Properties

Label 29.3.f.a.8.3
Level 29
Weight 3
Character 29.8
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 8.3
Character \(\chi\) = 29.8
Dual form 29.3.f.a.11.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.0310749 - 0.0108736i) q^{2}\) \(+(0.529545 - 4.69985i) q^{3}\) \(+(-3.12648 - 2.49328i) q^{4}\) \(+(3.79007 + 7.87017i) q^{5}\) \(+(-0.0675598 + 0.140289i) q^{6}\) \(+(3.62612 + 4.54701i) q^{7}\) \(+(0.140107 + 0.222980i) q^{8}\) \(+(-13.0338 - 2.97487i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.0310749 - 0.0108736i) q^{2}\) \(+(0.529545 - 4.69985i) q^{3}\) \(+(-3.12648 - 2.49328i) q^{4}\) \(+(3.79007 + 7.87017i) q^{5}\) \(+(-0.0675598 + 0.140289i) q^{6}\) \(+(3.62612 + 4.54701i) q^{7}\) \(+(0.140107 + 0.222980i) q^{8}\) \(+(-13.0338 - 2.97487i) q^{9}\) \(+(-0.0321993 - 0.285777i) q^{10}\) \(+(3.95365 - 6.29219i) q^{11}\) \(+(-13.3737 + 13.3737i) q^{12}\) \(+(-10.7515 + 2.45395i) q^{13}\) \(+(-0.0632391 - 0.180727i) q^{14}\) \(+(38.9956 - 13.6451i) q^{15}\) \(+(3.55744 + 15.5862i) q^{16}\) \(+(-4.26171 - 4.26171i) q^{17}\) \(+(0.372676 + 0.234168i) q^{18}\) \(+(-13.0613 + 1.47165i) q^{19}\) \(+(7.77298 - 34.0556i) q^{20}\) \(+(23.2904 - 14.6343i) q^{21}\) \(+(-0.191278 + 0.152539i) q^{22}\) \(+(-6.32686 - 3.04685i) q^{23}\) \(+(1.12216 - 0.540405i) q^{24}\) \(+(-31.9876 + 40.1112i) q^{25}\) \(+(0.360785 + 0.0406507i) q^{26}\) \(+(-6.82468 + 19.5038i) q^{27}\) \(-23.2571i q^{28}\) \(+(29.0000 + 0.0339620i) q^{29}\) \(-1.36016 q^{30}\) \(+(2.37249 + 0.830170i) q^{31}\) \(+(0.176871 - 1.56977i) q^{32}\) \(+(-27.4787 - 21.9135i) q^{33}\) \(+(0.0860924 + 0.178773i) q^{34}\) \(+(-22.0425 + 45.7716i) q^{35}\) \(+(33.3326 + 41.7978i) q^{36}\) \(+(-17.7197 - 28.2007i) q^{37}\) \(+(0.421880 + 0.0962915i) q^{38}\) \(+(5.83981 + 51.8298i) q^{39}\) \(+(-1.22387 + 1.94778i) q^{40}\) \(+(-2.70371 + 2.70371i) q^{41}\) \(+(-0.882876 + 0.201511i) q^{42}\) \(+(-11.9973 - 34.2863i) q^{43}\) \(+(-28.0492 + 9.81484i) q^{44}\) \(+(-25.9862 - 113.853i) q^{45}\) \(+(0.163476 + 0.163476i) q^{46}\) \(+(7.75262 + 4.87130i) q^{47}\) \(+(75.1364 - 8.46584i) q^{48}\) \(+(3.37698 - 14.7955i) q^{49}\) \(+(1.43017 - 0.898634i) q^{50}\) \(+(-22.2862 + 17.7726i) q^{51}\) \(+(39.7327 + 19.1342i) q^{52}\) \(+(39.1941 - 18.8749i) q^{53}\) \(+(0.424153 - 0.531871i) q^{54}\) \(+(64.5052 + 7.26799i) q^{55}\) \(+(-0.505844 + 1.44562i) q^{56}\) \(+62.1653i q^{57}\) \(+(-0.900803 - 0.316389i) q^{58}\) \(+70.7916 q^{59}\) \(+(-155.940 - 54.5658i) q^{60}\) \(+(-11.5282 + 102.316i) q^{61}\) \(+(-0.0646980 - 0.0515949i) q^{62}\) \(+(-33.7352 - 70.0519i) q^{63}\) \(+(27.7234 - 