Properties

Label 300.2.h.c.299.10
Level $300$
Weight $2$
Character 300.299
Analytic conductor $2.396$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 2 x^{15} + 2 x^{14} + 10 x^{13} - 42 x^{11} + 134 x^{10} + 110 x^{9} + 92 x^{8} + 142 x^{7} + 1514 x^{6} + 1102 x^{5} + 249 x^{4} - 1056 x^{3} + 392 x^{2} - 280 x + 100\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 299.10
Root \(-1.05054 + 0.869987i\) of defining polynomial
Character \(\chi\) \(=\) 300.299
Dual form 300.2.h.c.299.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.569745 - 1.29437i) q^{2} +(1.47492 + 0.908080i) q^{3} +(-1.35078 - 1.47492i) q^{4} +(2.01572 - 1.39172i) q^{6} +2.50967 q^{7} +(-2.67869 + 0.908080i) q^{8} +(1.35078 + 2.67869i) q^{9} +O(q^{10})\) \(q+(0.569745 - 1.29437i) q^{2} +(1.47492 + 0.908080i) q^{3} +(-1.35078 - 1.47492i) q^{4} +(2.01572 - 1.39172i) q^{6} +2.50967 q^{7} +(-2.67869 + 0.908080i) q^{8} +(1.35078 + 2.67869i) q^{9} +3.36131 q^{11} +(-0.652949 - 3.40201i) q^{12} -3.70156i q^{13} +(1.42987 - 3.24844i) q^{14} +(-0.350781 + 3.98459i) q^{16} -7.63636 q^{17} +(4.23682 - 0.222237i) q^{18} +0.440172i q^{19} +(3.70156 + 2.27898i) q^{21} +(1.91509 - 4.35078i) q^{22} -5.17748i q^{23} +(-4.77547 - 1.09312i) q^{24} +(-4.79119 - 2.10895i) q^{26} +(-0.440172 + 5.17748i) q^{27} +(-3.39001 - 3.70156i) q^{28} +2.27898i q^{29} +3.39001i q^{31} +(4.95767 + 2.72424i) q^{32} +(4.95767 + 3.05234i) q^{33} +(-4.35078 + 9.88427i) q^{34} +(2.12625 - 5.61062i) q^{36} +7.40312i q^{37} +(0.569745 + 0.250786i) q^{38} +(3.36131 - 5.45951i) q^{39} +3.07840i q^{41} +(5.05879 - 3.49275i) q^{42} -8.40935 q^{43} +(-4.54040 - 4.95767i) q^{44} +(-6.70156 - 2.94984i) q^{46} -3.63232i q^{47} +(-4.13570 + 5.55842i) q^{48} -0.701562 q^{49} +(-11.2630 - 6.93443i) q^{51} +(-5.45951 + 5.00000i) q^{52} -2.27898 q^{53} +(6.45078 + 3.51959i) q^{54} +(-6.72263 + 2.27898i) q^{56} +(-0.399712 + 0.649219i) q^{57} +(2.94984 + 1.29844i) q^{58} -5.70156 q^{61} +(4.38793 + 1.93144i) q^{62} +(3.39001 + 6.72263i) q^{63} +(6.35078 - 4.86493i) q^{64} +(6.77547 - 4.67800i) q^{66} -5.45951 q^{67} +(10.3151 + 11.2630i) q^{68} +(4.70156 - 7.63636i) q^{69} +12.4421 q^{71} +(-6.05079 - 5.94877i) q^{72} +1.29844i q^{73} +(9.58237 + 4.21789i) q^{74} +(0.649219 - 0.594576i) q^{76} +8.43579 q^{77} +(-5.15153 - 7.46131i) q^{78} +5.01934i q^{79} +(-5.35078 + 7.23665i) q^{81} +(3.98459 + 1.75391i) q^{82} +1.81616i q^{83} +(-1.63869 - 8.53791i) q^{84} +(-4.79119 + 10.8848i) q^{86} +(-2.06950 + 3.36131i) q^{87} +(-9.00393 + 3.05234i) q^{88} +5.35738i q^{89} -9.28970i q^{91} +(-7.63636 + 6.99364i) q^{92} +(-3.07840 + 5.00000i) q^{93} +(-4.70156 - 2.06950i) q^{94} +(4.83834 + 8.52000i) q^{96} -11.1047i q^{97} +(-0.399712 + 0.908080i) q^{98} +(4.54040 + 9.00393i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{4} + 6q^{6} - 4q^{9} + O(q^{10}) \) \( 16q + 4q^{4} + 6q^{6} - 4q^{9} + 20q^{16} + 8q^{21} - 26q^{24} - 44q^{34} - 42q^{36} - 56q^{46} + 40q^{49} + 56q^{54} - 40q^{61} + 76q^{64} + 58q^{66} + 24q^{69} + 36q^{76} - 60q^{81} - 80q^{84} - 24q^{94} - 78q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.569745 1.29437i 0.402871 0.915257i
\(3\) 1.47492 + 0.908080i 0.851546 + 0.524280i
\(4\) −1.35078 1.47492i −0.675391 0.737460i
\(5\) 0 0
\(6\) 2.01572 1.39172i 0.822914 0.568166i
\(7\) 2.50967 0.948566 0.474283 0.880373i \(-0.342707\pi\)
0.474283 + 0.880373i \(0.342707\pi\)
\(8\) −2.67869 + 0.908080i −0.947061 + 0.321055i
\(9\) 1.35078 + 2.67869i 0.450260 + 0.892897i
\(10\) 0 0
\(11\) 3.36131 1.01347 0.506737 0.862101i \(-0.330851\pi\)
0.506737 + 0.862101i \(0.330851\pi\)
\(12\) −0.652949 3.40201i −0.188490 0.982075i
\(13\) 3.70156i 1.02663i −0.858201 0.513314i \(-0.828418\pi\)
0.858201 0.513314i \(-0.171582\pi\)
\(14\) 1.42987 3.24844i 0.382149 0.868181i
\(15\) 0 0
\(16\) −0.350781 + 3.98459i −0.0876953 + 0.996147i
\(17\) −7.63636 −1.85209 −0.926045 0.377413i \(-0.876814\pi\)
−0.926045 + 0.377413i \(0.876814\pi\)
\(18\) 4.23682 0.222237i 0.998627 0.0523818i
\(19\) 0.440172i 0.100982i 0.998725 + 0.0504912i \(0.0160787\pi\)
−0.998725 + 0.0504912i \(0.983921\pi\)
\(20\) 0 0
\(21\) 3.70156 + 2.27898i 0.807747 + 0.497314i
\(22\) 1.91509 4.35078i 0.408299 0.927590i
\(23\) 5.17748i 1.07958i −0.841800 0.539789i \(-0.818504\pi\)
0.841800 0.539789i \(-0.181496\pi\)
\(24\) −4.77547 1.09312i −0.974788 0.223132i
\(25\) 0 0
\(26\) −4.79119 2.10895i −0.939629 0.413599i
\(27\) −0.440172 + 5.17748i −0.0847112 + 0.996406i
\(28\) −3.39001 3.70156i −0.640652 0.699529i
\(29\) 2.27898i 0.423196i 0.977357 + 0.211598i \(0.0678668\pi\)
−0.977357 + 0.211598i \(0.932133\pi\)
\(30\) 0 0
\(31\) 3.39001i 0.608864i 0.952534 + 0.304432i \(0.0984667\pi\)
−0.952534 + 0.304432i \(0.901533\pi\)
\(32\) 4.95767 + 2.72424i 0.876401 + 0.481582i
\(33\) 4.95767 + 3.05234i 0.863020 + 0.531345i
\(34\) −4.35078 + 9.88427i −0.746153 + 1.69514i
\(35\) 0 0
\(36\) 2.12625 5.61062i 0.354375 0.935104i
\(37\) 7.40312i 1.21707i 0.793529 + 0.608533i \(0.208242\pi\)
−0.793529 + 0.608533i \(0.791758\pi\)
