Properties

Label 300.1.l.a
Level $300$
Weight $1$
Character orbit 300.l
Analytic conductor $0.150$
Analytic rank $0$
Dimension $4$
Projective image $D_{2}$
CM/RM discs -15, -20, 12
Inner twists $16$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 300 = 2^{2} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 300.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.149719503790\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(D_{2}\)
Projective field Galois closure of \(\Q(\sqrt{3}, \sqrt{-5})\)
Artin image $OD_{16}:C_2$
Artin field Galois closure of 16.0.10251562500000000.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{8} q^{2} -\zeta_{8}^{3} q^{3} + \zeta_{8}^{2} q^{4} - q^{6} -\zeta_{8}^{3} q^{8} -\zeta_{8}^{2} q^{9} +O(q^{10})\) \( q -\zeta_{8} q^{2} -\zeta_{8}^{3} q^{3} + \zeta_{8}^{2} q^{4} - q^{6} -\zeta_{8}^{3} q^{8} -\zeta_{8}^{2} q^{9} + \zeta_{8} q^{12} - q^{16} + \zeta_{8}^{3} q^{18} + 2 \zeta_{8}^{3} q^{23} -\zeta_{8}^{2} q^{24} -\zeta_{8} q^{27} + \zeta_{8} q^{32} + q^{36} + 2 q^{46} + 2 \zeta_{8} q^{47} + \zeta_{8}^{3} q^{48} + \zeta_{8}^{2} q^{49} + \zeta_{8}^{2} q^{54} -2 q^{61} -\zeta_{8}^{2} q^{64} + 2 \zeta_{8}^{2} q^{69} -\zeta_{8} q^{72} - q^{81} -2 \zeta_{8}^{3} q^{83} -2 \zeta_{8} q^{92} -2 \zeta_{8}^{2} q^{94} + q^{96} -\zeta_{8}^{3} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{6} + O(q^{10}) \) \( 4q - 4q^{6} - 4q^{16} + 4q^{36} + 8q^{46} - 8q^{61} - 4q^{81} + 4q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/300\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(277\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
107.1
0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i 0.707107 0.707107i 1.00000i 0 −1.00000 0 0.707107 0.707107i 1.00000i 0
107.2 0.707107 + 0.707107i −0.707107 + 0.707107i 1.00000i 0 −1.00000 0 −0.707107 + 0.707107i 1.00000i 0
143.1 −0.707107 + 0.707107i 0.707107 + 0.707107i 1.00000i 0 −1.00000 0 0.707107 + 0.707107i 1.00000i 0
143.2 0.707107 0.707107i −0.707107 0.707107i 1.00000i 0 −1.00000 0 −0.707107 0.707107i 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 RM by \(\Q(\sqrt{3}) \)
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.e even 4 2 inner
20.e even 4 2 inner
60.h even 2 1 inner
60.l odd 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 300.1.l.a 4
3.b odd 2 1 inner 300.1.l.a 4
4.b odd 2 1 inner 300.1.l.a 4
5.b even 2 1 inner 300.1.l.a 4
5.c odd 4 2 inner 300.1.l.a 4
12.b even 2 1 RM 300.1.l.a 4
15.d odd 2 1 CM 300.1.l.a 4
15.e even 4 2 inner 300.1.l.a 4
20.d odd 2 1 CM 300.1.l.a 4
20.e even 4 2 inner 300.1.l.a 4
60.h even 2 1 inner 300.1.l.a 4
60.l odd 4 2 inner 300.1.l.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.1.l.a 4 1.a even 1 1 trivial
300.1.l.a 4 3.b odd 2 1 inner
300.1.l.a 4 4.b odd 2 1 inner
300.1.l.a 4 5.b even 2 1 inner
300.1.l.a 4 5.c odd 4 2 inner
300.1.l.a 4 12.b even 2 1 RM
300.1.l.a 4 15.d odd 2 1 CM
300.1.l.a 4 15.e even 4 2 inner
300.1.l.a 4 20.d odd 2 1 CM
300.1.l.a 4 20.e even 4 2 inner
300.1.l.a 4 60.h even 2 1 inner
300.1.l.a 4 60.l odd 4 2 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(300, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{4} \)
$3$ \( 1 + T^{4} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( T^{4} \)
$17$ \( T^{4} \)
$19$ \( T^{4} \)
$23$ \( 16 + T^{4} \)
$29$ \( T^{4} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( T^{4} \)
$43$ \( T^{4} \)
$47$ \( 16 + T^{4} \)
$53$ \( T^{4} \)
$59$ \( T^{4} \)
$61$ \( ( 2 + T )^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( T^{4} \)
$83$ \( 16 + T^{4} \)
$89$ \( T^{4} \)
$97$ \( T^{4} \)
show more
show less