57.5683i) q^{64}\) \(+(-60.0619 - 75.3153i) q^{65}\) \(+(0.615620 + 0.979753i) q^{66}\) \(+(26.2176 + 5.98401i) q^{67}\) \(+(2.69850 + 23.9498i) q^{68}\) \(+(-17.6701 + 28.1218i) q^{69}\) \(+(1.18267 - 1.18267i) q^{70}\) \(+(-93.3221 + 21.3002i) q^{71}\) \(+(-1.16279 - 3.32307i) q^{72}\) \(+(-83.5084 + 29.2208i) q^{73}\) \(+(0.243995 + 1.06901i) q^{74}\) \(+(171.578 + 171.578i) q^{75}\) \(+(44.5050 + 27.9644i) q^{76}\) \(+(42.9470 - 4.83897i) q^{77}\) \(+(0.382104 - 1.67411i) q^{78}\) \(+(51.8104 - 32.5546i) q^{79}\) \(+(-109.183 + 87.0704i) q^{80}\) \(+(-20.3542 - 9.80207i) q^{81}\) \(+(0.113416 - 0.0546185i) q^{82}\) \(+(18.9679 - 23.7849i) q^{83}\) \(+(-109.305 - 12.3157i) q^{84}\) \(+(17.3882 - 49.6926i) q^{85}\) \(+1.19590i q^{86}\) \(+(15.5164 - 136.277i) q^{87}\) \(+1.95696 q^{88}\) \(+(97.6073 + 34.1543i) q^{89}\) \(+(-0.430471 + 3.82054i) q^{90}\) \(+(-50.1443 - 39.9887i) q^{91}\) \(+(12.1841 + 25.3006i) q^{92}\) \(+(5.15801 - 10.7107i) q^{93}\) \(+(-0.187944 - 0.235674i) q^{94}\) \(+(-61.0853 - 97.2168i) q^{95}\) \(+(-7.28403 - 1.66253i) q^{96}\) \(+(-12.7840 - 113.461i) q^{97}\) \(+(-0.265820 + 0.423050i) q^{98}\) \(+(-70.2494 + 70.2494i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0310749 0.0108736i −0.0155375 0.00543680i 0.322499 0.946570i \(-0.395477\pi\)
−0.338037 + 0.941133i \(0.609763\pi\)
\(3\) 0.529545 4.69985i 0.176515 1.56662i −0.523211 0.852203i \(-0.675266\pi\)
0.699726 0.714412i \(-0.253306\pi\)
\(4\) −3.12648 2.49328i −0.781620 0.623321i
\(5\) 3.79007 + 7.87017i 0.758015 + 1.57403i 0.817584 + 0.575809i \(0.195313\pi\)
−0.0595693 + 0.998224i \(0.518973\pi\)
\(6\) −0.0675598 + 0.140289i −0.0112600 + 0.0233816i
\(7\) 3.62612 + 4.54701i 0.518017 + 0.649572i 0.970187 0.242360i \(-0.0779214\pi\)
−0.452170 + 0.891932i \(0.649350\pi\)
\(8\) 0.140107 + 0.222980i 0.0175134 + 0.0278724i
\(9\) −13.0338 2.97487i −1.44820 0.330542i
\(10\) −0.0321993 0.285777i −0.00321993 0.0285777i
\(11\) 3.95365 6.29219i 0.359422 0.572017i −0.617246 0.786770i \(-0.711752\pi\)
0.976668 + 0.214753i \(0.0688946\pi\)
\(12\) −13.3737 + 13.3737i −1.11447 + 1.11447i
\(13\) −10.7515 + 2.45395i −0.827037 + 0.188766i −0.615031 0.788503i \(-0.710857\pi\)
−0.212006 + 0.977268i \(0.567999\pi\)
\(14\) −0.0632391 0.180727i −0.00451708 0.0129091i
\(15\) 38.9956 13.6451i 2.59971 0.909676i
\(16\) 3.55744 + 15.5862i 0.222340 + 0.974135i
\(17\) −4.26171 4.26171i −0.250689 0.250689i 0.570564 0.821253i \(-0.306725\pi\)
−0.821253 + 0.570564i \(0.806725\pi\)
\(18\) 0.372676 + 0.234168i 0.0207042 + 0.0130093i
\(19\) −13.0613 + 1.47165i −0.687436 + 0.0774554i −0.448771 0.893647i \(-0.648138\pi\)