\(38\) 0.569745 + 0.250786i 0.0924249 + 0.0406828i
\(39\) 3.36131 5.45951i 0.538241 0.874221i
\(40\) 0 0
\(41\) 3.07840i 0.480766i 0.970678 + 0.240383i \(0.0772730\pi\)
−0.970678 + 0.240383i \(0.922727\pi\)
\(42\) 5.05879 3.49275i 0.780588 0.538943i
\(43\) −8.40935 −1.28241 −0.641207 0.767368i \(-0.721566\pi\)
−0.641207 + 0.767368i \(0.721566\pi\)
\(44\) −4.54040 4.95767i −0.684491 0.747397i
\(45\) 0 0
\(46\) −6.70156 2.94984i −0.988091 0.434930i
\(47\) 3.63232i 0.529828i −0.964272 0.264914i \(-0.914656\pi\)
0.964272 0.264914i \(-0.0853436\pi\)
\(48\) −4.13570 + 5.55842i −0.596937 + 0.802288i
\(49\) −0.701562 −0.100223
\(50\) 0 0
\(51\) −11.2630 6.93443i −1.57714 0.971014i
\(52\) −5.45951 + 5.00000i −0.757098 + 0.693375i
\(53\) −2.27898 −0.313042 −0.156521 0.987675i \(-0.550028\pi\)
−0.156521 + 0.987675i \(0.550028\pi\)
\(54\) 6.45078 + 3.51959i 0.877839 + 0.478955i
\(55\) 0 0
\(56\) −6.72263 + 2.27898i −0.898349 + 0.304542i
\(57\) −0.399712 + 0.649219i −0.0529431 + 0.0859911i
\(58\) 2.94984 + 1.29844i 0.387333 + 0.170493i
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −5.70156 −0.730010 −0.365005 0.931006i \(-0.618933\pi\)
−0.365005 + 0.931006i \(0.618933\pi\)
\(62\) 4.38793 + 1.93144i 0.557267 + 0.245294i
\(63\) 3.39001 + 6.72263i 0.427102 + 0.846972i
\(64\) 6.35078 4.86493i 0.793848 0.608117i
\(65\) 0 0
\(66\) 6.77547 4.67800i 0.834002 0.575822i
\(67\) −5.45951 −0.666985 −0.333493 0.942753i \(-0.608227\pi\)
−0.333493 + 0.942753i \(0.608227\pi\)
\(68\) 10.3151 + 11.2630i 1.25088 + 1.36584i
\(69\) 4.70156 7.63636i 0.566002 0.919310i
\(70\) 0 0
\(71\) 12.4421 1.47661 0.738304 0.674468i \(-0.235627\pi\)
0.738304 + 0.674468i \(0.235627\pi\)
\(72\) −6.05079 5.94877i −0.713093 0.701070i
\(73\) 1.29844i 0.151971i 0.997109 + 0.0759853i \(0.0242102\pi\)
−0.997109 + 0.0759853i \(0.975790\pi\)
\(74\) 9.58237 + 4.21789i 1.11393 + 0.490320i
\(75\) 0 0
\(76\) 0.649219 0.594576i 0.0744705 0.0682026i
\(77\) 8.43579 0.961347
\(78\) −5.15153 7.46131i −0.583296 0.844827i
\(79\) 5.01934i 0.564720i 0.959309 + 0.282360i \(0.0911172\pi\)
−0.959309 + 0.282360i \(0.908883\pi\)
\(80\) 0 0
\(81\) −5.35078 + 7.23665i −0.594531 + 0.804073i
\(82\) 3.98459 + 1.75391i 0.440024 + 0.193686i
\(83\) 1.81616i 0.199349i 0.995020 + 0.0996747i \(0.0317802\pi\)
−0.995020 + 0.0996747i \(0.968220\pi\)
\(84\) −1.63869 8.53791i −0.178795 0.931563i
\(85\) 0 0
\(86\) −4.79119 + 10.8848i −0.516647 + 1.17374i
\(87\) −2.06950 + 3.36131i −0.221873 + 0.360371i
\(88\) −9.00393 + 3.05234i −0.959822 + 0.325381i
\(89\) 5.35738i 0.567882i 0.958842 + 0.283941i \(0.0916419\pi\)
−0.958842 + 0.283941i \(0.908358\pi\)
\(90\) 0 0
\(91\) 9.28970i 0.973825i
\(92\) −7.63636 + 6.99364i −0.796146 + 0.729137i
\(93\) −3.07840 + 5.00000i −0.319216 + 0.518476i
\(94\) −4.70156 2.06950i −0.484929 0.213452i
\(95\) 0 0
\(96\) 4.83834 + 8.52000i 0.493811 + 0.869569i
\(97\) 11.1047i 1.12751i −0.825942 0.563755i \(-0.809356\pi\)
0.825942 0.563755i \(-0.190644\pi\)
\(98\) −0.399712 + 0.908080i −0.0403770 + 0.0917299i
\(99\) 4.54040 + 9.00393i 0.456327 + 0.904929i
\(100\) 0 0
\(101\) 17.5517i 1.74646i −0.487308 0.873230i \(-0.662021\pi\)
0.487308 0.873230i \(-0.337979\pi\)
\(102\) −15.3928 + 10.6277i −1.52411 + 1.05229i
\(103\) 10.9190 1.07588 0.537941 0.842982i \(-0.319202\pi\)
0.537941 + 0.842982i \(0.319202\pi\)
\(104\) 3.36131 + 9.91534i 0.329604 + 0.972280i
\(105\) 0 0
\(106\) −1.29844 + 2.94984i −0.126115 + 0.286514i
\(107\) 6.45162i 0.623702i −0.950131 0.311851i \(-0.899051\pi\)
0.950131 0.311851i \(-0.100949\pi\)
\(108\) 8.23094 6.34442i 0.792023 0.610492i
\(109\) −2.29844 −0.220150 −0.110075 0.993923i \(-0.535109\pi\)
−0.110075 + 0.993923i \(0.535109\pi\)
\(110\) 0 0
\(111\) −6.72263 + 10.9190i −0.638084 + 1.03639i
\(112\) −0.880344 + 10.0000i −0.0831847 + 0.944911i
\(113\) 0.799423 0.0752034 0.0376017 0.999293i \(-0.488028\pi\)
0.0376017 + 0.999293i \(0.488028\pi\)
\(114\) 0.612595 + 0.887263i 0.0573748 + 0.0830998i
\(115\) 0 0
\(116\) 3.36131 3.07840i 0.312090 0.285823i
\(117\) 9.91534 5.00000i 0.916674 0.462250i
\(118\) 0 0
\(119\) −19.1647 −1.75683
\(120\) 0 0
\(121\) 0.298438 0.0271307
\(122\) −3.24844 + 7.37992i −0.294100 + 0.668147i
\(123\) −2.79544 + 4.54040i −0.252056 + 0.409394i
\(124\) 5.00000 4.57917i 0.449013 0.411221i
\(125\) 0 0
\(126\) 10.6330 0.557742i 0.947263 0.0496876i
\(127\) 12.6797 1.12514 0.562571 0.826749i \(-0.309812\pi\)
0.562571 + 0.826749i \(0.309812\pi\)
\(128\) −2.67869 10.9920i −0.236765 0.971567i
\(129\) −12.4031 7.63636i −1.09203 0.672344i
\(130\) 0 0
\(131\) −5.71949 −0.499714 −0.249857 0.968283i \(-0.580384\pi\)
−0.249857 + 0.968283i \(0.580384\pi\)
\(132\) −2.19477 11.4352i −0.191030 0.995308i
\(133\) 1.10469i 0.0957885i
\(134\) −3.11053 + 7.06662i −0.268709 + 0.610463i
\(135\) 0 0
\(136\) 20.4555 6.93443i 1.75404 0.594623i
\(137\) 9.91534 0.847125 0.423563 0.905867i \(-0.360779\pi\)
0.423563 + 0.905867i \(0.360779\pi\)
\(138\) −7.20558 10.4363i −0.613380 0.888400i
