Properties

Label 300.2.o.a.109.3
Level $300$
Weight $2$
Character 300.109
Analytic conductor $2.396$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.o (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 109.3
Character \(\chi\) \(=\) 300.109
Dual form 300.2.o.a.289.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.951057 + 0.309017i) q^{3} +(0.971442 - 2.01403i) q^{5} -1.04684i q^{7} +(0.809017 - 0.587785i) q^{9} +O(q^{10})\) \(q+(-0.951057 + 0.309017i) q^{3} +(0.971442 - 2.01403i) q^{5} -1.04684i q^{7} +(0.809017 - 0.587785i) q^{9} +(-5.08783 - 3.69653i) q^{11} +(0.591485 + 0.814109i) q^{13} +(-0.301528 + 2.21564i) q^{15} +(4.46202 + 1.44980i) q^{17} +(1.84654 - 5.68307i) q^{19} +(0.323490 + 0.995600i) q^{21} +(4.73227 - 6.51341i) q^{23} +(-3.11260 - 3.91302i) q^{25} +(-0.587785 + 0.809017i) q^{27} +(-2.13691 - 6.57673i) q^{29} +(-2.94312 + 9.05799i) q^{31} +(5.98110 + 1.94338i) q^{33} +(-2.10835 - 1.01694i) q^{35} +(4.52472 + 6.22774i) q^{37} +(-0.814109 - 0.591485i) q^{39} +(-1.26960 + 0.922421i) q^{41} +9.94897i q^{43} +(-0.397901 - 2.20038i) q^{45} +(-4.60938 + 1.49768i) q^{47} +5.90413 q^{49} -4.69165 q^{51} +(-2.68802 + 0.873389i) q^{53} +(-12.3874 + 6.65606i) q^{55} +5.97554i q^{57} +(3.30248 - 2.39939i) q^{59} +(-2.55692 - 1.85771i) q^{61} +(-0.615315 - 0.846908i) q^{63} +(2.21423 - 0.400406i) q^{65} +(-3.01519 - 0.979694i) q^{67} +(-2.48790 + 7.65697i) q^{69} +(2.01138 + 6.19039i) q^{71} +(-0.216191 + 0.297561i) q^{73} +(4.16945 + 2.75966i) q^{75} +(-3.86966 + 5.32612i) q^{77} +(1.02596 + 3.15759i) q^{79} +(0.309017 - 0.951057i) q^{81} +(13.1796 + 4.28231i) q^{83} +(7.25453 - 7.57824i) q^{85} +(4.06465 + 5.59450i) q^{87} +(-2.02776 - 1.47326i) q^{89} +(0.852238 - 0.619187i) q^{91} -9.52414i q^{93} +(-9.65205 - 9.23976i) q^{95} +(0.173748 - 0.0564542i) q^{97} -6.28891 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 2q^{5} + 6q^{9} + O(q^{10}) \) \( 24q - 2q^{5} + 6q^{9} - 6q^{11} + 4q^{15} + 10q^{17} + 10q^{19} - 4q^{21} + 40q^{23} - 4q^{25} + 4q^{29} + 6q^{31} + 10q^{33} - 6q^{35} - 10q^{41} + 2q^{45} - 40q^{47} - 56q^{49} + 16q^{51} - 60q^{53} - 62q^{55} - 36q^{59} - 12q^{61} - 10q^{63} + 20q^{67} + 4q^{69} + 40q^{71} + 60q^{73} + 8q^{75} - 40q^{77} + 8q^{79} - 6q^{81} - 50q^{83} + 34q^{85} - 20q^{87} - 30q^{91} - 60q^{95} - 40q^{97} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.951057 + 0.309017i −0.549093 + 0.178411i
\(4\) 0 0
\(5\) 0.971442 2.01403i 0.434442 0.900700i
\(6\) 0 0
\(7\) 1.04684i 0.395667i −0.980236 0.197833i \(-0.936610\pi\)
0.980236 0.197833i \(-0.0633905\pi\)
\(8\) 0 0
\(9\) 0.809017 0.587785i 0.269672 0.195928i
\(10\) 0 0
\(11\) −5.08783 3.69653i −1.53404 1.11454i −0.953940 0.299999i \(-0.903014\pi\)
−0.580099 0.814546i \(-0.696986\pi\)
\(12\) 0 0
\(13\) 0.591485 + 0.814109i 0.164048 + 0.225793i 0.883125 0.469137i \(-0.155435\pi\)
−0.719077 + 0.694931i \(0.755435\pi\)
\(14\) 0 0
\(15\) −0.301528 + 2.21564i −0.0778542 + 0.572077i
\(16\) 0 0
\(17\) 4.46202 + 1.44980i 1.08220 + 0.351628i 0.795228 0.606311i \(-0.207351\pi\)
0.286972 + 0.957939i \(0.407351\pi\)
\(18\) 0 0
\(19\) 1.84654 5.68307i 0.423626 1.30379i −0.480678 0.876897i \(-0.659609\pi\)
0.904304 0.426889i \(-0.140391\pi\)
\(20\) 0 0
\(21\) 0.323490 + 0.995600i 0.0705913 + 0.217258i
\(22\) 0 0
\(23\) 4.73227 6.51341i 0.986746 1.35814i 0.0536312 0.998561i \(-0.482920\pi\)
0.933115 0.359579i \(-0.117080\pi\)
\(24\) 0 0
\(25\) −3.11260 3.91302i −0.622520 0.782604i
\(26\) 0 0
\(27\) −0.587785 + 0.809017i −0.113119 + 0.155695i
\(28\) 0 0
\(29\) −2.13691 6.57673i −0.396814 1.22127i −0.927540 0.373725i \(-0.878080\pi\)
0.530725 0.847544i \(-0.321920\pi\)
\(30\) 0 0
\(31\) −2.94312 + 9.05799i −0.528600 + 1.62686i 0.228485 + 0.973547i \(0.426623\pi\)
−0.757085 + 0.653316i \(0.773377\pi\)
\(32\) 0 0
\(33\) 5.98110 + 1.94338i 1.04118 + 0.338299i
\(34\) 0 0
\(35\) −2.10835 1.01694i −0.356377 0.171894i
\(36\) 0 0
\(37\) 4.52472 + 6.22774i 0.743859 + 1.02383i 0.998387 + 0.0567693i \(0.0180799\pi\)
−0.254528 + 0.967065i \(0.581920\pi\)
\(38\) 0 0
\(39\) −0.814109 0.591485i −0.130362 0.0947133i
\(40\) 0 0
\(41\) −1.26960 + 0.922421i −0.198279 + 0.144058i −0.682495 0.730891i \(-0.739105\pi\)
0.484216 + 0.874949i \(0.339105\pi\)
\(42\) 0 0
\(43\) 9.94897i 1.51720i 0.651555 + 0.758602i \(0.274117\pi\)
−0.651555 + 0.758602i \(0.725883\pi\)
\(44\) 0 0