−0.238664 + 0.971102i \(0.576710\pi\)
\(20\) 7.77298 34.0556i 0.388649 1.70278i
\(21\) 23.2904 14.6343i 1.10907 0.696873i
\(22\) −0.191278 + 0.152539i −0.00869445 + 0.00693360i
\(23\) −6.32686 3.04685i −0.275081 0.132472i 0.291258 0.956645i \(-0.405926\pi\)
−0.566339 + 0.824173i \(0.691641\pi\)
\(24\) 1.12216 0.540405i 0.0467568 0.0225169i
\(25\) −31.9876 + 40.1112i −1.27951 + 1.60445i
\(26\) 0.360785 + 0.0406507i 0.0138763 + 0.00156349i
\(27\) −6.82468 + 19.5038i −0.252766 + 0.722364i
\(28\) 23.2571i 0.830609i
\(29\) 29.0000 + 0.0339620i 0.999999 + 0.00117110i
\(30\) −1.36016 −0.0453386
\(31\) 2.37249 + 0.830170i 0.0765319 + 0.0267797i 0.368273 0.929718i \(-0.379949\pi\)
−0.291742 + 0.956497i \(0.594235\pi\)
\(32\) 0.176871 1.56977i 0.00552722 0.0490554i
\(33\) −27.4787 21.9135i −0.832688 0.664046i
\(34\) 0.0860924 + 0.178773i 0.00253213 + 0.00525802i
\(35\) −22.0425 + 45.7716i −0.629784 + 1.30776i
\(36\) 33.3326 + 41.7978i 0.925906 + 1.16105i
\(37\) −17.7197 28.2007i −0.478910 0.762182i 0.516661 0.856190i \(-0.327175\pi\)
−0.995571 + 0.0940085i \(0.970032\pi\)
\(38\) 0.421880 + 0.0962915i 0.0111021 + 0.00253399i
\(39\) 5.83981 + 51.8298i 0.149739 + 1.32897i
\(40\) −1.22387 + 1.94778i −0.0305967 + 0.0486944i
\(41\) −2.70371 + 2.70371i −0.0659440 + 0.0659440i −0.739310 0.673366i \(-0.764848\pi\)
0.673366 + 0.739310i \(0.264848\pi\)
\(42\) −0.882876 + 0.201511i −0.0210209 + 0.00479787i
\(43\) −11.9973 34.2863i −0.279007 0.797356i −0.995057 0.0993068i \(-0.968337\pi\)
0.716050 0.698049i \(-0.245948\pi\)
\(44\) −28.0492 + 9.81484i −0.637482 + 0.223065i
\(45\) −25.9862 113.853i −0.577471 2.53007i
\(46\) 0.163476 + 0.163476i 0.00355384 + 0.00355384i
\(47\) 7.75262 + 4.87130i 0.164949 + 0.103645i 0.611977 0.790876i \(-0.290375\pi\)
−0.447027 + 0.894520i \(0.647517\pi\)
\(48\) 75.1364 8.46584i 1.56534 0.176372i
\(49\) 3.37698 14.7955i 0.0689180 0.301949i
\(50\) 1.43017 0.898634i 0.0286033 0.0179727i
\(51\) −22.2862 + 17.7726i −0.436984 + 0.348483i
\(52\) 39.7327 + 19.1342i 0.764090 + 0.367966i
\(53\) 39.1941 18.8749i 0.739511 0.356130i −0.0259061 0.999664i \(-0.508247\pi\)
0.765417 + 0.643535i \(0.222533\pi\)
\(54\) 0.424153 0.531871i 0.00785469 0.00984947i
\(55\) 64.5052 + 7.26799i 1.17282 + 0.132145i
\(56\) −0.505844 + 1.44562i −0.00903293 + 0.0258146i
\(57\) 62.1653i 1.09062i
\(58\) −0.900803 0.316389i −0.0155311 0.00545499i
\(59\) 70.7916 1.19986 0.599929 0.800054i \(-0.295196\pi\)
0.599929 + 0.800054i \(0.295196\pi\)
\(60\) −155.940 54.5658i −2.59900 0.909430i
\(61\) −11.5282 + 102.316i −0.188988 + 1.67731i 0.438537 + 0.898713i \(0.355497\pi\)
−0.627524 + 0.778597i \(0.715932\pi\)