\(139\) 2.94984i 0.250202i −0.992144 0.125101i \(-0.960074\pi\)
0.992144 0.125101i \(-0.0399255\pi\)
\(140\) 0 0
\(141\) 3.29844 5.35738i 0.277779 0.451173i
\(142\) 7.08883 16.1047i 0.594882 1.35148i
\(143\) 12.4421i 1.04046i
\(144\) −11.1473 + 4.44267i −0.928943 + 0.370223i
\(145\) 0 0
\(146\) 1.68066 + 0.739779i 0.139092 + 0.0612245i
\(147\) −1.03475 0.637075i −0.0853446 0.0525450i
\(148\) 10.9190 10.0000i 0.897538 0.821995i
\(149\) 15.2727i 1.25119i −0.780148 0.625595i \(-0.784856\pi\)
0.780148 0.625595i \(-0.215144\pi\)
\(150\) 0 0
\(151\) 19.3284i 1.57292i 0.617641 + 0.786460i \(0.288089\pi\)
−0.617641 + 0.786460i \(0.711911\pi\)
\(152\) −0.399712 1.17909i −0.0324209 0.0956365i
\(153\) −10.3151 20.4555i −0.833923 1.65373i
\(154\) 4.80625 10.9190i 0.387299 0.879880i
\(155\) 0 0
\(156\) −12.5927 + 2.41693i −1.00823 + 0.193509i
\(157\) 11.1047i 0.886250i −0.896460 0.443125i \(-0.853870\pi\)
0.896460 0.443125i \(-0.146130\pi\)
\(158\) 6.49687 + 2.85974i 0.516864 + 0.227509i
\(159\) −3.36131 2.06950i −0.266570 0.164122i
\(160\) 0 0
\(161\) 12.9937i 1.02405i
\(162\) 6.31832 + 11.0489i 0.496414 + 0.868086i
\(163\) −0.440172 −0.0344769 −0.0172385 0.999851i \(-0.505487\pi\)
−0.0172385 + 0.999851i \(0.505487\pi\)
\(164\) 4.54040 4.15825i 0.354546 0.324705i
\(165\) 0 0
\(166\) 2.35078 + 1.03475i 0.182456 + 0.0803120i
\(167\) 15.5324i 1.20194i −0.799273 0.600968i \(-0.794782\pi\)
0.799273 0.600968i \(-0.205218\pi\)
\(168\) −11.9848 2.74337i −0.924651 0.211656i
\(169\) −0.701562 −0.0539663
\(170\) 0 0
\(171\) −1.17909 + 0.594576i −0.0901669 + 0.0454684i
\(172\) 11.3592 + 12.4031i 0.866130 + 0.945729i
\(173\) −8.43579 −0.641361 −0.320681 0.947187i \(-0.603912\pi\)
−0.320681 + 0.947187i \(0.603912\pi\)
\(174\) 3.17170 + 4.59378i 0.240446 + 0.348254i
\(175\) 0 0
\(176\) −1.17909 + 13.3935i −0.0888769 + 1.00957i
\(177\) 0 0
\(178\) 6.93443 + 3.05234i 0.519758 + 0.228783i
\(179\) 9.08080 0.678731 0.339365 0.940655i \(-0.389788\pi\)
0.339365 + 0.940655i \(0.389788\pi\)
\(180\) 0 0
\(181\) 10.5078 0.781039 0.390520 0.920595i \(-0.372295\pi\)
0.390520 + 0.920595i \(0.372295\pi\)
\(182\) −12.0243 5.29276i −0.891300 0.392325i
\(183\) −8.40935 5.17748i −0.621637 0.382730i
\(184\) 4.70156 + 13.8689i 0.346604 + 1.02243i
\(185\) 0 0
\(186\) 4.71794 + 6.83331i 0.345936 + 0.501043i
\(187\) −25.6682 −1.87705
\(188\) −5.35738 + 4.90647i −0.390727 + 0.357841i
\(189\) −1.10469 + 12.9937i −0.0803541 + 0.945156i
\(190\) 0 0
\(191\) 12.4421 0.900280 0.450140 0.892958i \(-0.351374\pi\)
0.450140 + 0.892958i \(0.351374\pi\)
\(192\) 13.7846 1.40837i 0.994821 0.101641i
\(193\) 19.8062i 1.42568i 0.701324 + 0.712842i \(0.252593\pi\)
−0.701324 + 0.712842i \(0.747407\pi\)
\(194\) −14.3736 6.32684i −1.03196 0.454241i
\(195\) 0 0
\(196\) 0.947657 + 1.03475i 0.0676898 + 0.0739106i
\(197\) −10.7148 −0.763396 −0.381698 0.924287i \(-0.624660\pi\)
−0.381698 + 0.924287i \(0.624660\pi\)
\(198\) 14.2413 0.747009i 1.01208 0.0530876i
\(199\) 21.0891i 1.49496i −0.664282 0.747482i \(-0.731263\pi\)
0.664282 0.747482i \(-0.268737\pi\)
\(200\) 0 0
\(201\) −8.05234 4.95767i −0.567968 0.349687i
\(202\) −22.7184 10.0000i −1.59846 0.703598i
\(203\) 5.71949i 0.401429i
\(204\) 4.98615 + 25.9790i 0.349101 + 1.81889i
\(205\) 0 0
\(206\) 6.22106 14.1332i 0.433442 0.984709i
\(207\) 13.8689 6.99364i 0.963952 0.486091i
\(208\) 14.7492 + 1.29844i 1.02267 + 0.0900305i
\(209\) 1.47956i 0.102343i
\(210\) 0 0
\(211\) 18.1392i 1.24876i −0.781123 0.624378i \(-0.785353\pi\)
0.781123 0.624378i \(-0.214647\pi\)
\(212\) 3.07840 + 3.36131i 0.211426 + 0.230856i
\(213\) 18.3511 + 11.2984i 1.25740 + 0.774156i
\(214\) −8.35078 3.67578i −0.570848 0.251271i
\(215\) 0 0
\(216\) −3.52248 14.2686i −0.239674 0.970853i
\(217\) 8.50781i 0.577548i
\(218\) −1.30952 + 2.97503i −0.0886921 + 0.201494i
\(219\) −1.17909 + 1.91509i −0.0796752 + 0.129410i
\(220\) 0 0
\(221\) 28.2665i 1.90141i
\(222\) 10.3031 + 14.9226i 0.691496 + 1.00154i
\(223\) 21.0891 1.41223 0.706114 0.708098i \(-0.250447\pi\)
0.706114 + 0.708098i \(0.250447\pi\)
\(224\) 12.4421 + 6.83694i 0.831324 + 0.456812i
\(225\) 0 0
\(226\) 0.455467 1.03475i 0.0302972 0.0688304i
\(227\) 22.2551i 1.47712i 0.674188 + 0.738560i \(0.264494\pi\)
−0.674188 + 0.738560i \(0.735506\pi\)
\(228\) 1.49747 0.287410i 0.0991723 0.0190342i
\(229\) −2.29844 −0.151885 −0.0759425 0.997112i \(-0.524197\pi\)
−0.0759425 + 0.997112i \(0.524197\pi\)
\(230\) 0 0
\(231\) 12.4421 + 7.66037i 0.818631 + 0.504015i
\(232\) −2.06950 6.10469i −0.135869 0.400792i
\(233\) −8.43579 −0.552647 −0.276323 0.961065i \(-0.589116\pi\)
−0.276323 + 0.961065i \(0.589116\pi\)
\(234\) −0.822625 15.6828i −0.0537767 1.02522i
\(235\) 0 0
\(236\) 0 0
\(237\) −4.55796 + 7.40312i −0.296071 + 0.480885i
\(238\) −10.9190 + 24.8062i −0.707775 + 1.60795i
\(239\) 25.8874 1.67452 0.837258 0.546809i \(-0.184158\pi\)
0.837258 + 0.546809i \(0.184158\pi\)
\(240\) 0 0
\(241\) 7.00000 0.450910 0.225455 0.974254i \(-0.427613\pi\)
0.225455 + 0.974254i \(0.427613\pi\)
\(242\) 0.170034 0.386289i 0.0109302 0.0248316i
