# Properties

 Label 300.3.b.b Level $300$ Weight $3$ Character orbit 300.b Analytic conductor $8.174$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$300 = 2^{2} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 300.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.17440793081$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 i q^{3} -13 i q^{7} -9 q^{9} +O(q^{10})$$ $$q + 3 i q^{3} -13 i q^{7} -9 q^{9} -23 i q^{13} -11 q^{19} + 39 q^{21} -27 i q^{27} + 59 q^{31} + 26 i q^{37} + 69 q^{39} -83 i q^{43} -120 q^{49} -33 i q^{57} -121 q^{61} + 117 i q^{63} -13 i q^{67} + 46 i q^{73} + 142 q^{79} + 81 q^{81} -299 q^{91} + 177 i q^{93} + 167 i q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 18q^{9} + O(q^{10})$$ $$2q - 18q^{9} - 22q^{19} + 78q^{21} + 118q^{31} + 138q^{39} - 240q^{49} - 242q^{61} + 284q^{79} + 162q^{81} - 598q^{91} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/300\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$151$$ $$277$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
149.1
 − 1.00000i 1.00000i
0 3.00000i 0 0 0 13.0000i 0 −9.00000 0
149.2 0 3.00000i 0 0 0 13.0000i 0 −9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
5.b even 2 1 inner
15.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.b.b 2
3.b odd 2 1 CM 300.3.b.b 2
4.b odd 2 1 1200.3.c.b 2
5.b even 2 1 inner 300.3.b.b 2
5.c odd 4 1 300.3.g.a 1
5.c odd 4 1 300.3.g.c yes 1
12.b even 2 1 1200.3.c.b 2
15.d odd 2 1 inner 300.3.b.b 2
15.e even 4 1 300.3.g.a 1
15.e even 4 1 300.3.g.c yes 1
20.d odd 2 1 1200.3.c.b 2
20.e even 4 1 1200.3.l.a 1
20.e even 4 1 1200.3.l.e 1
60.h even 2 1 1200.3.c.b 2
60.l odd 4 1 1200.3.l.a 1
60.l odd 4 1 1200.3.l.e 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.3.b.b 2 1.a even 1 1 trivial
300.3.b.b 2 3.b odd 2 1 CM
300.3.b.b 2 5.b even 2 1 inner
300.3.b.b 2 15.d odd 2 1 inner
300.3.g.a 1 5.c odd 4 1
300.3.g.a 1 15.e even 4 1
300.3.g.c yes 1 5.c odd 4 1
300.3.g.c yes 1 15.e even 4 1
1200.3.c.b 2 4.b odd 2 1
1200.3.c.b 2 12.b even 2 1
1200.3.c.b 2 20.d odd 2 1
1200.3.c.b 2 60.h even 2 1
1200.3.l.a 1 20.e even 4 1
1200.3.l.a 1 60.l odd 4 1
1200.3.l.e 1 20.e even 4 1
1200.3.l.e 1 60.l odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(300, [\chi])$$:

 $$T_{7}^{2} + 169$$ $$T_{11}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$9 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$169 + T^{2}$$
$11$ $$T^{2}$$
$13$ $$529 + T^{2}$$
$17$ $$T^{2}$$
$19$ $$( 11 + T )^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$( -59 + T )^{2}$$
$37$ $$676 + T^{2}$$
$41$ $$T^{2}$$
$43$ $$6889 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$( 121 + T )^{2}$$
$67$ $$169 + T^{2}$$
$71$ $$T^{2}$$
$73$ $$2116 + T^{2}$$
$79$ $$( -142 + T )^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$27889 + T^{2}$$