Properties

Label 300.2.e.a
Level $300$
Weight $2$
Character orbit 300.e
Analytic conductor $2.396$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 300.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.39551206064\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-5})\)
Defining polynomial: \(x^{4} + x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + ( \beta_{1} - \beta_{3} ) q^{3} + \beta_{2} q^{4} + ( 2 + \beta_{2} ) q^{6} + ( -\beta_{1} + 2 \beta_{3} ) q^{8} + 3 q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} + ( \beta_{1} - \beta_{3} ) q^{3} + \beta_{2} q^{4} + ( 2 + \beta_{2} ) q^{6} + ( -\beta_{1} + 2 \beta_{3} ) q^{8} + 3 q^{9} + ( \beta_{1} + 2 \beta_{3} ) q^{12} + ( -4 - \beta_{2} ) q^{16} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{17} + 3 \beta_{1} q^{18} + ( -2 - 4 \beta_{2} ) q^{19} + ( -2 \beta_{1} + 2 \beta_{3} ) q^{23} + ( -4 + \beta_{2} ) q^{24} + ( 3 \beta_{1} - 3 \beta_{3} ) q^{27} + ( -2 - 4 \beta_{2} ) q^{31} + ( -3 \beta_{1} - 2 \beta_{3} ) q^{32} + ( -4 + 2 \beta_{2} ) q^{34} + 3 \beta_{2} q^{36} + ( 2 \beta_{1} - 8 \beta_{3} ) q^{38} + ( -4 - 2 \beta_{2} ) q^{46} + ( -6 \beta_{1} + 6 \beta_{3} ) q^{47} + ( -5 \beta_{1} + 2 \beta_{3} ) q^{48} + 7 q^{49} + ( 2 + 4 \beta_{2} ) q^{51} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{53} + ( 6 + 3 \beta_{2} ) q^{54} + ( -6 \beta_{1} - 6 \beta_{3} ) q^{57} -2 q^{61} + ( 2 \beta_{1} - 8 \beta_{3} ) q^{62} + ( 4 - 3 \beta_{2} ) q^{64} + ( -6 \beta_{1} + 4 \beta_{3} ) q^{68} -6 q^{69} + ( -3 \beta_{1} + 6 \beta_{3} ) q^{72} + ( 16 + 2 \beta_{2} ) q^{76} + ( 2 + 4 \beta_{2} ) q^{79} + 9 q^{81} + ( 2 \beta_{1} - 2 \beta_{3} ) q^{83} + ( -2 \beta_{1} - 4 \beta_{3} ) q^{92} + ( -6 \beta_{1} - 6 \beta_{3} ) q^{93} + ( -12 - 6 \beta_{2} ) q^{94} + ( -4 - 5 \beta_{2} ) q^{96} + 7 \beta_{1} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{4} + 6q^{6} + 12q^{9} + O(q^{10}) \) \( 4q - 2q^{4} + 6q^{6} + 12q^{9} - 14q^{16} - 18q^{24} - 20q^{34} - 6q^{36} - 12q^{46} + 28q^{49} + 18q^{54} - 8q^{61} + 22q^{64} - 24q^{69} + 60q^{76} + 36q^{81} - 36q^{94} - 6q^{96} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)
\(\beta_{3}\)\(=\)\((\)\( \nu^{3} + \nu \)\()/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2}\)
\(\nu^{3}\)\(=\)\(2 \beta_{3} - \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−0.866025 1.11803i
−0.866025 + 1.11803i
0.866025 1.11803i
0.866025 + 1.11803i
−0.866025 1.11803i −1.73205 −0.500000 + 1.93649i 0 1.50000 + 1.93649i 0 2.59808 1.11803i 3.00000 0
251.2 −0.866025 + 1.11803i −1.73205 −0.500000 1.93649i 0 1.50000 1.93649i 0 2.59808 + 1.11803i 3.00000 0
251.3 0.866025 1.11803i 1.73205 −0.500000 1.93649i 0 1.50000 1.93649i 0 −2.59808 1.11803i 3.00000 0
251.4 0.866025 + 1.11803i 1.73205 −0.500000 + 1.93649i 0 1.50000 + 1.93649i 0 −2.59808 + 1.11803i 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
12.b even 2 1 inner
20.d odd 2 1 inner
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.2.e.a 4
3.b odd 2 1 inner 300.2.e.a 4
4.b odd 2 1 inner 300.2.e.a 4
5.b even 2 1 inner 300.2.e.a 4
5.c odd 4 2 60.2.h.b 4
12.b even 2 1 inner 300.2.e.a 4
15.d odd 2 1 CM 300.2.e.a 4
15.e even 4 2 60.2.h.b 4
20.d odd 2 1 inner 300.2.e.a 4
20.e even 4 2 60.2.h.b 4
40.i odd 4 2 960.2.o.a 4
40.k even 4 2 960.2.o.a 4
60.h even 2 1 inner 300.2.e.a 4
60.l odd 4 2 60.2.h.b 4
120.q odd 4 2 960.2.o.a 4
120.w even 4 2 960.2.o.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.2.h.b 4 5.c odd 4 2
60.2.h.b 4 15.e even 4 2
60.2.h.b 4 20.e even 4 2
60.2.h.b 4 60.l odd 4 2
300.2.e.a 4 1.a even 1 1 trivial
300.2.e.a 4 3.b odd 2 1 inner
300.2.e.a 4 4.b odd 2 1 inner
300.2.e.a 4 5.b even 2 1 inner
300.2.e.a 4 12.b even 2 1 inner
300.2.e.a 4 15.d odd 2 1 CM
300.2.e.a 4 20.d odd 2 1 inner
300.2.e.a 4 60.h even 2 1 inner
960.2.o.a 4 40.i odd 4 2
960.2.o.a 4 40.k even 4 2
960.2.o.a 4 120.q odd 4 2
960.2.o.a 4 120.w even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(300, [\chi])\):

\( T_{7} \)
\( T_{13} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + T^{2} + T^{4} \)
$3$ \( ( -3 + T^{2} )^{2} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( T^{4} \)
$17$ \( ( 20 + T^{2} )^{2} \)
$19$ \( ( 60 + T^{2} )^{2} \)
$23$ \( ( -12 + T^{2} )^{2} \)
$29$ \( T^{4} \)
$31$ \( ( 60 + T^{2} )^{2} \)
$37$ \( T^{4} \)
$41$ \( T^{4} \)
$43$ \( T^{4} \)
$47$ \( ( -108 + T^{2} )^{2} \)
$53$ \( ( 20 + T^{2} )^{2} \)
$59$ \( T^{4} \)
$61$ \( ( 2 + T )^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( ( 60 + T^{2} )^{2} \)
$83$ \( ( -12 + T^{2} )^{2} \)
$89$ \( T^{4} \)
$97$ \( T^{4} \)
show more
show less