\(62\) −0.0646980 0.0515949i −0.00104352 0.000832176i
\(63\) −33.7352 70.0519i −0.535480 1.11194i
\(64\) 27.7234 57.5683i 0.433178 0.899504i
\(65\) −60.0619 75.3153i −0.924030 1.15870i
\(66\) 0.615620 + 0.979753i 0.00932757 + 0.0148447i
\(67\) 26.2176 + 5.98401i 0.391308 + 0.0893135i 0.413648 0.910437i \(-0.364254\pi\)
−0.0223398 + 0.999750i \(0.507112\pi\)
\(68\) 2.69850 + 23.9498i 0.0396838 + 0.352203i
\(69\) −17.6701 + 28.1218i −0.256088 + 0.407562i
\(70\) 1.18267 1.18267i 0.0168953 0.0168953i
\(71\) −93.3221 + 21.3002i −1.31440 + 0.300002i −0.821561 0.570121i \(-0.806896\pi\)
−0.492835 + 0.870123i \(0.664039\pi\)
\(72\) −1.16279 3.32307i −0.0161499 0.0461537i
\(73\) −83.5084 + 29.2208i −1.14395 + 0.400286i −0.834705 0.550697i \(-0.814362\pi\)
−0.309245 + 0.950982i \(0.600076\pi\)
\(74\) 0.243995 + 1.06901i 0.00329723 + 0.0144461i
\(75\) 171.578 + 171.578i 2.28770 + 2.28770i
\(76\) 44.5050 + 27.9644i 0.585593 + 0.367952i
\(77\) 42.9470 4.83897i 0.557753 0.0628437i
\(78\) 0.382104 1.67411i 0.00489877 0.0214629i
\(79\) 51.8104 32.5546i 0.655828 0.412084i −0.162601 0.986692i \(-0.551988\pi\)
0.818429 + 0.574608i \(0.194846\pi\)
\(80\) −109.183 + 87.0704i −1.36478 + 1.08838i
\(81\) −20.3542 9.80207i −0.251286 0.121013i
\(82\) 0.113416 0.0546185i 0.00138313 0.000666079i
\(83\) 18.9679 23.7849i 0.228528 0.286566i −0.654326 0.756213i \(-0.727047\pi\)
0.882854 + 0.469647i \(0.155619\pi\)
\(84\) −109.305 12.3157i −1.30124 0.146615i
\(85\) 17.3882 49.6926i 0.204567 0.584619i
\(86\) 1.19590i 0.0139058i
\(87\) 15.5164 136.277i 0.178350 1.56641i
\(88\) 1.95696 0.0222382
\(89\) 97.6073 + 34.1543i 1.09671 + 0.383756i 0.817181 0.576381i \(-0.195536\pi\)
0.279530 + 0.960137i \(0.409821\pi\)
\(90\) −0.430471 + 3.82054i −0.00478301 + 0.0424504i
\(91\) −50.1443 39.9887i −0.551036 0.439436i
\(92\) 12.1841 + 25.3006i 0.132436 + 0.275006i
\(93\) 5.15801 10.7107i 0.0554625 0.115169i
\(94\) −0.187944 0.235674i −0.00199940 0.00250717i
\(95\) −61.0853 97.2168i −0.643004 1.02333i
\(96\) −7.28403 1.66253i −0.0758753 0.0173180i
\(97\) −12.7840 113.461i −0.131794 1.16970i −0.869273 0.494333i \(-0.835413\pi\)
0.737479 0.675370i \(-0.236016\pi\)
\(98\) −0.265820 + 0.423050i −0.00271245 + 0.00431684i
\(99\) −70.2494 + 70.2494i −0.709590 + 0.709590i
\(100\) 200.017 45.6527i 2.00017 0.456527i
\(101\) 42.0839 + 120.269i 0.416672 + 1.19078i 0.940747 + 0.339109i \(0.110125\pi\)
−0.524075 + 0.851672i \(0.675589\pi\)
\(102\) 0.885793 0.309953i 0.00868425 0.00303875i
\(103\) −36.2231 158.704i −0.351681 1.54081i −0.773299 0.634041i \(-0.781395\pi\)
0.421618 0.906773i \(-0.361462\pi\)
\(104\) −2.05354 2.05354i −0.0197456 0.0197456i