\(45\) −0.397901 2.20038i −0.0593156 0.328013i
\(46\) 0 0
\(47\) −4.60938 + 1.49768i −0.672347 + 0.218459i −0.625242 0.780431i \(-0.715000\pi\)
−0.0471053 + 0.998890i \(0.515000\pi\)
\(48\) 0 0
\(49\) 5.90413 0.843448
\(50\) 0 0
\(51\) −4.69165 −0.656962
\(52\) 0 0
\(53\) −2.68802 + 0.873389i −0.369227 + 0.119969i −0.487753 0.872982i \(-0.662183\pi\)
0.118525 + 0.992951i \(0.462183\pi\)
\(54\) 0 0
\(55\) −12.3874 + 6.65606i −1.67032 + 0.897503i
\(56\) 0 0
\(57\) 5.97554i 0.791479i
\(58\) 0 0
\(59\) 3.30248 2.39939i 0.429946 0.312374i −0.351681 0.936120i \(-0.614390\pi\)
0.781627 + 0.623746i \(0.214390\pi\)
\(60\) 0 0
\(61\) −2.55692 1.85771i −0.327381 0.237856i 0.411938 0.911212i \(-0.364852\pi\)
−0.739318 + 0.673356i \(0.764852\pi\)
\(62\) 0 0
\(63\) −0.615315 0.846908i −0.0775224 0.106700i
\(64\) 0 0
\(65\) 2.21423 0.400406i 0.274641 0.0496642i
\(66\) 0 0
\(67\) −3.01519 0.979694i −0.368364 0.119689i 0.118985 0.992896i \(-0.462036\pi\)
−0.487349 + 0.873207i \(0.662036\pi\)
\(68\) 0 0
\(69\) −2.48790 + 7.65697i −0.299508 + 0.921791i
\(70\) 0 0
\(71\) 2.01138 + 6.19039i 0.238707 + 0.734664i 0.996608 + 0.0822947i \(0.0262249\pi\)
−0.757901 + 0.652369i \(0.773775\pi\)
\(72\) 0 0
\(73\) −0.216191 + 0.297561i −0.0253032 + 0.0348269i −0.821481 0.570236i \(-0.806852\pi\)
0.796178 + 0.605063i \(0.206852\pi\)
\(74\) 0 0
\(75\) 4.16945 + 2.75966i 0.481446 + 0.318658i
\(76\) 0 0
\(77\) −3.86966 + 5.32612i −0.440988 + 0.606968i
\(78\) 0 0
\(79\) 1.02596 + 3.15759i 0.115430 + 0.355257i 0.992036 0.125951i \(-0.0401982\pi\)
−0.876607 + 0.481208i \(0.840198\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 13.1796 + 4.28231i 1.44665 + 0.470045i 0.923964 0.382480i \(-0.124930\pi\)
0.522686 + 0.852525i \(0.324930\pi\)
\(84\) 0 0
\(85\) 7.25453 7.57824i 0.786865 0.821975i
\(86\) 0 0
\(87\) 4.06465 + 5.59450i 0.435776 + 0.599794i
\(88\) 0 0
\(89\) −2.02776 1.47326i −0.214942 0.156165i 0.475105 0.879929i \(-0.342410\pi\)
−0.690047 + 0.723765i \(0.742410\pi\)
\(90\) 0 0
\(91\) 0.852238 0.619187i 0.0893388 0.0649085i
\(92\) 0 0
\(93\) 9.52414i 0.987607i
\(94\) 0 0
\(95\) −9.65205 9.23976i −0.990279 0.947980i
\(96\) 0 0
\(97\) 0.173748 0.0564542i 0.0176414 0.00573205i −0.300183 0.953882i \(-0.597048\pi\)
0.317824 + 0.948150i \(0.397048\pi\)
\(98\) 0 0
\(99\) −6.28891 −0.632059
\(100\) 0 0
\(101\) −5.96970 −0.594008 −0.297004 0.954876i \(-0.595987\pi\)
−0.297004 + 0.954876i \(0.595987\pi\)
\(102\) 0 0
\(103\) 8.52017 2.76837i 0.839517 0.272776i 0.142468 0.989799i \(-0.454496\pi\)
0.697049 + 0.717024i \(0.254496\pi\)
\(104\) 0 0
\(105\) 2.31942 + 0.315651i 0.226352 + 0.0308043i
\(106\) 0 0
\(107\) 2.69495i 0.260530i 0.991479 + 0.130265i \(0.0415829\pi\)
−0.991479 + 0.130265i \(0.958417\pi\)
\(108\) 0 0
\(109\) 8.33278 6.05412i 0.798135 0.579879i −0.112231 0.993682i \(-0.535800\pi\)
0.910366 + 0.413803i \(0.135800\pi\)
\(110\) 0 0
\(111\) −6.22774 4.52472i −0.591111 0.429467i
\(112\) 0 0
\(113\) 1.98712 + 2.73504i 0.186933 + 0.257291i 0.892190 0.451661i \(-0.149168\pi\)
−0.705257 + 0.708952i \(0.749168\pi\)
\(114\) 0 0
\(115\) −8.52105 15.8583i −0.794592 1.47879i
\(116\) 0 0
\(117\) 0.957042 + 0.310962i 0.0884786 + 0.0287484i
\(118\) 0 0
\(119\) 1.51770 4.67101i 0.139128 0.428191i
\(120\) 0 0
\(121\) 8.82254 + 27.1530i 0.802049 + 2.46845i
\(122\) 0 0
\(123\) 0.922421 1.26960i 0.0831719 0.114476i
\(124\) 0 0
\(125\) −10.9046 + 2.46759i −0.975340 + 0.220708i
\(126\) 0 0
\(127\) 3.51155 4.83324i 0.311600 0.428881i −0.624279 0.781201i \(-0.714607\pi\)
0.935879 + 0.352321i \(0.114607\pi\)
\(128\) 0 0
\(129\) −3.07440 9.46203i −0.270686 0.833085i
\(130\) 0 0
\(131\) 1.91817 5.90352i 0.167591 0.515793i −0.831627 0.555335i \(-0.812590\pi\)
0.999218 + 0.0395422i \(0.0125900\pi\)
\(132\) 0 0
\(133\) −5.94925 1.93303i −0.515865 0.167615i
\(134\) 0 0
\(135\) 1.05838 + 1.96973i 0.0910910 + 0.169527i
\(136\) 0 0
\(137\) 7.62811 + 10.4992i 0.651714 + 0.897007i 0.999172 0.0406885i \(-0.0129551\pi\)
−0.347458 + 0.937695i \(0.612955\pi\)
\(138\) 0 0
\(139\) 3.23564 + 2.35083i 0.274444 + 0.199395i 0.716490 0.697597i \(-0.245747\pi\)
−0.442047 + 0.896992i \(0.645747\pi\)
\(140\) 0 0
\(141\) 3.92097 2.84875i 0.330205 0.239908i
\(142\) 0 0
\(143\) 6.32849i 0.529215i
\(144\) 0 0
\(145\) −15.3216 2.08512i −1.27239 0.173160i
\(146\) 0 0
\(147\) −5.61517 + 1.82448i −0.463131 + 0.150480i
\(148\) 0 0
