Properties

Label 300.2.n
Level $300$
Weight $2$
Character orbit 300.n
Rep. character $\chi_{300}(11,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $224$
Newform subspaces $1$
Sturm bound $120$
Trace bound $0$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.n (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 300 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(120\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(300, [\chi])\).

Total New Old
Modular forms 256 256 0
Cusp forms 224 224 0
Eisenstein series 32 32 0

Trace form

\( 224q - 6q^{4} + q^{6} - 6q^{9} + O(q^{10}) \) \( 224q - 6q^{4} + q^{6} - 6q^{9} - 8q^{10} - 9q^{12} - 12q^{13} - 18q^{16} - 26q^{18} + 12q^{21} - 6q^{22} - 16q^{24} - 12q^{25} + 2q^{28} - 13q^{30} + 6q^{33} - 30q^{34} + 35q^{36} + 12q^{37} - 24q^{40} - 13q^{42} - 6q^{45} - 18q^{46} - 34q^{48} - 168q^{49} - 28q^{52} - 38q^{54} - 44q^{57} - 34q^{58} - 76q^{60} + 4q^{61} + 18q^{64} - 46q^{66} - 18q^{69} + 72q^{70} - 29q^{72} - 20q^{73} + 16q^{76} + 5q^{78} - 30q^{81} - 20q^{82} - 18q^{84} - 76q^{85} + 6q^{88} + 2q^{90} - 52q^{93} + 96q^{94} - 50q^{96} - 72q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(300, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
300.2.n.a \(224\) \(2.396\) None \(0\) \(0\) \(0\) \(0\)