\(243\) −14.4634 + 5.81455i −0.927830 + 0.373004i
\(244\) 7.70156 + 8.40935i 0.493042 + 0.538354i
\(245\) 0 0
\(246\) 4.28427 + 6.20520i 0.273155 + 0.395629i
\(247\) 1.62932 0.103671
\(248\) −3.07840 9.08080i −0.195479 0.576631i
\(249\) −1.64922 + 2.67869i −0.104515 + 0.169755i
\(250\) 0 0
\(251\) −22.5261 −1.42183 −0.710916 0.703277i \(-0.751719\pi\)
−0.710916 + 0.703277i \(0.751719\pi\)
\(252\) 5.33618 14.0808i 0.336148 0.887007i
\(253\) 17.4031i 1.09413i
\(254\) 7.22420 16.4122i 0.453287 1.02979i
\(255\) 0 0
\(256\) −15.7539 2.79544i −0.984619 0.174715i
\(257\) −4.55796 −0.284318 −0.142159 0.989844i \(-0.545404\pi\)
−0.142159 + 0.989844i \(0.545404\pi\)
\(258\) −16.9509 + 11.7034i −1.05532 + 0.728624i
\(259\) 18.5794i 1.15447i
\(260\) 0 0
\(261\) −6.10469 + 3.07840i −0.377871 + 0.190548i
\(262\) −3.25865 + 7.40312i −0.201320 + 0.457367i
\(263\) 18.6227i 1.14833i 0.818741 + 0.574164i \(0.194673\pi\)
−0.818741 + 0.574164i \(0.805327\pi\)
\(264\) −16.0518 3.67432i −0.987923 0.226139i
\(265\) 0 0
\(266\) 1.42987 + 0.629390i 0.0876710 + 0.0385904i
\(267\) −4.86493 + 7.90172i −0.297729 + 0.483577i
\(268\) 7.37460 + 8.05234i 0.450476 + 0.491875i
\(269\) 8.43579i 0.514339i 0.966366 + 0.257170i \(0.0827899\pi\)
−0.966366 + 0.257170i \(0.917210\pi\)
\(270\) 0 0
\(271\) 9.15833i 0.556329i −0.960533 0.278165i \(-0.910274\pi\)
0.960533 0.278165i \(-0.0897260\pi\)
\(272\) 2.67869 30.4278i 0.162420 1.84495i
\(273\) 8.43579 13.7016i 0.510557 0.829256i
\(274\) 5.64922 12.8341i 0.341282 0.775337i
\(275\) 0 0
\(276\) −17.6138 + 3.38063i −1.06023 + 0.203490i
\(277\) 8.89531i 0.534468i 0.963632 + 0.267234i \(0.0861096\pi\)
−0.963632 + 0.267234i \(0.913890\pi\)
\(278\) −3.81818 1.68066i −0.228999 0.100799i
\(279\) −9.08080 + 4.57917i −0.543653 + 0.274147i
\(280\) 0 0
\(281\) 17.5517i 1.04705i 0.852011 + 0.523524i \(0.175383\pi\)
−0.852011 + 0.523524i \(0.824617\pi\)
\(282\) −5.05516 7.32174i −0.301030 0.436003i
\(283\) −16.3785 −0.973603 −0.486801 0.873513i \(-0.661836\pi\)
−0.486801 + 0.873513i \(0.661836\pi\)
\(284\) −16.8066 18.3511i −0.997287 1.08894i
\(285\) 0 0
\(286\) −16.1047 7.08883i −0.952290 0.419172i
\(287\) 7.72577i 0.456038i
\(288\) −0.600671 + 16.9599i −0.0353949 + 0.999373i
\(289\) 41.3141 2.43024
\(290\) 0 0
\(291\) 10.0839 16.3785i 0.591131 0.960126i
\(292\) 1.91509 1.75391i 0.112072 0.102640i
\(293\) 21.4295 1.25193 0.625963 0.779852i \(-0.284706\pi\)
0.625963 + 0.779852i \(0.284706\pi\)
\(294\) −1.41415 + 0.976376i −0.0824750 + 0.0569434i
\(295\) 0 0
\(296\) −6.72263 19.8307i −0.390745 1.15264i
\(297\) −1.47956 + 17.4031i −0.0858526 + 1.00983i
\(298\) −19.7685 8.70156i −1.14516 0.504068i
\(299\) −19.1647 −1.10833
\(300\) 0 0
\(301\) −21.1047 −1.21645
\(302\) 25.0180 + 11.0122i 1.43963 + 0.633683i
\(303\) 15.9384 25.8874i 0.915635 1.48719i
\(304\) −1.75391 0.154404i −0.100593 0.00885568i
\(305\) 0 0
\(306\) −32.3539 + 1.69708i −1.84955 + 0.0970159i
\(307\) 26.4172 1.50771 0.753855 0.657041i \(-0.228192\pi\)
0.753855 + 0.657041i \(0.228192\pi\)
\(308\) −11.3949 12.4421i −0.649285 0.708955i
\(309\) 16.1047 + 9.91534i 0.916164 + 0.564064i
\(310\) 0 0
\(311\) −13.4453 −0.762411 −0.381205 0.924490i \(-0.624491\pi\)
−0.381205 + 0.924490i \(0.624491\pi\)
\(312\) −4.04625 + 17.6767i −0.229074 + 1.00075i
\(313\) 16.2984i 0.921242i 0.887597 + 0.460621i \(0.152373\pi\)
−0.887597 + 0.460621i \(0.847627\pi\)
\(314\) −14.3736 6.32684i −0.811147 0.357044i
\(315\) 0 0
\(316\) 7.40312 6.78003i 0.416458 0.381406i
\(317\) −16.8716 −0.947602 −0.473801 0.880632i \(-0.657118\pi\)
−0.473801 + 0.880632i \(0.657118\pi\)
\(318\) −4.59378 + 3.17170i −0.257607 + 0.177860i
\(319\) 7.66037i 0.428898i
\(320\) 0 0
\(321\) 5.85859 9.51563i 0.326995 0.531111i
\(322\) −16.8187 7.40312i −0.937270 0.412560i
\(323\) 3.36131i 0.187029i
\(324\) 17.9012 1.88316i 0.994512 0.104620i
\(325\) 0 0
\(326\) −0.250786 + 0.569745i −0.0138897 + 0.0315553i
\(327\) −3.39001 2.08717i −0.187468 0.115421i
\(328\) −2.79544 8.24609i −0.154352 0.455314i
\(329\) 9.11592i 0.502577i
\(330\) 0 0
\(331\) 17.1275i 0.941413i −0.882290 0.470707i \(-0.843999\pi\)
0.882290 0.470707i \(-0.156001\pi\)
\(332\) 2.67869 2.45323i 0.147012 0.134639i
\(333\) −19.8307 + 10.0000i −1.08672 + 0.547997i
\(334\) −20.1047 8.84952i −1.10008 0.484224i
\(335\) 0 0
\(336\) −10.3792 + 13.9498i −0.566234 + 0.761023i
\(337\) 12.4031i 0.675641i 0.941211 + 0.337821i \(0.109690\pi\)
−0.941211 + 0.337821i \(0.890310\pi\)
\(338\) −0.399712 + 0.908080i −0.0217414 + 0.0493930i
\(339\) 1.17909 + 0.725940i 0.0640391 + 0.0394277i
\(340\) 0 0
\(341\) 11.3949i 0.617069i
\(342\) 0.0978226 + 1.86493i 0.00528964 + 0.100844i
\(343\) −19.3284 −1.04363
\(344\) 22.5261 7.63636i 1.21452 0.411725i
\(345\) 0 0
\(346\) −4.80625 + 10.9190i −0.258386 + 0.587010i
\(347\) 19.4358i 1.04337i 0.853139 + 0.521683i \(0.174696\pi\)
−0.853139 + 0.521683i \(0.825304\pi\)
\(348\) 7.75311 1.48806i 0.415610 0.0797682i
\(349\) −26.2094 −1.40296 −0.701478 0.712691i \(-0.747476\pi\)