\(149\) −5.68762 −0.465948 −0.232974 0.972483i \(-0.574846\pi\)
−0.232974 + 0.972483i \(0.574846\pi\)
\(150\) 0 0
\(151\) −5.51150 −0.448519 −0.224260 0.974529i \(-0.571996\pi\)
−0.224260 + 0.974529i \(0.571996\pi\)
\(152\) 0 0
\(153\) 4.46202 1.44980i 0.360733 0.117209i
\(154\) 0 0
\(155\) 15.3840 + 14.7268i 1.23567 + 1.18289i
\(156\) 0 0
\(157\) 17.0217i 1.35848i −0.733915 0.679242i \(-0.762309\pi\)
0.733915 0.679242i \(-0.237691\pi\)
\(158\) 0 0
\(159\) 2.28656 1.66129i 0.181336 0.131748i
\(160\) 0 0
\(161\) −6.81847 4.95391i −0.537371 0.390423i
\(162\) 0 0
\(163\) −7.22726 9.94747i −0.566083 0.779146i 0.426001 0.904723i \(-0.359922\pi\)
−0.992084 + 0.125576i \(0.959922\pi\)
\(164\) 0 0
\(165\) 9.72431 10.1582i 0.757037 0.790816i
\(166\) 0 0
\(167\) 5.16289 + 1.67752i 0.399516 + 0.129811i 0.501882 0.864936i \(-0.332641\pi\)
−0.102366 + 0.994747i \(0.532641\pi\)
\(168\) 0 0
\(169\) 3.70430 11.4007i 0.284946 0.876975i
\(170\) 0 0
\(171\) −1.84654 5.68307i −0.141209 0.434596i
\(172\) 0 0
\(173\) 6.31611 8.69337i 0.480205 0.660945i −0.498340 0.866982i \(-0.666057\pi\)
0.978544 + 0.206037i \(0.0660567\pi\)
\(174\) 0 0
\(175\) −4.09629 + 3.25838i −0.309650 + 0.246310i
\(176\) 0 0
\(177\) −2.39939 + 3.30248i −0.180349 + 0.248230i
\(178\) 0 0
\(179\) 5.96596 + 18.3613i 0.445917 + 1.37239i 0.881476 + 0.472230i \(0.156551\pi\)
−0.435559 + 0.900160i \(0.643449\pi\)
\(180\) 0 0
\(181\) 5.17642 15.9314i 0.384760 1.18417i −0.551894 0.833914i \(-0.686095\pi\)
0.936654 0.350255i \(-0.113905\pi\)
\(182\) 0 0
\(183\) 3.00585 + 0.976658i 0.222198 + 0.0721967i
\(184\) 0 0
\(185\) 16.9383 3.06301i 1.24533 0.225197i
\(186\) 0 0
\(187\) −17.3428 23.8703i −1.26823 1.74557i
\(188\) 0 0
\(189\) 0.846908 + 0.615315i 0.0616035 + 0.0447576i
\(190\) 0 0
\(191\) 9.66400 7.02131i 0.699263 0.508044i −0.180429 0.983588i \(-0.557749\pi\)
0.879692 + 0.475544i \(0.157749\pi\)
\(192\) 0 0
\(193\) 26.4298i 1.90246i 0.308485 + 0.951229i \(0.400178\pi\)
−0.308485 + 0.951229i \(0.599822\pi\)
\(194\) 0 0
\(195\) −1.98212 + 1.06504i −0.141943 + 0.0762693i
\(196\) 0 0
\(197\) −10.5299 + 3.42138i −0.750225 + 0.243763i −0.659078 0.752074i \(-0.729053\pi\)
−0.0911471 + 0.995837i \(0.529053\pi\)
\(198\) 0 0
\(199\) 16.5548 1.17354 0.586768 0.809755i \(-0.300400\pi\)
0.586768 + 0.809755i \(0.300400\pi\)
\(200\) 0 0
\(201\) 3.17036 0.223620
\(202\) 0 0
\(203\) −6.88476 + 2.23699i −0.483215 + 0.157006i
\(204\) 0 0
\(205\) 0.624434 + 3.45309i 0.0436123 + 0.241175i
\(206\) 0 0
\(207\) 8.05101i 0.559584i
\(208\) 0 0
\(209\) −30.4025 + 22.0887i −2.10299 + 1.52791i
\(210\) 0 0
\(211\) 3.32274 + 2.41411i 0.228747 + 0.166194i 0.696255 0.717794i \(-0.254848\pi\)
−0.467508 + 0.883989i \(0.654848\pi\)
\(212\) 0 0
\(213\) −3.82587 5.26586i −0.262144 0.360811i
\(214\) 0 0
\(215\) 20.0375 + 9.66485i 1.36654 + 0.659137i
\(216\) 0 0
\(217\) 9.48223 + 3.08096i 0.643696 + 0.209149i
\(218\) 0 0
\(219\) 0.113658 0.349804i 0.00768032 0.0236376i
\(220\) 0 0
\(221\) 1.45892 + 4.49011i 0.0981379 + 0.302037i
\(222\) 0 0
\(223\) −3.68040 + 5.06564i −0.246458 + 0.339220i −0.914267 0.405113i \(-0.867232\pi\)
0.667809 + 0.744333i \(0.267232\pi\)
\(224\) 0 0
\(225\) −4.81816 1.33616i −0.321211 0.0890772i
\(226\) 0 0
\(227\) 6.16101 8.47990i 0.408921 0.562831i −0.554034 0.832494i \(-0.686912\pi\)
0.962955 + 0.269663i \(0.0869123\pi\)
\(228\) 0 0
\(229\) −2.33827 7.19645i −0.154517 0.475555i 0.843595 0.536981i \(-0.180435\pi\)
−0.998112 + 0.0614260i \(0.980435\pi\)
\(230\) 0 0
\(231\) 2.03440 6.26123i 0.133854 0.411959i
\(232\) 0 0
\(233\) −15.2009 4.93908i −0.995846 0.323570i −0.234642 0.972082i \(-0.575392\pi\)
−0.761204 + 0.648512i \(0.775392\pi\)
\(234\) 0 0
\(235\) −1.46138 + 10.7383i −0.0953301 + 0.700491i
\(236\) 0 0
\(237\) −1.95150 2.68601i −0.126763 0.174475i
\(238\) 0 0
\(239\) −2.36231 1.71632i −0.152805 0.111019i 0.508756 0.860911i \(-0.330106\pi\)
−0.661561 + 0.749892i \(0.730106\pi\)
\(240\) 0 0
\(241\) 18.6460 13.5471i 1.20109 0.872644i 0.206700 0.978404i \(-0.433728\pi\)
0.994392 + 0.105760i \(0.0337277\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 5.73553 11.8911i 0.366429 0.759693i
\(246\) 0 0
\(247\) 5.71884 1.85816i 0.363881 0.118232i
\(248\) 0 0
\(249\) −13.8579 −0.878206
\(250\) 0 0
\(251\) −9.79130 −0.618021 −0.309011 0.951059i \(-0.599998\pi\)
−0.309011 + 0.951059i \(0.599998\pi\)
\(252\) 0 0
