Properties

Label 300.3.b.a
Level $300$
Weight $3$
Character orbit 300.b
Analytic conductor $8.174$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 300.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.17440793081\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 i q^{3} + 2 i q^{7} -9 q^{9} +O(q^{10})\) \( q + 3 i q^{3} + 2 i q^{7} -9 q^{9} + 22 i q^{13} -26 q^{19} -6 q^{21} -27 i q^{27} -46 q^{31} + 26 i q^{37} -66 q^{39} + 22 i q^{43} + 45 q^{49} -78 i q^{57} + 74 q^{61} -18 i q^{63} + 122 i q^{67} + 46 i q^{73} + 142 q^{79} + 81 q^{81} -44 q^{91} -138 i q^{93} + 2 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 18q^{9} + O(q^{10}) \) \( 2q - 18q^{9} - 52q^{19} - 12q^{21} - 92q^{31} - 132q^{39} + 90q^{49} + 148q^{61} + 284q^{79} + 162q^{81} - 88q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
1.00000i
1.00000i
0 3.00000i 0 0 0 2.00000i 0 −9.00000 0
149.2 0 3.00000i 0 0 0 2.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.3.b.a 2
3.b odd 2 1 CM 300.3.b.a 2
4.b odd 2 1 1200.3.c.c 2
5.b even 2 1 inner 300.3.b.a 2
5.c odd 4 1 12.3.c.a 1
5.c odd 4 1 300.3.g.b 1
12.b even 2 1 1200.3.c.c 2
15.d odd 2 1 inner 300.3.b.a 2
15.e even 4 1 12.3.c.a 1
15.e even 4 1 300.3.g.b 1
20.d odd 2 1 1200.3.c.c 2
20.e even 4 1 48.3.e.a 1
20.e even 4 1 1200.3.l.b 1
35.f even 4 1 588.3.c.c 1
35.k even 12 2 588.3.p.b 2
35.l odd 12 2 588.3.p.c 2
40.i odd 4 1 192.3.e.b 1
40.k even 4 1 192.3.e.a 1
45.k odd 12 2 324.3.g.b 2
45.l even 12 2 324.3.g.b 2
55.e even 4 1 1452.3.e.b 1
60.h even 2 1 1200.3.c.c 2
60.l odd 4 1 48.3.e.a 1
60.l odd 4 1 1200.3.l.b 1
80.i odd 4 1 768.3.h.a 2
80.j even 4 1 768.3.h.b 2
80.s even 4 1 768.3.h.b 2
80.t odd 4 1 768.3.h.a 2
105.k odd 4 1 588.3.c.c 1
105.w odd 12 2 588.3.p.b 2
105.x even 12 2 588.3.p.c 2
120.q odd 4 1 192.3.e.a 1
120.w even 4 1 192.3.e.b 1
165.l odd 4 1 1452.3.e.b 1
180.v odd 12 2 1296.3.q.b 2
180.x even 12 2 1296.3.q.b 2
240.z odd 4 1 768.3.h.b 2
240.bb even 4 1 768.3.h.a 2
240.bd odd 4 1 768.3.h.b 2
240.bf even 4 1 768.3.h.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.c.a 1 5.c odd 4 1
12.3.c.a 1 15.e even 4 1
48.3.e.a 1 20.e even 4 1
48.3.e.a 1 60.l odd 4 1
192.3.e.a 1 40.k even 4 1
192.3.e.a 1 120.q odd 4 1
192.3.e.b 1 40.i odd 4 1
192.3.e.b 1 120.w even 4 1
300.3.b.a 2 1.a even 1 1 trivial
300.3.b.a 2 3.b odd 2 1 CM
300.3.b.a 2 5.b even 2 1 inner
300.3.b.a 2 15.d odd 2 1 inner
300.3.g.b 1 5.c odd 4 1
300.3.g.b 1 15.e even 4 1
324.3.g.b 2 45.k odd 12 2
324.3.g.b 2 45.l even 12 2
588.3.c.c 1 35.f even 4 1
588.3.c.c 1 105.k odd 4 1
588.3.p.b 2 35.k even 12 2
588.3.p.b 2 105.w odd 12 2
588.3.p.c 2 35.l odd 12 2
588.3.p.c 2 105.x even 12 2
768.3.h.a 2 80.i odd 4 1
768.3.h.a 2 80.t odd 4 1
768.3.h.a 2 240.bb even 4 1
768.3.h.a 2 240.bf even 4 1
768.3.h.b 2 80.j even 4 1
768.3.h.b 2 80.s even 4 1
768.3.h.b 2 240.z odd 4 1
768.3.h.b 2 240.bd odd 4 1
1200.3.c.c 2 4.b odd 2 1
1200.3.c.c 2 12.b even 2 1
1200.3.c.c 2 20.d odd 2 1
1200.3.c.c 2 60.h even 2 1
1200.3.l.b 1 20.e even 4 1
1200.3.l.b 1 60.l odd 4 1
1296.3.q.b 2 180.v odd 12 2
1296.3.q.b 2 180.x even 12 2
1452.3.e.b 1 55.e even 4 1
1452.3.e.b 1 165.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(300, [\chi])\):

\( T_{7}^{2} + 4 \)
\( T_{11} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 4 + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 484 + T^{2} \)
$17$ \( T^{2} \)
$19$ \( ( 26 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( ( 46 + T )^{2} \)
$37$ \( 676 + T^{2} \)
$41$ \( T^{2} \)
$43$ \( 484 + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( ( -74 + T )^{2} \)
$67$ \( 14884 + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 2116 + T^{2} \)
$79$ \( ( -142 + T )^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( 4 + T^{2} \)
show more
show less