−0.701478 + 0.712691i \(0.747476\pi\)
\(350\) 0 0
\(351\) 19.1647 + 1.62932i 1.02294 + 0.0869669i
\(352\) 16.6643 + 9.15703i 0.888210 + 0.488071i
\(353\) 26.6676 1.41937 0.709687 0.704517i \(-0.248836\pi\)
0.709687 + 0.704517i \(0.248836\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 7.90172 7.23665i 0.418790 0.383542i
\(357\) −28.2665 17.4031i −1.49602 0.921071i
\(358\) 5.17374 11.7539i 0.273441 0.621213i
\(359\) 7.72577 0.407751 0.203875 0.978997i \(-0.434646\pi\)
0.203875 + 0.978997i \(0.434646\pi\)
\(360\) 0 0
\(361\) 18.8062 0.989803
\(362\) 5.98677 13.6010i 0.314658 0.714852i
\(363\) 0.440172 + 0.271006i 0.0231030 + 0.0142241i
\(364\) −13.7016 + 12.5483i −0.718157 + 0.657712i
\(365\) 0 0
\(366\) −11.4927 + 7.93496i −0.600736 + 0.414767i
\(367\) 2.50967 0.131004 0.0655018 0.997852i \(-0.479135\pi\)
0.0655018 + 0.997852i \(0.479135\pi\)
\(368\) 20.6301 + 1.81616i 1.07542 + 0.0946739i
\(369\) −8.24609 + 4.15825i −0.429275 + 0.216470i
\(370\) 0 0
\(371\) −5.71949 −0.296941
\(372\) 11.5329 2.21350i 0.597951 0.114765i
\(373\) 23.7016i 1.22722i −0.789609 0.613610i \(-0.789717\pi\)
0.789609 0.613610i \(-0.210283\pi\)
\(374\) −14.6243 + 33.2241i −0.756207 + 1.71798i
\(375\) 0 0
\(376\) 3.29844 + 9.72987i 0.170104 + 0.501780i
\(377\) 8.43579 0.434465
\(378\) 16.1893 + 8.83300i 0.832688 + 0.454320i
\(379\) 13.1199i 0.673923i −0.941518 0.336961i \(-0.890601\pi\)
0.941518 0.336961i \(-0.109399\pi\)
\(380\) 0 0
\(381\) 18.7016 + 11.5142i 0.958110 + 0.589890i
\(382\) 7.08883 16.1047i 0.362696 0.823987i
\(383\) 7.26464i 0.371206i −0.982625 0.185603i \(-0.940576\pi\)
0.982625 0.185603i \(-0.0594238\pi\)
\(384\) 6.03078 18.6448i 0.307757 0.951465i
\(385\) 0 0
\(386\) 25.6366 + 11.2845i 1.30487 + 0.574367i
\(387\) −11.3592 22.5261i −0.577420 1.14506i
\(388\) −16.3785 + 15.0000i −0.831494 + 0.761510i
\(389\) 37.3824i 1.89536i 0.319218 + 0.947681i \(0.396580\pi\)
−0.319218 + 0.947681i \(0.603420\pi\)
\(390\) 0 0
\(391\) 39.5371i 1.99948i
\(392\) 1.87927 0.637075i 0.0949174 0.0321771i
\(393\) −8.43579 5.19375i −0.425529 0.261990i
\(394\) −6.10469 + 13.8689i −0.307550 + 0.698703i
\(395\) 0 0
\(396\) 7.14699 18.8591i 0.359150 0.947704i
\(397\) 15.9109i 0.798547i 0.916832 + 0.399273i \(0.130738\pi\)
−0.916832 + 0.399273i \(0.869262\pi\)
\(398\) −27.2970 12.0154i −1.36828 0.602277i
\(399\) −1.00314 + 1.62932i −0.0502200 + 0.0815683i
\(400\) 0 0
\(401\) 9.23521i 0.461184i −0.973050 0.230592i \(-0.925934\pi\)
0.973050 0.230592i \(-0.0740663\pi\)
\(402\) −11.0048 + 7.59809i −0.548871 + 0.378958i
\(403\) 12.5483 0.625078
\(404\) −25.8874 + 23.7085i −1.28795 + 1.17954i
\(405\) 0 0
\(406\) 7.40312 + 3.25865i 0.367411 + 0.161724i
\(407\) 24.8842i 1.23347i
\(408\) 36.4672 + 8.34747i 1.80540 + 0.413261i
\(409\) −11.2094 −0.554268 −0.277134 0.960831i \(-0.589385\pi\)
−0.277134 + 0.960831i \(0.589385\pi\)
\(410\) 0 0
\(411\) 14.6243 + 9.00393i 0.721366 + 0.444131i
\(412\) −14.7492 16.1047i −0.726641 0.793421i
\(413\) 0 0
\(414\) −1.15063 21.9360i −0.0565503 1.07810i
\(415\) 0 0
\(416\) 10.0839 18.3511i 0.494406 0.899738i
\(417\) 2.67869 4.35078i 0.131176 0.213059i
\(418\) 1.91509 + 0.842970i 0.0936702 + 0.0412310i
\(419\) 34.9682 1.70831 0.854154 0.520021i \(-0.174076\pi\)
0.854154 + 0.520021i \(0.174076\pi\)
\(420\) 0 0
\(421\) −14.2094 −0.692522 −0.346261 0.938138i \(-0.612549\pi\)
−0.346261 + 0.938138i \(0.612549\pi\)
\(422\) −23.4788 10.3347i −1.14293 0.503087i
\(423\) 9.72987 4.90647i 0.473082 0.238561i
\(424\) 6.10469 2.06950i 0.296470 0.100504i
\(425\) 0 0
\(426\) 25.0798 17.3159i 1.21512 0.838958i
\(427\) −14.3090 −0.692463
\(428\) −9.51563 + 8.71473i −0.459955 + 0.421242i
\(429\) 11.2984 18.3511i 0.545494 0.886001i
\(430\) 0 0
\(431\) −5.71949 −0.275498 −0.137749 0.990467i \(-0.543987\pi\)
−0.137749 + 0.990467i \(0.543987\pi\)
\(432\) −20.4757 3.57007i −0.985138 0.171765i
\(433\) 7.20937i 0.346460i −0.984881 0.173230i \(-0.944580\pi\)
0.984881 0.173230i \(-0.0554205\pi\)
\(434\) 11.0122 + 4.84728i 0.528605 + 0.232677i
\(435\) 0 0
\(436\) 3.10469 + 3.39001i 0.148688 + 0.162352i
\(437\) 2.27898 0.109018
\(438\) 1.80706 + 2.61729i 0.0863446 + 0.125059i
\(439\) 23.4674i 1.12004i −0.828480 0.560018i \(-0.810794\pi\)
0.828480 0.560018i \(-0.189206\pi\)
\(440\) 0 0
\(441\) −0.947657 1.87927i −0.0451265 0.0894890i
\(442\) 36.5872 + 16.1047i 1.74028 + 0.766022i
\(443\) 29.7907i 1.41540i 0.706514 + 0.707699i \(0.250267\pi\)
−0.706514 + 0.707699i \(0.749733\pi\)
\(444\) 25.1855 4.83386i 1.19525 0.229405i
\(445\) 0 0
\(446\) 12.0154 27.2970i 0.568945 1.29255i
\(447\) 13.8689 22.5261i 0.655975 1.06545i
\(448\) 15.9384 12.2094i 0.753017 0.576839i
\(449\) 29.7460i 1.40380i −0.712274 0.701901i \(-0.752335\pi\)
0.712274 0.701901i \(-0.247665\pi\)
\(450\) 0 0
\(451\) 10.3475i 0.487244i
\(452\) −1.07985 1.17909i −0.0507917 0.0554595i
\(453\) −17.5517 + 28.5078i −0.824651 + 1.33941i
\(454\) 28.8062 + 12.6797i 1.35194 + 0.595088i
\(455\) 0 0
\(456\) 0.481161 2.10203i 0.0225324 0.0984365i