\(253\) −48.1540 + 15.6462i −3.02741 + 0.983666i
\(254\) 0 0
\(255\) −4.55767 + 9.44911i −0.285412 + 0.591726i
\(256\) 0 0
\(257\) 22.3147i 1.39195i 0.718066 + 0.695975i \(0.245027\pi\)
−0.718066 + 0.695975i \(0.754973\pi\)
\(258\) 0 0
\(259\) 6.51943 4.73664i 0.405097 0.294320i
\(260\) 0 0
\(261\) −5.59450 4.06465i −0.346291 0.251595i
\(262\) 0 0
\(263\) −0.428586 0.589898i −0.0264277 0.0363747i 0.795599 0.605824i \(-0.207156\pi\)
−0.822026 + 0.569449i \(0.807156\pi\)
\(264\) 0 0
\(265\) −0.852223 + 6.26218i −0.0523517 + 0.384683i
\(266\) 0 0
\(267\) 2.38378 + 0.774536i 0.145885 + 0.0474008i
\(268\) 0 0
\(269\) 0.574531 1.76822i 0.0350298 0.107811i −0.932013 0.362425i \(-0.881949\pi\)
0.967043 + 0.254615i \(0.0819487\pi\)
\(270\) 0 0
\(271\) 6.04232 + 18.5964i 0.367045 + 1.12965i 0.948691 + 0.316206i \(0.102409\pi\)
−0.581646 + 0.813442i \(0.697591\pi\)
\(272\) 0 0
\(273\) −0.619187 + 0.852238i −0.0374749 + 0.0515798i
\(274\) 0 0
\(275\) 1.37181 + 31.4146i 0.0827232 + 1.89437i
\(276\) 0 0
\(277\) 9.96956 13.7219i 0.599013 0.824471i −0.396604 0.917990i \(-0.629812\pi\)
0.995618 + 0.0935189i \(0.0298115\pi\)
\(278\) 0 0
\(279\) 2.94312 + 9.05799i 0.176200 + 0.542288i
\(280\) 0 0
\(281\) −8.06159 + 24.8110i −0.480914 + 1.48010i 0.356898 + 0.934143i \(0.383834\pi\)
−0.837812 + 0.545958i \(0.816166\pi\)
\(282\) 0 0
\(283\) 24.3559 + 7.91372i 1.44781 + 0.470422i 0.924323 0.381611i \(-0.124631\pi\)
0.523487 + 0.852033i \(0.324631\pi\)
\(284\) 0 0
\(285\) 12.0349 + 5.80489i 0.712885 + 0.343852i
\(286\) 0 0
\(287\) 0.965624 + 1.32907i 0.0569990 + 0.0784524i
\(288\) 0 0
\(289\) 4.05446 + 2.94573i 0.238497 + 0.173279i
\(290\) 0 0
\(291\) −0.147799 + 0.107382i −0.00866412 + 0.00629485i
\(292\) 0 0
\(293\) 27.7845i 1.62319i 0.584220 + 0.811595i \(0.301400\pi\)
−0.584220 + 0.811595i \(0.698600\pi\)
\(294\) 0 0
\(295\) −1.62427 8.98215i −0.0945686 0.522961i
\(296\) 0 0
\(297\) 5.98110 1.94338i 0.347059 0.112766i
\(298\) 0 0
\(299\) 8.10169 0.468533
\(300\) 0 0
\(301\) 10.4149 0.600307
\(302\) 0 0
\(303\) 5.67753 1.84474i 0.326165 0.105978i
\(304\) 0 0
\(305\) −6.22539 + 3.34505i −0.356465 + 0.191537i
\(306\) 0 0
\(307\) 16.1422i 0.921283i −0.887586 0.460642i \(-0.847619\pi\)
0.887586 0.460642i \(-0.152381\pi\)
\(308\) 0 0
\(309\) −7.24769 + 5.26575i −0.412307 + 0.299558i
\(310\) 0 0
\(311\) −23.2496 16.8918i −1.31837 0.957849i −0.999951 0.00989736i \(-0.996850\pi\)
−0.318415 0.947951i \(-0.603150\pi\)
\(312\) 0 0
\(313\) −15.5683 21.4279i −0.879973 1.21118i −0.976428 0.215841i \(-0.930751\pi\)
0.0964557 0.995337i \(-0.469249\pi\)
\(314\) 0 0
\(315\) −2.30344 + 0.416538i −0.129784 + 0.0234692i
\(316\) 0 0
\(317\) −25.0109 8.12654i −1.40475 0.456432i −0.494028 0.869446i \(-0.664476\pi\)
−0.910725 + 0.413014i \(0.864476\pi\)
\(318\) 0 0
\(319\) −13.4388 + 41.3605i −0.752430 + 2.31574i
\(320\) 0 0
\(321\) −0.832784 2.56305i −0.0464815 0.143055i
\(322\) 0 0
\(323\) 16.4786 22.6809i 0.916896 1.26200i
\(324\) 0 0
\(325\) 1.34457 4.84849i 0.0745832 0.268946i
\(326\) 0 0
\(327\) −6.05412 + 8.33278i −0.334793 + 0.460804i
\(328\) 0 0
\(329\) 1.56782 + 4.82526i 0.0864369 + 0.266025i
\(330\) 0 0
\(331\) −9.66091 + 29.7332i −0.531012 + 1.63429i 0.221101 + 0.975251i \(0.429035\pi\)
−0.752113 + 0.659035i \(0.770965\pi\)
\(332\) 0 0
\(333\) 7.32115 + 2.37879i 0.401197 + 0.130357i
\(334\) 0 0
\(335\) −4.90221 + 5.12095i −0.267836 + 0.279787i
\(336\) 0 0
\(337\) 5.23438 + 7.20451i 0.285135 + 0.392455i 0.927426 0.374006i \(-0.122016\pi\)
−0.642291 + 0.766461i \(0.722016\pi\)
\(338\) 0 0
\(339\) −2.73504 1.98712i −0.148547 0.107926i
\(340\) 0 0
\(341\) 48.4572 35.2062i 2.62410 1.90652i
\(342\) 0 0
\(343\) 13.5085i 0.729391i
\(344\) 0 0
\(345\) 13.0045 + 12.4490i 0.700138 + 0.670232i
\(346\) 0 0
\(347\) 20.4981 6.66023i 1.10039 0.357540i 0.298140 0.954522i \(-0.403634\pi\)
0.802255 + 0.596982i \(0.203634\pi\)
\(348\) 0 0
\(349\) −17.3958 −0.931178 −0.465589 0.885001i \(-0.654158\pi\)
−0.465589 + 0.885001i \(0.654158\pi\)
\(350\) 0 0
\(351\) −1.00629 −0.0537120
\(352\) 0 0
\(353\) −16.9871 + 5.51945i −0.904133 + 0.293770i −0.723942 0.689861i \(-0.757672\pi\)
−0.180191 + 0.983632i \(0.557672\pi\)
\(354\) 0 0
\(355\) 14.4215 + 1.96264i 0.765416 + 0.104166i
\(356\) 0 0
\(357\) 4.91139i 0.259938i
\(358\) 0 0
\(359\) 2.95995 2.15053i 0.156220 0.113501i −0.506929 0.861988i \(-0.669219\pi\)