\(105\) 203.447 + 127.834i 1.93759 + 1.21747i
\(106\) −1.42319 + 0.160355i −0.0134263 + 0.00151278i
\(107\) −15.1003 + 66.1586i −0.141124 + 0.618304i 0.854051 + 0.520189i \(0.174139\pi\)
−0.995175 + 0.0981152i \(0.968719\pi\)
\(108\) 69.9658 43.9624i 0.647831 0.407059i
\(109\) −8.50965 + 6.78622i −0.0780702 + 0.0622589i −0.661747 0.749727i \(-0.730185\pi\)
0.583677 + 0.811986i \(0.301613\pi\)
\(110\) −1.92547 0.927256i −0.0175042 0.00842960i
\(111\) −141.922 + 68.3462i −1.27858 + 0.615732i
\(112\) −57.9707 + 72.6930i −0.517596 + 0.649044i
\(113\) −56.1593 6.32764i −0.496985 0.0559968i −0.140085 0.990139i \(-0.544738\pi\)
−0.356900 + 0.934143i \(0.616166\pi\)
\(114\) 0.675960 1.93178i 0.00592947 0.0169455i
\(115\) 61.3412i 0.533402i
\(116\) −90.5831 72.4114i −0.780889 0.624236i
\(117\) 147.433 1.26011
\(118\) −2.19984 0.769759i −0.0186427 0.00652338i
\(119\) 3.92457 34.8315i 0.0329796 0.292702i
\(120\) 8.50616 + 6.78343i 0.0708846 + 0.0565286i
\(121\) 28.5396 + 59.2630i 0.235864 + 0.489777i
\(122\) 1.47078 3.05411i 0.0120556 0.0250337i
\(123\) 11.2753 + 14.1387i 0.0916688 + 0.114949i
\(124\) −5.34769 8.51079i −0.0431265 0.0686354i
\(125\) −224.012 51.1293i −1.79210 0.409035i
\(126\) 0.286604 + 2.54368i 0.00227464 + 0.0201879i
\(127\) −121.534 + 193.421i −0.956962 + 1.52300i −0.108262 + 0.994122i \(0.534529\pi\)
−0.848700 + 0.528875i \(0.822614\pi\)
\(128\) −5.95556 + 5.95556i −0.0465278 + 0.0465278i
\(129\) −167.493 + 38.2293i −1.29840 + 0.296351i
\(130\) 1.04747 + 2.99351i 0.00805749 + 0.0230270i
\(131\) 196.490 68.7549i 1.49993 0.524847i 0.549418 0.835547i \(-0.314849\pi\)
0.950508 + 0.310701i \(0.100564\pi\)
\(132\) 31.2749 + 137.024i 0.236931 + 1.03806i
\(133\) −54.0533 54.0533i −0.406416 0.406416i
\(134\) −0.749644 0.471033i −0.00559436 0.00351517i
\(135\) −179.364 + 20.2095i −1.32863 + 0.149700i
\(136\) 0.353178 1.54737i 0.00259689 0.0113777i
\(137\) 58.6681 36.8636i 0.428235 0.269078i −0.300623 0.953743i \(-0.597195\pi\)
0.728857 + 0.684665i \(0.240052\pi\)
\(138\) 0.854882 0.681746i 0.00619480 0.00494019i
\(139\) 97.5136 + 46.9601i 0.701537 + 0.337842i 0.750419 0.660962i \(-0.229852\pi\)
−0.0488824 + 0.998805i \(0.515566\pi\)
\(140\) 183.037 88.1459i 1.30741 0.629614i
\(141\) 26.9997 33.8566i 0.191487 0.240117i
\(142\) 3.13159 + 0.352845i 0.0220534 + 0.00248482i
\(143\) −27.0668 + 77.3524i −0.189278 + 0.540926i
\(144\) 213.730i 1.48423i
\(145\) 109.645 + 228.363i 0.756171 + 1.57492i
\(146\) 2.91275 0.0199504
\(147\) −67.7484 23.7062i −0.460873 0.161267i
\(148\) −14.9122 + 132.349i −0.100758 + 0.894251i
\(149\) 42.7218 + 34.0695i 0.286724 + 0.228654i 0.756280 0.654248i \(-0.227015\pi\)