\(457\) 36.1047i 1.68891i −0.535630 0.844453i \(-0.679926\pi\)
0.535630 0.844453i \(-0.320074\pi\)
\(458\) −1.30952 + 2.97503i −0.0611900 + 0.139014i
\(459\) 3.36131 39.5371i 0.156893 1.84543i
\(460\) 0 0
\(461\) 17.5517i 0.817465i −0.912654 0.408732i \(-0.865971\pi\)
0.912654 0.408732i \(-0.134029\pi\)
\(462\) 17.0042 11.7402i 0.791106 0.546205i
\(463\) −5.01934 −0.233268 −0.116634 0.993175i \(-0.537211\pi\)
−0.116634 + 0.993175i \(0.537211\pi\)
\(464\) −9.08080 0.799423i −0.421566 0.0371123i
\(465\) 0 0
\(466\) −4.80625 + 10.9190i −0.222645 + 0.505814i
\(467\) 29.5197i 1.36601i −0.730414 0.683004i \(-0.760673\pi\)
0.730414 0.683004i \(-0.239327\pi\)
\(468\) −20.7681 7.87044i −0.960004 0.363811i
\(469\) −13.7016 −0.632679
\(470\) 0 0
\(471\) 10.0839 16.3785i 0.464644 0.754683i
\(472\) 0 0
\(473\) −28.2665 −1.29969
\(474\) 6.98550 + 10.1176i 0.320855 + 0.464716i
\(475\) 0 0
\(476\) 25.8874 + 28.2665i 1.18655 + 1.29559i
\(477\) −3.07840 6.10469i −0.140950 0.279514i
\(478\) 14.7492 33.5078i 0.674613 1.53261i
\(479\) −33.6131 −1.53582 −0.767912 0.640555i \(-0.778704\pi\)
−0.767912 + 0.640555i \(0.778704\pi\)
\(480\) 0 0
\(481\) 27.4031 1.24947
\(482\) 3.98822 9.06058i 0.181658 0.412698i
\(483\) 11.7994 19.1647i 0.536890 0.872026i
\(484\) −0.403124 0.440172i −0.0183238 0.0200078i
\(485\) 0 0
\(486\) −0.714301 + 22.0338i −0.0324013 + 0.999475i
\(487\) 0.131364 0.00595267 0.00297634 0.999996i \(-0.499053\pi\)
0.00297634 + 0.999996i \(0.499053\pi\)
\(488\) 15.2727 5.17748i 0.691364 0.234373i
\(489\) −0.649219 0.399712i −0.0293587 0.0180756i
\(490\) 0 0
\(491\) −13.4453 −0.606776 −0.303388 0.952867i \(-0.598118\pi\)
−0.303388 + 0.952867i \(0.598118\pi\)
\(492\) 10.4728 2.01004i 0.472148 0.0906196i
\(493\) 17.4031i 0.783797i
\(494\) 0.928300 2.10895i 0.0417662 0.0948860i
\(495\) 0 0
\(496\) −13.5078 1.18915i −0.606519 0.0533945i
\(497\) 31.2256 1.40066
\(498\) 2.52758 + 3.66087i 0.113264 + 0.164047i
\(499\) 40.2861i 1.80345i 0.432308 + 0.901726i \(0.357699\pi\)
−0.432308 + 0.901726i \(0.642301\pi\)
\(500\) 0 0
\(501\) 14.1047 22.9091i 0.630151 1.02350i
\(502\) −12.8341 + 29.1570i −0.572814 + 1.30134i
\(503\) 12.9841i 0.578934i 0.957188 + 0.289467i \(0.0934780\pi\)
−0.957188 + 0.289467i \(0.906522\pi\)
\(504\) −15.1855 14.9295i −0.676415 0.665011i
\(505\) 0 0
\(506\) −22.5261 9.91534i −1.00141 0.440791i
\(507\) −1.03475 0.637075i −0.0459548 0.0282935i
\(508\) −17.1275 18.7016i −0.759910 0.829748i
\(509\) 2.95911i 0.131160i −0.997847 0.0655802i \(-0.979110\pi\)
0.997847 0.0655802i \(-0.0208898\pi\)
\(510\) 0 0
\(511\) 3.25865i 0.144154i
\(512\) −12.5940 + 18.7987i −0.556583 + 0.830792i
\(513\) −2.27898 0.193752i −0.100619 0.00855434i
\(514\) −2.59688 + 5.89968i −0.114543 + 0.260224i
\(515\) 0 0
\(516\) 5.49087 + 28.6087i 0.241722 + 1.25943i
\(517\) 12.2094i 0.536968i
\(518\) 24.0486 + 10.5855i 1.05663 + 0.465101i
\(519\) −12.4421 7.66037i −0.546148 0.336253i
\(520\) 0 0
\(521\) 3.07840i 0.134867i −0.997724 0.0674337i \(-0.978519\pi\)
0.997724 0.0674337i \(-0.0214811\pi\)
\(522\) 0.506474 + 9.65562i 0.0221678 + 0.422615i
\(523\) −14.0002 −0.612187 −0.306094 0.952001i \(-0.599022\pi\)
−0.306094 + 0.952001i \(0.599022\pi\)
\(524\) 7.72577 + 8.43579i 0.337502 + 0.368519i
\(525\) 0 0
\(526\) 24.1047 + 10.6102i 1.05101 + 0.462627i
\(527\) 25.8874i 1.12767i
\(528\) −13.9014 + 18.6836i −0.604980 + 0.813099i
\(529\) −3.80625 −0.165489
\(530\) 0 0
\(531\) 0 0
\(532\) 1.62932 1.49219i 0.0706402 0.0646946i
\(533\) 11.3949 0.493568
\(534\) 7.45596 + 10.7990i 0.322651 + 0.467318i
\(535\) 0 0
\(536\) 14.6243 4.95767i 0.631676 0.214139i
\(537\) 13.3935 + 8.24609i 0.577970 + 0.355845i
\(538\) 10.9190 + 4.80625i 0.470752 + 0.207212i
\(539\) −2.35817 −0.101574
\(540\) 0 0
\(541\) −25.7016 −1.10500 −0.552498 0.833514i \(-0.686325\pi\)
−0.552498 + 0.833514i \(0.686325\pi\)
\(542\) −11.8543 5.21791i −0.509184 0.224129i
\(543\) 15.4982 + 9.54193i 0.665091 + 0.409484i
\(544\) −37.8586 20.8033i −1.62317 0.891934i
\(545\) 0 0
\(546\) −12.9286 18.7254i −0.553294 0.801374i
\(547\) 4.71053 0.201408 0.100704 0.994916i \(-0.467891\pi\)
0.100704 + 0.994916i \(0.467891\pi\)
\(548\) −13.3935 14.6243i −0.572140 0.624721i
\(549\) −7.70156 15.2727i −0.328695 0.651824i
\(550\) 0 0
\(551\) −1.00314 −0.0427354
\(552\) −5.65961 + 24.7249i −0.240889 + 1.05236i
\(553\) 12.5969i 0.535674i
\(554\) 11.5138 + 5.06806i 0.489175 + 0.215321i
\(555\) 0 0
\(556\) −4.35078 + 3.98459i −0.184514 + 0.168984i
\(557\) 36.7023 1.55512 0.777562 0.628806i \(-0.216456\pi\)
0.777562 + 0.628806i \(0.216456\pi\)
\(558\) 0.753387 + 14.3629i 0.0318934 + 0.608028i
\(559\) 31.1277i 1.31656i
\(560\) 0 0
\(561\) −37.8586 23.3088i −1.59839 0.984098i
\(562\) 22.7184 + 10.0000i 0.958317 + 0.421825i
\(563\) 23.3391i 0.983625i −0.870701 0.491812i \(-0.836335\pi\)
0.870701 0.491812i \(-0.163665\pi\)
\(564\) −12.3572 + 2.37172i −0.520331 + 0.0998674i
\(565\) 0 0
\(566\) −9.33159 + 21.1999i −0.392236 + 0.891096i
\(567\) −13.4287 + 18.1616i −0.563952 + 0.762716i