0.663149 + 0.748487i \(0.269219\pi\)
\(360\) 0 0
\(361\) −13.5163 9.82016i −0.711384 0.516851i
\(362\) 0 0
\(363\) −16.7815 23.0977i −0.880798 1.21232i
\(364\) 0 0
\(365\) 0.389279 + 0.724478i 0.0203758 + 0.0379209i
\(366\) 0 0
\(367\) −24.7677 8.04751i −1.29286 0.420077i −0.419770 0.907631i \(-0.637889\pi\)
−0.873093 + 0.487554i \(0.837889\pi\)
\(368\) 0 0
\(369\) −0.484946 + 1.49251i −0.0252453 + 0.0776969i
\(370\) 0 0
\(371\) 0.914295 + 2.81391i 0.0474678 + 0.146091i
\(372\) 0 0
\(373\) −17.1991 + 23.6726i −0.890538 + 1.22572i 0.0828510 + 0.996562i \(0.473597\pi\)
−0.973389 + 0.229159i \(0.926403\pi\)
\(374\) 0 0
\(375\) 9.60840 5.71653i 0.496175 0.295200i
\(376\) 0 0
\(377\) 4.09023 5.62971i 0.210657 0.289945i
\(378\) 0 0
\(379\) 3.17264 + 9.76437i 0.162967 + 0.501562i 0.998881 0.0472993i \(-0.0150614\pi\)
−0.835913 + 0.548861i \(0.815061\pi\)
\(380\) 0 0
\(381\) −1.84613 + 5.68181i −0.0945803 + 0.291088i
\(382\) 0 0
\(383\) −24.3926 7.92564i −1.24640 0.404981i −0.389773 0.920911i \(-0.627446\pi\)
−0.856631 + 0.515930i \(0.827446\pi\)
\(384\) 0 0
\(385\) 6.96781 + 12.9676i 0.355112 + 0.660891i
\(386\) 0 0
\(387\) 5.84786 + 8.04888i 0.297263 + 0.409148i
\(388\) 0 0
\(389\) −7.75696 5.63576i −0.393293 0.285744i 0.373510 0.927626i \(-0.378154\pi\)
−0.766804 + 0.641882i \(0.778154\pi\)
\(390\) 0 0
\(391\) 30.5586 22.2021i 1.54542 1.12281i
\(392\) 0 0
\(393\) 6.20733i 0.313118i
\(394\) 0 0
\(395\) 7.35614 + 1.00110i 0.370127 + 0.0503708i
\(396\) 0 0
\(397\) −11.7274 + 3.81045i −0.588580 + 0.191241i −0.588140 0.808759i \(-0.700140\pi\)
−0.000439093 1.00000i \(0.500140\pi\)
\(398\) 0 0
\(399\) 6.25541 0.313162
\(400\) 0 0
\(401\) 18.9779 0.947709 0.473855 0.880603i \(-0.342862\pi\)
0.473855 + 0.880603i \(0.342862\pi\)
\(402\) 0 0
\(403\) −9.11500 + 2.96164i −0.454051 + 0.147530i
\(404\) 0 0
\(405\) −1.61526 1.54626i −0.0802629 0.0768345i
\(406\) 0 0
\(407\) 48.4115i 2.39967i
\(408\) 0 0
\(409\) 15.7841 11.4678i 0.780474 0.567048i −0.124647 0.992201i \(-0.539780\pi\)
0.905121 + 0.425154i \(0.139780\pi\)
\(410\) 0 0
\(411\) −10.4992 7.62811i −0.517887 0.376267i
\(412\) 0 0
\(413\) −2.51177 3.45715i −0.123596 0.170115i
\(414\) 0 0
\(415\) 21.4279 22.3840i 1.05185 1.09879i
\(416\) 0 0
\(417\) −3.80373 1.23591i −0.186269 0.0605226i
\(418\) 0 0
\(419\) −0.571420 + 1.75865i −0.0279157 + 0.0859156i −0.964044 0.265744i \(-0.914382\pi\)
0.936128 + 0.351659i \(0.114382\pi\)
\(420\) 0 0
\(421\) −2.06347 6.35070i −0.100567 0.309514i 0.888097 0.459656i \(-0.152027\pi\)
−0.988665 + 0.150141i \(0.952027\pi\)
\(422\) 0 0
\(423\) −2.84875 + 3.92097i −0.138511 + 0.190644i
\(424\) 0 0
\(425\) −8.21540 21.9726i −0.398506 1.06583i
\(426\) 0 0
\(427\) −1.94472 + 2.67668i −0.0941117 + 0.129534i
\(428\) 0 0
\(429\) 1.95561 + 6.01875i 0.0944177 + 0.290588i
\(430\) 0 0
\(431\) 9.16108 28.1949i 0.441274 1.35810i −0.445245 0.895409i \(-0.646884\pi\)
0.886519 0.462692i \(-0.153116\pi\)
\(432\) 0 0
\(433\) 26.6465 + 8.65798i 1.28055 + 0.416076i 0.868774 0.495209i \(-0.164909\pi\)
0.411776 + 0.911285i \(0.364909\pi\)
\(434\) 0 0
\(435\) 15.2160 2.75156i 0.729553 0.131927i
\(436\) 0 0
\(437\) −28.2778 38.9211i −1.35271 1.86185i
\(438\) 0 0
\(439\) 8.27205 + 6.01000i 0.394803 + 0.286842i 0.767421 0.641143i \(-0.221540\pi\)
−0.372618 + 0.927985i \(0.621540\pi\)
\(440\) 0 0
\(441\) 4.77655 3.47036i 0.227455 0.165255i
\(442\) 0 0
\(443\) 26.5115i 1.25960i 0.776757 + 0.629800i \(0.216863\pi\)
−0.776757 + 0.629800i \(0.783137\pi\)
\(444\) 0 0
\(445\) −4.93703 + 2.65278i −0.234038 + 0.125754i
\(446\) 0 0
\(447\) 5.40925 1.75757i 0.255849 0.0831303i
\(448\) 0 0
\(449\) 6.39692 0.301889 0.150945 0.988542i \(-0.451768\pi\)
0.150945 + 0.988542i \(0.451768\pi\)
\(450\) 0 0
\(451\) 9.86929 0.464727
\(452\) 0 0
\(453\) 5.24175 1.70315i 0.246279 0.0800208i
\(454\) 0 0
\(455\) −0.419159 2.31793i −0.0196505 0.108666i
\(456\) 0 0
\(457\) 14.9784i 0.700661i 0.936626 + 0.350330i \(0.113931\pi\)
−0.936626 + 0.350330i \(0.886069\pi\)
\(458\) 0 0
\(459\) −3.79562 + 2.75768i −0.177165 + 0.128718i
\(460\) 0 0
\(461\) 9.85643 + 7.16112i 0.459060 + 0.333526i 0.793162 0.609010i \(-0.208433\pi\)
−0.334103 + 0.942537i \(0.608433\pi\)
\(462\) 0 0
\(463\) −4.89012 6.73067i −0.227263 0.312801i 0.680124 0.733097i \(-0.261926\pi\)
−0.907387 + 0.420297i \(0.861926\pi\)
\(464\) 0 0
\(465\) −19.1819 9.25215i −0.889537 0.429058i
