Properties

Label 300.2.w
Level $300$
Weight $2$
Character orbit 300.w
Rep. character $\chi_{300}(67,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $240$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.w (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{20})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(300, [\chi])\).

Total New Old
Modular forms 512 240 272
Cusp forms 448 240 208
Eisenstein series 64 0 64

Trace form

\( 240q + 12q^{8} + O(q^{10}) \) \( 240q + 12q^{8} + 8q^{10} + 8q^{12} + 4q^{13} + 20q^{17} - 20q^{20} - 12q^{22} + 20q^{25} + 4q^{28} - 8q^{30} - 20q^{32} - 8q^{33} - 4q^{37} - 76q^{38} - 92q^{40} - 20q^{42} - 140q^{44} - 4q^{45} - 16q^{48} - 164q^{50} - 172q^{52} - 4q^{53} - 120q^{58} + 20q^{60} - 44q^{62} - 60q^{64} - 20q^{65} + 16q^{68} - 44q^{70} + 12q^{72} - 44q^{73} - 48q^{77} + 24q^{78} - 4q^{80} + 60q^{81} + 24q^{82} + 80q^{84} - 64q^{85} + 60q^{88} - 260q^{89} + 48q^{90} + 144q^{92} - 64q^{93} + 40q^{94} - 20q^{96} - 180q^{97} + 256q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
300.2.w.a \(240\) \(2.396\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(300, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(300, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 2}\)