\(568\) −33.3286 + 11.2984i −1.39844 + 0.474072i
\(569\) 10.5955i 0.444186i 0.975026 + 0.222093i \(0.0712888\pi\)
−0.975026 + 0.222093i \(0.928711\pi\)
\(570\) 0 0
\(571\) 16.9501i 0.709338i 0.934992 + 0.354669i \(0.115406\pi\)
−0.934992 + 0.354669i \(0.884594\pi\)
\(572\) −18.3511 + 16.8066i −0.767299 + 0.702718i
\(573\) 18.3511 + 11.2984i 0.766630 + 0.471999i
\(574\) 10.0000 + 4.40172i 0.417392 + 0.183724i
\(575\) 0 0
\(576\) 21.6102 + 10.4403i 0.900424 + 0.435014i
\(577\) 12.4031i 0.516349i 0.966098 + 0.258174i \(0.0831209\pi\)
−0.966098 + 0.258174i \(0.916879\pi\)
\(578\) 23.5385 53.4756i 0.979072 2.22429i
\(579\) −17.9857 + 29.2126i −0.747459 + 1.21404i
\(580\) 0 0
\(581\) 4.55796i 0.189096i
\(582\) −15.4546 22.3839i −0.640613 0.927844i
\(583\) −7.66037 −0.317260
\(584\) −1.17909 3.47812i −0.0487909 0.143925i
\(585\) 0 0
\(586\) 12.2094 27.7377i 0.504365 1.14583i
\(587\) 31.3359i 1.29337i 0.762758 + 0.646685i \(0.223845\pi\)
−0.762758 + 0.646685i \(0.776155\pi\)
\(588\) 0.458084 + 2.38672i 0.0188911 + 0.0984267i
\(589\) −1.49219 −0.0614846
\(590\) 0 0
\(591\) −15.8034 9.72987i −0.650066 0.400233i
\(592\) −29.4984 2.59688i −1.21238 0.106731i
\(593\) −10.5955 −0.435104 −0.217552 0.976049i \(-0.569807\pi\)
−0.217552 + 0.976049i \(0.569807\pi\)
\(594\) 21.6831 + 11.8304i 0.889668 + 0.485409i
\(595\) 0 0
\(596\) −22.5261 + 20.6301i −0.922703 + 0.845042i
\(597\) 19.1506 31.1047i 0.783780 1.27303i
\(598\) −10.9190 + 24.8062i −0.446512 + 1.01440i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −40.0156 −1.63227 −0.816136 0.577860i \(-0.803888\pi\)
−0.816136 + 0.577860i \(0.803888\pi\)
\(602\) −12.0243 + 27.3172i −0.490074 + 1.11337i
\(603\) −7.37460 14.6243i −0.300317 0.595549i
\(604\) 28.5078 26.1084i 1.15997 1.06234i
\(605\) 0 0
\(606\) −24.4270 35.3793i −0.992279 1.43719i
\(607\) −3.25865 −0.132264 −0.0661322 0.997811i \(-0.521066\pi\)
−0.0661322 + 0.997811i \(0.521066\pi\)
\(608\) −1.19913 + 2.18223i −0.0486313 + 0.0885011i
\(609\) −5.19375 + 8.43579i −0.210461 + 0.341835i
\(610\) 0 0
\(611\) −13.4453 −0.543937
\(612\) −16.2368 + 42.8447i −0.656334 + 1.73190i
\(613\) 4.80625i 0.194123i 0.995278 + 0.0970613i \(0.0309443\pi\)
−0.995278 + 0.0970613i \(0.969056\pi\)
\(614\) 15.0511 34.1936i 0.607412 1.37994i
\(615\) 0 0
\(616\) −22.5969 + 7.66037i −0.910454 + 0.308645i
\(617\) −22.1097 −0.890102 −0.445051 0.895505i \(-0.646814\pi\)
−0.445051 + 0.895505i \(0.646814\pi\)
\(618\) 22.0097 15.1962i 0.885359 0.611280i
\(619\) 5.15070i 0.207024i −0.994628 0.103512i \(-0.966992\pi\)
0.994628 0.103512i \(-0.0330080\pi\)
\(620\) 0 0
\(621\) 26.8062 + 2.27898i 1.07570 + 0.0914523i
\(622\) −7.66037 + 17.4031i −0.307153 + 0.697802i
\(623\) 13.4453i 0.538673i
\(624\) 20.5748 + 15.3086i 0.823652 + 0.612833i
\(625\) 0 0
\(626\) 21.0962 + 9.28595i 0.843173 + 0.371141i
\(627\) −1.34356 + 2.18223i −0.0536565 + 0.0871498i
\(628\) −16.3785 + 15.0000i −0.653574 + 0.598565i
\(629\) 56.5330i 2.25412i
\(630\) 0 0
\(631\) 42.0468i 1.67385i −0.547314 0.836927i \(-0.684350\pi\)
0.547314 0.836927i \(-0.315650\pi\)
\(632\) −4.55796 13.4453i −0.181306 0.534824i
\(633\) 16.4719 26.7539i 0.654698 1.06337i
\(634\) −9.61250 + 21.8380i −0.381761 + 0.867299i
\(635\) 0 0
\(636\) 1.48806 + 7.75311i 0.0590053 + 0.307431i
\(637\) 2.59688i 0.102892i
\(638\) 9.91534 + 4.36446i 0.392552 + 0.172791i
\(639\) 16.8066 + 33.3286i 0.664858 + 1.31846i
\(640\) 0 0
\(641\) 12.3136i 0.486359i 0.969981 + 0.243179i \(0.0781903\pi\)
−0.969981 + 0.243179i \(0.921810\pi\)
\(642\) −8.97883 13.0047i −0.354366 0.513253i
\(643\) 24.4791 0.965360 0.482680 0.875797i \(-0.339663\pi\)
0.482680 + 0.875797i \(0.339663\pi\)
\(644\) −19.1647 + 17.5517i −0.755197 + 0.691634i
\(645\) 0 0
\(646\) −4.35078 1.91509i −0.171179 0.0753483i
\(647\) 10.3550i 0.407095i 0.979065 + 0.203548i \(0.0652472\pi\)
−0.979065 + 0.203548i \(0.934753\pi\)
\(648\) 7.76163 24.2437i 0.304906 0.952383i
\(649\) 0 0
\(650\) 0 0
\(651\) −7.72577 + 12.5483i −0.302797 + 0.491808i
\(652\) 0.594576 + 0.649219i 0.0232854 + 0.0254254i
\(653\) −25.9875 −1.01697 −0.508485 0.861071i \(-0.669794\pi\)
−0.508485 + 0.861071i \(0.669794\pi\)
\(654\) −4.63301 + 3.19877i −0.181165 + 0.125082i
\(655\) 0 0
\(656\) −12.2662 1.07985i −0.478914 0.0421609i
\(657\) −3.47812 + 1.75391i −0.135694 + 0.0684264i
\(658\) −11.7994 5.19375i −0.459987 0.202474i
\(659\) −16.8066 −0.654691 −0.327346 0.944905i \(-0.606154\pi\)
−0.327346 + 0.944905i \(0.606154\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) −22.1693 9.75831i −0.861635 0.379268i
\(663\) −25.6682 + 41.6908i −0.996871 + 1.61914i
\(664\) −1.64922 4.86493i −0.0640021 0.188796i
\(665\) 0 0
\(666\) 1.64525 + 31.3657i 0.0637521 + 1.21540i
\(667\) 11.7994 0.456873
\(668\) −22.9091 + 20.9809i −0.886379 + 0.811776i
\(669\) 31.1047 + 19.1506i 1.20258 + 0.740403i
\(670\) 0 0
\(671\) −19.1647 −0.739847
\(672\) 12.1426 + 21.3824i 0.468413 + 0.824843i
\(673\) 24.8062i 0.956211i 0.878303 + 0.478105i \(0.158676\pi\)
−0.878303 + 0.478105i \(0.841324\pi\)