\(466\) 0 0
\(467\) 7.89818 + 2.56627i 0.365484 + 0.118753i 0.486001 0.873958i \(-0.338455\pi\)
−0.120517 + 0.992711i \(0.538455\pi\)
\(468\) 0 0
\(469\) −1.02558 + 3.15641i −0.0473568 + 0.145749i
\(470\) 0 0
\(471\) 5.26001 + 16.1886i 0.242368 + 0.745933i
\(472\) 0 0
\(473\) 36.7766 50.6187i 1.69099 2.32745i
\(474\) 0 0
\(475\) −27.9855 + 10.4636i −1.28406 + 0.480102i
\(476\) 0 0
\(477\) −1.66129 + 2.28656i −0.0760650 + 0.104695i
\(478\) 0 0
\(479\) 0.944475 + 2.90680i 0.0431542 + 0.132815i 0.970312 0.241855i \(-0.0777559\pi\)
−0.927158 + 0.374670i \(0.877756\pi\)
\(480\) 0 0
\(481\) −2.39376 + 7.36723i −0.109146 + 0.335917i
\(482\) 0 0
\(483\) 8.01559 + 2.60442i 0.364722 + 0.118505i
\(484\) 0 0
\(485\) 0.0550860 0.404775i 0.00250133 0.0183799i
\(486\) 0 0
\(487\) −6.88809 9.48064i −0.312129 0.429609i 0.623915 0.781492i \(-0.285541\pi\)
−0.936044 + 0.351884i \(0.885541\pi\)
\(488\) 0 0
\(489\) 9.94747 + 7.22726i 0.449840 + 0.326828i
\(490\) 0 0
\(491\) −13.7147 + 9.96433i −0.618937 + 0.449684i −0.852550 0.522646i \(-0.824945\pi\)
0.233613 + 0.972330i \(0.424945\pi\)
\(492\) 0 0
\(493\) 32.4436i 1.46119i
\(494\) 0 0
\(495\) −6.10931 + 12.6660i −0.274593 + 0.569295i
\(496\) 0 0
\(497\) 6.48032 2.10558i 0.290682 0.0944484i
\(498\) 0 0
\(499\) −14.0674 −0.629742 −0.314871 0.949135i \(-0.601961\pi\)
−0.314871 + 0.949135i \(0.601961\pi\)
\(500\) 0 0
\(501\) −5.42858 −0.242531
\(502\) 0 0
\(503\) −5.33310 + 1.73283i −0.237791 + 0.0772630i −0.425488 0.904964i \(-0.639898\pi\)
0.187697 + 0.982227i \(0.439898\pi\)
\(504\) 0 0
\(505\) −5.79922 + 12.0231i −0.258062 + 0.535023i
\(506\) 0 0
\(507\) 11.9874i 0.532378i
\(508\) 0 0
\(509\) −9.27535 + 6.73894i −0.411123 + 0.298698i −0.774056 0.633117i \(-0.781775\pi\)
0.362933 + 0.931815i \(0.381775\pi\)
\(510\) 0 0
\(511\) 0.311498 + 0.226317i 0.0137799 + 0.0100117i
\(512\) 0 0
\(513\) 3.51233 + 4.83431i 0.155073 + 0.213440i
\(514\) 0 0
\(515\) 2.70128 19.8492i 0.119033 0.874658i
\(516\) 0 0
\(517\) 28.9880 + 9.41876i 1.27489 + 0.414236i
\(518\) 0 0
\(519\) −3.32057 + 10.2197i −0.145757 + 0.448594i
\(520\) 0 0
\(521\) 5.53178 + 17.0251i 0.242352 + 0.745882i 0.996061 + 0.0886737i \(0.0282628\pi\)
−0.753709 + 0.657208i \(0.771737\pi\)
\(522\) 0 0
\(523\) 0.791609 1.08956i 0.0346146 0.0476430i −0.791359 0.611352i \(-0.790626\pi\)
0.825974 + 0.563709i \(0.190626\pi\)
\(524\) 0 0
\(525\) 2.88891 4.36473i 0.126082 0.190492i
\(526\) 0 0
\(527\) −26.2646 + 36.1501i −1.14410 + 1.57472i
\(528\) 0 0
\(529\) −12.9227 39.7721i −0.561858 1.72922i
\(530\) 0 0
\(531\) 1.26144 3.88230i 0.0547416 0.168477i
\(532\) 0 0
\(533\) −1.50190 0.487998i −0.0650546 0.0211375i
\(534\) 0 0
\(535\) 5.42769 + 2.61799i 0.234660 + 0.113185i
\(536\) 0 0
\(537\) −11.3479 15.6191i −0.489699 0.674013i
\(538\) 0 0
\(539\) −30.0392 21.8248i −1.29388 0.940060i
\(540\) 0 0
\(541\) −9.14001 + 6.64061i −0.392960 + 0.285502i −0.766667 0.642045i \(-0.778086\pi\)
0.373708 + 0.927547i \(0.378086\pi\)
\(542\) 0 0
\(543\) 16.7512i 0.718864i
\(544\) 0 0
\(545\) −4.09834 22.6637i −0.175553 0.970804i
\(546\) 0 0
\(547\) 24.5513 7.97719i 1.04974 0.341080i 0.267171 0.963649i \(-0.413911\pi\)
0.782565 + 0.622569i \(0.213911\pi\)
\(548\) 0 0
\(549\) −3.16053 −0.134888
\(550\) 0 0
\(551\) −41.3220 −1.76037
\(552\) 0 0
\(553\) 3.30548 1.07402i 0.140563 0.0456718i
\(554\) 0 0
\(555\) −15.1628 + 8.14733i −0.643625 + 0.345835i
\(556\) 0 0
\(557\) 35.3575i 1.49814i 0.662489 + 0.749072i \(0.269500\pi\)
−0.662489 + 0.749072i \(0.730500\pi\)
\(558\) 0 0
\(559\) −8.09954 + 5.88466i −0.342574 + 0.248895i
\(560\) 0 0
\(561\) 23.8703 + 17.3428i 1.00781 + 0.732214i
\(562\) 0 0
\(563\) 2.67693 + 3.68448i 0.112819 + 0.155282i 0.861692 0.507431i \(-0.169405\pi\)
−0.748873 + 0.662713i \(0.769405\pi\)
\(564\) 0 0
\(565\) 7.43882 1.34518i 0.312954 0.0565923i
\(566\) 0 0
\(567\) −0.995600 0.323490i −0.0418113 0.0135853i
\(568\) 0 0
\(569\) 11.4772 35.3231i 0.481148 1.48082i −0.356335 0.934358i \(-0.615974\pi\)
0.837483 0.546463i \(-0.184026\pi\)
\(570\) 0 0
\(571\) −1.32882 4.08969i −0.0556094 0.171148i 0.919394 0.393338i \(-0.128680\pi\)
−0.975003 + 0.222190i \(0.928680\pi\)
\(572\) 0 0
\(573\) −7.02131 + 9.66400i −0.293319 + 0.403720i
\(574\) 0 0
\(575\) −40.2167 + 1.75618i −1.67715 + 0.0732378i
\(576\) 0 0
\(577\) −0.274601 + 0.377955i −0.0114318 + 0.0157345i −0.814695 0.579890i \(-0.803095\pi\)
