{69} + ( -60 + 120 \zeta_{6} ) q^{71} -24 q^{72} -36 q^{73} + 108 \zeta_{6} q^{74} + ( 32 + 32 \zeta_{6} ) q^{76} + 108 q^{77} + ( -72 + 36 \zeta_{6} ) q^{78} + ( 52 - 104 \zeta_{6} ) q^{79} + 9 q^{81} -36 \zeta_{6} q^{82} + ( 52 - 104 \zeta_{6} ) q^{83} + ( 72 - 72 \zeta_{6} ) q^{84} + ( 48 - 24 \zeta_{6} ) q^{86} + ( 36 - 72 \zeta_{6} ) q^{87} + ( 48 - 96 \zeta_{6} ) q^{88} -18 q^{89} + ( 108 - 216 \zeta_{6} ) q^{91} + ( -16 - 16 \zeta_{6} ) q^{92} -12 q^{93} + ( -32 - 32 \zeta_{6} ) q^{96} + 72 q^{97} + 118 \zeta_{6} q^{98} + ( -18 + 36 \zeta_{6} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{2} - 4q^{4} + 6q^{6} + 16q^{8} - 6q^{9} + O(q^{10})$$ $$2q - 2q^{2} - 4q^{4} + 6q^{6} + 16q^{8} - 6q^{9} - 12q^{12} - 36q^{13} + 36q^{14} - 16q^{16} - 20q^{17} + 6q^{18} - 36q^{21} - 36q^{22} + 36q^{26} - 72q^{28} - 72q^{29} - 32q^{32} + 36q^{33} + 20q^{34} + 12q^{36} - 108q^{37} - 48q^{38} + 36q^{41} + 36q^{42} + 72q^{44} + 24q^{46} + 48q^{48} - 118q^{49} + 72q^{52} + 52q^{53} - 18q^{54} + 48q^{57} + 72q^{58} - 148q^{61} + 24q^{62} + 128q^{64} - 36q^{66} + 40q^{68} - 24q^{69} - 48q^{72} - 72q^{73} + 108q^{74} + 96q^{76} + 216q^{77} - 108q^{78} + 18q^{81} - 36q^{82} + 72q^{84} + 72q^{86} - 36q^{89} - 48q^{92} - 24q^{93} - 96q^{96} + 144q^{97} + 118q^{98} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
151.1
 0.5 + 0.866025i 0.5 − 0.866025i
−1.00000 1.73205i 1.73205i −2.00000 + 3.46410i 0 3.00000 1.73205i 10.3923i 8.00000 −3.00000 0
151.2 −1.00000 + 1.73205i 1.73205i −2.00000 3.46410i 0 3.00000 + 1.73205i 10.3923i 8.00000 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.c.a 2
3.b odd 2 1 900.3.c.j 2
4.b odd 2 1 inner 300.3.c.a 2
5.b even 2 1 300.3.c.c 2
5.c odd 4 2 60.3.f.a 4
12.b even 2 1 900.3.c.j 2
15.d odd 2 1 900.3.c.f 2
15.e even 4 2 180.3.f.e 4
20.d odd 2 1 300.3.c.c 2
20.e even 4 2 60.3.f.a 4
40.i odd 4 2 960.3.j.b 4
40.k even 4 2 960.3.j.b 4
60.h even 2 1 900.3.c.f 2
60.l odd 4 2 180.3.f.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.f.a 4 5.c odd 4 2
60.3.f.a 4 20.e even 4 2
180.3.f.e 4 15.e even 4 2
180.3.f.e 4 60.l odd 4 2
300.3.c.a 2 1.a even 1 1 trivial
300.3.c.a 2 4.b odd 2 1 inner
300.3.c.c 2 5.b even 2 1
300.3.c.c 2 20.d odd 2 1
900.3.c.f 2 15.d odd 2 1
900.3.c.f 2 60.h even 2 1
900.3.c.j 2 3.b odd 2 1
900.3.c.j 2 12.b even 2 1
960.3.j.b 4 40.i odd 4 2
960.3.j.b 4 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(300, [\chi])$$:

 $$T_{7}^{2} + 108$$ $$T_{13} + 18$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$4 + 2 T + T^{2}$$
$3$ $$3 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$108 + T^{2}$$
$11$ $$108 + T^{2}$$
$13$ $$( 18 + T )^{2}$$
$17$ $$( 10 + T )^{2}$$
$19$ $$192 + T^{2}$$
$23$ $$48 + T^{2}$$
$29$ $$( 36 + T )^{2}$$
$31$ $$48 + T^{2}$$
$37$ $$( 54 + T )^{2}$$
$41$ $$( -18 + T )^{2}$$
$43$ $$432 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$( -26 + T )^{2}$$
$59$ $$972 + T^{2}$$
$61$ $$( 74 + T )^{2}$$
$67$ $$1728 + T^{2}$$
$71$ $$10800 + T^{2}$$
$73$ $$( 36 + T )^{2}$$
$79$ $$8112 + T^{2}$$
$83$ $$8112 + T^{2}$$
$89$ $$( 18 + T )^{2}$$
$97$ $$( -72 + T )^{2}$$
show more
show less