Properties

Label 300.2.r
Level $300$
Weight $2$
Character orbit 300.r
Rep. character $\chi_{300}(59,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $224$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.r (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 300 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(300, [\chi])\).

Total New Old
Modular forms 256 256 0
Cusp forms 224 224 0
Eisenstein series 32 32 0

Trace form

\( 224q - 6q^{4} - 7q^{6} - 6q^{9} + O(q^{10}) \) \( 224q - 6q^{4} - 7q^{6} - 6q^{9} - 5q^{12} - 20q^{13} + 6q^{16} - 24q^{21} - 10q^{22} - 28q^{24} - 20q^{25} - 50q^{28} - 25q^{30} - 10q^{33} - 14q^{34} - 25q^{36} - 60q^{37} - 20q^{40} - 85q^{42} - 30q^{45} + 6q^{46} - 70q^{48} + 88q^{49} + 40q^{52} - 46q^{54} + 50q^{58} + 10q^{60} - 28q^{61} + 18q^{64} + 64q^{66} - 42q^{69} - 40q^{70} - 5q^{72} - 20q^{73} - 80q^{76} - 85q^{78} + 18q^{81} - 48q^{84} - 20q^{85} + 50q^{88} - 60q^{90} + 60q^{94} + 44q^{96} - 120q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
300.2.r.a \(224\) \(2.396\) None \(0\) \(0\) \(0\) \(0\)