0.803263 + 0.595625i \(0.203095\pi\)
\(578\) 0 0
\(579\) −8.16726 25.1362i −0.339420 1.04463i
\(580\) 0 0
\(581\) 4.48288 13.7969i 0.185981 0.572391i
\(582\) 0 0
\(583\) 16.9047 + 5.49266i 0.700120 + 0.227483i
\(584\) 0 0
\(585\) 1.55600 1.62543i 0.0643325 0.0672031i
\(586\) 0 0
\(587\) 19.3704 + 26.6610i 0.799500 + 1.10042i 0.992860 + 0.119289i \(0.0380616\pi\)
−0.193360 + 0.981128i \(0.561938\pi\)
\(588\) 0 0
\(589\) 46.0427 + 33.4519i 1.89715 + 1.37836i
\(590\) 0 0
\(591\) 8.95728 6.50784i 0.368453 0.267697i
\(592\) 0 0
\(593\) 15.5285i 0.637680i −0.947809 0.318840i \(-0.896707\pi\)
0.947809 0.318840i \(-0.103293\pi\)
\(594\) 0 0
\(595\) −7.93317 7.59431i −0.325228 0.311336i
\(596\) 0 0
\(597\) −15.7445 + 5.11571i −0.644381 + 0.209372i
\(598\) 0 0
\(599\) 36.0116 1.47140 0.735698 0.677310i \(-0.236854\pi\)
0.735698 + 0.677310i \(0.236854\pi\)
\(600\) 0 0
\(601\) −24.1503 −0.985112 −0.492556 0.870281i \(-0.663937\pi\)
−0.492556 + 0.870281i \(0.663937\pi\)
\(602\) 0 0
\(603\) −3.01519 + 0.979694i −0.122788 + 0.0398962i
\(604\) 0 0
\(605\) 63.2574 + 8.60873i 2.57178 + 0.349995i
\(606\) 0 0
\(607\) 29.8098i 1.20994i 0.796248 + 0.604970i \(0.206815\pi\)
−0.796248 + 0.604970i \(0.793185\pi\)
\(608\) 0 0
\(609\) 5.85653 4.25502i 0.237318 0.172422i
\(610\) 0 0
\(611\) −3.94565 2.86668i −0.159624 0.115974i
\(612\) 0 0
\(613\) 18.8873 + 25.9961i 0.762850 + 1.04997i 0.996972 + 0.0777657i \(0.0247786\pi\)
−0.234122 + 0.972207i \(0.575221\pi\)
\(614\) 0 0
\(615\) −1.66094 3.09113i −0.0669754 0.124646i
\(616\) 0 0
\(617\) 16.4065 + 5.33081i 0.660502 + 0.214610i 0.620039 0.784571i \(-0.287117\pi\)
0.0404631 + 0.999181i \(0.487117\pi\)
\(618\) 0 0
\(619\) −2.18171 + 6.71462i −0.0876904 + 0.269883i −0.985280 0.170949i \(-0.945317\pi\)
0.897589 + 0.440832i \(0.145317\pi\)
\(620\) 0 0
\(621\) 2.48790 + 7.65697i 0.0998360 + 0.307264i
\(622\) 0 0
\(623\) −1.54226 + 2.12273i −0.0617892 + 0.0850455i
\(624\) 0 0
\(625\) −5.62344 + 24.3593i −0.224938 + 0.974373i
\(626\) 0 0
\(627\) 22.0887 30.4025i 0.882139 1.21416i
\(628\) 0 0
\(629\) 11.1604 + 34.3483i 0.444996 + 1.36956i
\(630\) 0 0
\(631\) −3.02377 + 9.30621i −0.120374 + 0.370474i −0.993030 0.117862i \(-0.962396\pi\)
0.872656 + 0.488336i \(0.162396\pi\)
\(632\) 0 0
\(633\) −3.90612 1.26917i −0.155254 0.0504452i
\(634\) 0 0
\(635\) −6.32300 11.7676i −0.250920 0.466982i
\(636\) 0 0
\(637\) 3.49220 + 4.80661i 0.138366 + 0.190445i
\(638\) 0 0
\(639\) 5.26586 + 3.82587i 0.208314 + 0.151349i
\(640\) 0 0
\(641\) −12.6773 + 9.21063i −0.500725 + 0.363798i −0.809294 0.587404i \(-0.800150\pi\)
0.308569 + 0.951202i \(0.400150\pi\)
\(642\) 0 0
\(643\) 0.766747i 0.0302375i 0.999886 + 0.0151188i \(0.00481264\pi\)
−0.999886 + 0.0151188i \(0.995187\pi\)
\(644\) 0 0
\(645\) −22.0434 2.99989i −0.867957 0.118121i
\(646\) 0 0
\(647\) −12.5281 + 4.07063i −0.492531 + 0.160033i −0.544743 0.838603i \(-0.683373\pi\)
0.0522121 + 0.998636i \(0.483373\pi\)
\(648\) 0 0
\(649\) −25.6719 −1.00771
\(650\) 0 0
\(651\) −9.97021 −0.390763
\(652\) 0 0
\(653\) −12.4514 + 4.04569i −0.487259 + 0.158320i −0.542336 0.840162i \(-0.682460\pi\)
0.0550762 + 0.998482i \(0.482460\pi\)
\(654\) 0 0
\(655\) −10.0265 9.59817i −0.391766 0.375032i
\(656\) 0 0
\(657\) 0.367806i 0.0143495i
\(658\) 0 0
\(659\) −7.65921 + 5.56474i −0.298361 + 0.216772i −0.726886 0.686758i \(-0.759033\pi\)
0.428526 + 0.903530i \(0.359033\pi\)
\(660\) 0 0
\(661\) −4.49719 3.26740i −0.174921 0.127087i 0.496880 0.867819i \(-0.334479\pi\)
−0.671801 + 0.740732i \(0.734479\pi\)
\(662\) 0 0
\(663\) −2.77504 3.81951i −0.107774 0.148338i
\(664\) 0 0
\(665\) −9.67252 + 10.1041i −0.375084 + 0.391821i
\(666\) 0 0
\(667\) −52.9494 17.2043i −2.05021 0.666153i
\(668\) 0 0
\(669\) 1.93490 5.95502i 0.0748076 0.230234i
\(670\) 0 0
\(671\) 6.14211 + 18.9035i 0.237114 + 0.729761i
\(672\) 0 0
\(673\) −0.178700 + 0.245960i −0.00688840 + 0.00948106i −0.812447 0.583035i \(-0.801865\pi\)
0.805559 + 0.592516i \(0.201865\pi\)
\(674\) 0 0
\(675\) 4.99524 0.218131i 0.192267 0.00839589i
\(676\) 0 0
\(677\) 23.2339 31.9787i 0.892950 1.22904i −0.0797128 0.996818i \(-0.525400\pi\)
0.972663 0.232222i \(-0.0745997\pi\)
\(678\) 0 0
\(679\) −0.0590982 0.181886i −0.00226798 0.00698013i
\(680\) 0 0
\(681\) −3.23904 + 9.96873i −0.124120 + 0.382002i
\(682\) 0 0
\(683\) −30.0040 9.74888i −1.14807 0.373031i −0.327654 0.944798i \(-0.606258\pi\)