\(674\) 16.0542 + 7.06662i 0.618385 + 0.272196i
\(675\) 0 0
\(676\) 0.947657 + 1.03475i 0.0364483 + 0.0397980i
\(677\) 12.9937 0.499390 0.249695 0.968324i \(-0.419670\pi\)
0.249695 + 0.968324i \(0.419670\pi\)
\(678\) 1.61141 1.11257i 0.0618859 0.0427280i
\(679\) 27.8691i 1.06952i
\(680\) 0 0
\(681\) −20.2094 + 32.8244i −0.774425 + 1.25784i
\(682\) 14.7492 + 6.49219i 0.564776 + 0.248599i
\(683\) 11.6291i 0.444975i 0.974936 + 0.222488i \(0.0714177\pi\)
−0.974936 + 0.222488i \(0.928582\pi\)
\(684\) 2.46964 + 0.935915i 0.0944290 + 0.0357856i
\(685\) 0 0
\(686\) −11.0122 + 25.0180i −0.420449 + 0.955193i
\(687\) −3.39001 2.08717i −0.129337 0.0796303i
\(688\) 2.94984 33.5078i 0.112462 1.27747i
\(689\) 8.43579i 0.321378i
\(690\) 0 0
\(691\) 1.18915i 0.0452375i −0.999744 0.0226187i \(-0.992800\pi\)
0.999744 0.0226187i \(-0.00720038\pi\)
\(692\) 11.3949 + 12.4421i 0.433169 + 0.472978i
\(693\) 11.3949 + 22.5969i 0.432857 + 0.858384i
\(694\) 25.1570 + 11.0734i 0.954948 + 0.420341i
\(695\) 0 0
\(696\) 2.49120 10.8832i 0.0944287 0.412526i
\(697\) 23.5078i 0.890422i
\(698\) −14.9327 + 33.9246i −0.565210 + 1.28406i
\(699\) −12.4421 7.66037i −0.470604 0.289742i
\(700\) 0 0
\(701\) 11.3949i 0.430380i −0.976572 0.215190i \(-0.930963\pi\)
0.976572 0.215190i \(-0.0690370\pi\)
\(702\) 13.0280 23.8779i 0.491709 0.901215i
\(703\) −3.25865 −0.122902
\(704\) 21.3470 16.3526i 0.804544 0.616311i
\(705\) 0 0
\(706\) 15.1938 34.5177i 0.571824 1.29909i
\(707\) 44.0490i 1.65663i
\(708\) 0 0
\(709\) 17.7016 0.664796 0.332398 0.943139i \(-0.392142\pi\)
0.332398 + 0.943139i \(0.392142\pi\)
\(710\) 0 0
\(711\) −13.4453 + 6.78003i −0.504237 + 0.254271i
\(712\) −4.86493 14.3508i −0.182321 0.537818i
\(713\) 17.5517 0.657317
\(714\) −38.6307 + 26.6719i −1.44572 + 0.998171i
\(715\) 0 0
\(716\) −12.2662 13.3935i −0.458408 0.500537i
\(717\) 38.1818 + 23.5078i 1.42593 + 0.877915i
\(718\) 4.40172 10.0000i 0.164271 0.373197i
\(719\) 44.0490 1.64275 0.821375 0.570389i \(-0.193207\pi\)
0.821375 + 0.570389i \(0.193207\pi\)
\(720\) 0 0
\(721\) 27.4031 1.02055
\(722\) 10.7148 24.3422i 0.398762 0.905924i
\(723\) 10.3244 + 6.35656i 0.383970 + 0.236403i
\(724\) −14.1938 15.4982i −0.527507 0.575986i
\(725\) 0 0
\(726\) 0.601567 0.415341i 0.0223262 0.0154148i
\(727\) −40.5488 −1.50387 −0.751936 0.659236i \(-0.770880\pi\)
−0.751936 + 0.659236i \(0.770880\pi\)
\(728\) 8.43579 + 24.8842i 0.312651 + 0.922271i
\(729\) −26.6125 4.55796i −0.985648 0.168813i
\(730\) 0 0
\(731\) 64.2169 2.37515
\(732\) 3.72283 + 19.3968i 0.137600 + 0.716925i
\(733\) 4.80625i 0.177523i 0.996053 + 0.0887614i \(0.0282909\pi\)
−0.996053 + 0.0887614i \(0.971709\pi\)
\(734\) 1.42987 3.24844i 0.0527775 0.119902i
\(735\) 0 0
\(736\) 14.1047 25.6682i 0.519906 0.946143i
\(737\) −18.3511 −0.675973
\(738\) 0.684136 + 13.0426i 0.0251834 + 0.480106i
\(739\) 29.2357i 1.07545i −0.843120 0.537726i \(-0.819283\pi\)
0.843120 0.537726i \(-0.180717\pi\)
\(740\) 0 0
\(741\) 2.40312 + 1.47956i 0.0882810 + 0.0543529i
\(742\) −3.25865 + 7.40312i −0.119629 + 0.271777i
\(743\) 40.8778i 1.49966i −0.661630 0.749830i \(-0.730135\pi\)
0.661630 0.749830i \(-0.269865\pi\)
\(744\) 3.70569 16.1889i 0.135857 0.593514i
\(745\) 0 0
\(746\) −30.6786 13.5038i −1.12322 0.494411i
\(747\) −4.86493 + 2.45323i −0.177999 + 0.0897592i
\(748\) 34.6722 + 37.8586i 1.26774 + 1.38425i
\(749\) 16.1914i 0.591622i
\(750\) 0 0
\(751\) 36.2784i 1.32382i −0.749584 0.661909i \(-0.769746\pi\)
0.749584 0.661909i \(-0.230254\pi\)
\(752\) 14.4733 + 1.27415i 0.527787 + 0.0464634i
\(753\) −33.2241 20.4555i −1.21076 0.745439i
\(754\) 4.80625 10.9190i 0.175033 0.397647i
\(755\) 0 0
\(756\) 20.6569 15.9224i 0.751285 0.579092i
\(757\) 35.9109i 1.30521i 0.757700 + 0.652603i \(0.226323\pi\)
−0.757700 + 0.652603i \(0.773677\pi\)
\(758\) −16.9820 7.47499i −0.616813 0.271504i
\(759\) 15.8034 25.6682i 0.573628 0.931698i
\(760\) 0 0
\(761\) 20.6301i 0.747841i −0.927461 0.373920i \(-0.878013\pi\)
0.927461 0.373920i \(-0.121987\pi\)
\(762\) 25.5587 17.6466i 0.925895 0.639268i
\(763\) −5.76832 −0.208827
\(764\) −16.8066 18.3511i −0.608041 0.663921i
\(765\) 0 0
\(766\) −9.40312 4.13899i −0.339749 0.149548i
\(767\) 0 0
\(768\) −20.6973 18.4289i −0.746849 0.664994i
\(769\) 14.1938 0.511840 0.255920 0.966698i \(-0.417622\pi\)
0.255920 + 0.966698i \(0.417622\pi\)
\(770\) 0 0
\(771\) −6.72263 4.13899i −0.242110 0.149062i
\(772\) 29.2126 26.7539i 1.05139 0.962894i
\(773\) −2.27898 −0.0819692 −0.0409846 0.999160i \(-0.513049\pi\)
−0.0409846 + 0.999160i \(0.513049\pi\)
\(774\) −35.6289 + 1.86887i −1.28065 + 0.0671752i
\(775\) 0 0
\(776\) 10.0839 + 29.7460i 0.361993 + 1.06782i
\(777\) −16.8716 + 27.4031i −0.605264 + 0.983082i
\(778\) 48.3866 + 21.2984i 1.73474 + 0.763586i
\(779\) −1.35503 −0.0485489
\(780\) 0 0
\(781\) 41.8219 1.49650
\(782\) 51.1756 + 22.5261i 1.83003 + 0.805530i
\(783\) −11.7994 1.00314i −0.421675 0.0358494i
\(784\) 0.246095 2.79544i 0.00878910 0.0998370i
\(785\) 0 0
\(786\) −11.5289 + 7.95991i −0.411221 + 0.283920i
\(787\) 18.4480 0.657601