−0.820416 + 0.571767i \(0.806258\pi\)
\(684\) 0 0
\(685\) 28.5559 5.16385i 1.09107 0.197301i
\(686\) 0 0
\(687\) 4.44765 + 6.12166i 0.169688 + 0.233556i
\(688\) 0 0
\(689\) −2.30095 1.67174i −0.0876594 0.0636883i
\(690\) 0 0
\(691\) −7.59169 + 5.51569i −0.288802 + 0.209827i −0.722747 0.691112i \(-0.757121\pi\)
0.433946 + 0.900939i \(0.357121\pi\)
\(692\) 0 0
\(693\) 6.58345i 0.250085i
\(694\) 0 0
\(695\) 7.87788 4.23297i 0.298825 0.160566i
\(696\) 0 0
\(697\) −7.00233 + 2.27520i −0.265232 + 0.0861792i
\(698\) 0 0
\(699\) 15.9832 0.604540
\(700\) 0 0
\(701\) −20.4347 −0.771809 −0.385904 0.922539i \(-0.626111\pi\)
−0.385904 + 0.922539i \(0.626111\pi\)
\(702\) 0 0
\(703\) 43.7478 14.2145i 1.64998 0.536111i
\(704\) 0 0
\(705\) −1.92846 10.6643i −0.0726302 0.401642i
\(706\) 0 0
\(707\) 6.24930i 0.235029i
\(708\) 0 0
\(709\) −4.78774 + 3.47850i −0.179808 + 0.130638i −0.674048 0.738687i \(-0.735446\pi\)
0.494241 + 0.869325i \(0.335446\pi\)
\(710\) 0 0
\(711\) 2.68601 + 1.95150i 0.100733 + 0.0731869i
\(712\) 0 0
\(713\) 45.0708 + 62.0346i 1.68791 + 2.32321i
\(714\) 0 0
\(715\) −12.7457 6.14776i −0.476663 0.229913i
\(716\) 0 0
\(717\) 2.77706 + 0.902322i 0.103711 + 0.0336978i
\(718\) 0 0
\(719\) 2.47253 7.60966i 0.0922098 0.283793i −0.894307 0.447455i \(-0.852331\pi\)
0.986516 + 0.163662i \(0.0523306\pi\)
\(720\) 0 0
\(721\) −2.89803 8.91922i −0.107928 0.332169i
\(722\) 0 0
\(723\) −13.5471 + 18.6460i −0.503821 + 0.693450i
\(724\) 0 0
\(725\) −19.0835 + 28.8325i −0.708745 + 1.07081i
\(726\) 0 0
\(727\) −23.6752 + 32.5861i −0.878065 + 1.20855i 0.0988886 + 0.995099i \(0.468471\pi\)
−0.976953 + 0.213454i \(0.931529\pi\)
\(728\) 0 0
\(729\) −0.309017 0.951057i −0.0114451 0.0352243i
\(730\) 0 0
\(731\) −14.4240 + 44.3925i −0.533491 + 1.64192i
\(732\) 0 0
\(733\) −10.0786 3.27474i −0.372262 0.120955i 0.116910 0.993143i \(-0.462701\pi\)
−0.489172 + 0.872187i \(0.662701\pi\)
\(734\) 0 0
\(735\) −1.78026 + 13.0815i −0.0656660 + 0.482517i
\(736\) 0 0
\(737\) 11.7193 + 16.1302i 0.431686 + 0.594165i
\(738\) 0 0
\(739\) −36.8178 26.7497i −1.35437 0.984005i −0.998781 0.0493609i \(-0.984282\pi\)
−0.355585 0.934644i \(-0.615718\pi\)
\(740\) 0 0
\(741\) −4.86474 + 3.53444i −0.178711 + 0.129841i
\(742\) 0 0
\(743\) 8.64344i 0.317097i 0.987351 + 0.158549i \(0.0506814\pi\)
−0.987351 + 0.158549i \(0.949319\pi\)
\(744\) 0 0
\(745\) −5.52519 + 11.4550i −0.202427 + 0.419679i
\(746\) 0 0
\(747\) 13.1796 4.28231i 0.482217 0.156682i
\(748\) 0 0
\(749\) 2.82117 0.103083
\(750\) 0 0
\(751\) −54.4382 −1.98648 −0.993239 0.116086i \(-0.962965\pi\)
−0.993239 + 0.116086i \(0.962965\pi\)
\(752\) 0 0
\(753\) 9.31208 3.02568i 0.339351 0.110262i
\(754\) 0 0
\(755\) −5.35410 + 11.1003i −0.194856 + 0.403981i
\(756\) 0 0
\(757\) 34.1378i 1.24076i 0.784302 + 0.620380i \(0.213022\pi\)
−0.784302 + 0.620380i \(0.786978\pi\)
\(758\) 0 0
\(759\) 40.9622 29.7608i 1.48683 1.08025i
\(760\) 0 0
\(761\) −2.52798 1.83668i −0.0916391 0.0665797i 0.541022 0.841008i \(-0.318037\pi\)
−0.632661 + 0.774429i \(0.718037\pi\)
\(762\) 0 0
\(763\) −6.33767 8.72305i −0.229439 0.315796i
\(764\) 0 0
\(765\) 1.41466 10.3950i 0.0511473 0.375833i
\(766\) 0 0
\(767\) 3.90673 + 1.26937i 0.141064 + 0.0458344i
\(768\) 0 0
\(769\) 16.4999 50.7816i 0.595003 1.83123i 0.0402920 0.999188i \(-0.487171\pi\)
0.554711 0.832043i \(-0.312829\pi\)
\(770\) 0 0
\(771\) −6.89561 21.2225i −0.248339 0.764309i
\(772\) 0 0
\(773\) −0.468593 + 0.644963i −0.0168541 + 0.0231977i −0.817361 0.576126i \(-0.804564\pi\)
0.800507 + 0.599324i \(0.204564\pi\)
\(774\) 0 0
\(775\) 44.6049 16.6774i 1.60225 0.599071i
\(776\) 0 0
\(777\) −4.73664 + 6.51943i −0.169926 + 0.233883i
\(778\) 0 0
\(779\) 2.89781 + 8.91855i 0.103825 + 0.319540i
\(780\) 0 0
\(781\) 12.6494 38.9308i 0.452630 1.39305i
\(782\) 0 0
\(783\) 6.57673 + 2.13691i 0.235033 + 0.0763669i
\(784\) 0 0
\(785\) −34.2822 16.5356i −1.22359 0.590182i
\(786\) 0 0
\(787\) 24.5442 + 33.7822i 0.874906 + 1.20420i 0.977806 + 0.209513i \(0.0671877\pi\)
−0.102900 + 0.994692i \(0.532812\pi\)
\(788\) 0 0
\(789\) 0.589898 + 0.428586i 0.0210009 + 0.0152581i
\(790\) 0 0
\(791\) 2.86314 2.08019i 0.101802 0.0739631i
\(792\) 0 0
\(793\) 3.18042i 0.112940i
\(794\) 0 0
\(795\) −1.12461 6.21904i −0.0398857 0.220567i
\(796\) 0 0
\(797\) 26.2979 8.54471i 0.931520 0.302669i 0.196336 0.980537i