−0.469556 + 0.882902i \(0.655586\pi\)
\(150\) −3.46610 7.19743i −0.0231073 0.0479829i
\(151\) 83.0312 172.416i 0.549875 1.14183i −0.422058 0.906569i \(-0.638692\pi\)
0.971933 0.235259i \(-0.0755937\pi\)
\(152\) −2.15813 2.70621i −0.0141982 0.0178040i
\(153\) 42.8682 + 68.2243i 0.280184 + 0.445910i
\(154\) −1.38719 0.316618i −0.00900774 0.00205596i
\(155\) 2.45833 + 21.8183i 0.0158602 + 0.140763i
\(156\) 110.968 176.605i 0.711335 1.13208i
\(157\) −45.4322 + 45.4322i −0.289377 + 0.289377i −0.836834 0.547457i \(-0.815596\pi\)
0.547457 + 0.836834i \(0.315596\pi\)
\(158\) −1.96399 + 0.448268i −0.0124303 + 0.00283714i
\(159\) −67.9539 194.201i −0.427383 1.22139i
\(160\) 13.0247 4.55755i 0.0814046 0.0284847i
\(161\) −9.08786 39.8165i −0.0564463 0.247307i
\(162\) 0.525922 + 0.525922i 0.00324643 + 0.00324643i
\(163\) −249.812 156.967i −1.53259 0.962990i −0.992615 0.121309i \(-0.961291\pi\)
−0.539975 0.841681i \(-0.681566\pi\)
\(164\) 15.1942 1.71197i 0.0926474 0.0104389i
\(165\) 68.3169 299.316i 0.414042 1.81403i
\(166\) −0.848053 + 0.532867i −0.00510875 + 0.00321004i
\(167\) 44.5238 35.5065i 0.266610 0.212614i −0.481055 0.876690i \(-0.659746\pi\)
0.747665 + 0.664076i \(0.231175\pi\)
\(168\) 6.52632 + 3.14291i 0.0388471 + 0.0187078i
\(169\) −42.6913 + 20.5591i −0.252611 + 0.121651i
\(170\) −1.08067 + 1.35512i −0.00635691 + 0.00797131i
\(171\) 174.616 + 19.6745i 1.02114 + 0.115055i
\(172\) −47.9762 + 137.108i −0.278931 + 0.797140i
\(173\) 335.481i 1.93920i 0.244702 + 0.969598i \(0.421310\pi\)
−0.244702 + 0.969598i \(0.578690\pi\)
\(174\) −1.96400 + 4.06609i −0.0112873 + 0.0233684i
\(175\) −298.377 −1.70501
\(176\) 112.136 + 39.2381i 0.637136 + 0.222944i
\(177\) 37.4873 332.709i 0.211793 1.87971i
\(178\) −2.66176 2.12268i −0.0149537 0.0119252i
\(179\) 69.3056 + 143.915i 0.387182 + 0.803992i 0.999906 + 0.0136949i \(0.00435935\pi\)
−0.612724 + 0.790297i \(0.709926\pi\)
\(180\) −202.622 + 420.750i −1.12568 + 2.33750i
\(181\) 152.161 + 190.804i 0.840671 + 1.05417i 0.997781 + 0.0665866i \(0.0212109\pi\)
−0.157110 + 0.987581i \(0.550218\pi\)
\(182\) 1.12341 + 1.78790i 0.00617258 + 0.00982360i
\(183\) 474.764 + 108.362i 2.59434 + 0.592141i
\(184\) −0.207053 1.83765i −0.00112529 0.00998721i
\(185\) 154.785 246.340i 0.836678 1.33157i
\(186\) −0.276749 + 0.276749i −0.00148790 + 0.00148790i
\(187\) −43.6648 + 9.96621i −0.233502 + 0.0532952i
\(188\) −12.0929 34.5595i −0.0643239 0.183827i
\(189\) −113.431 + 39.6913i −0.600165 + 0.210007i
\(190\) 0.841128 + 3.68522i 0.00442699 + 0.0193959i
\(191\) −166.578 166.578i −0.872137 0.872137i 0.120568 0.992705i \(-0.461528\pi\)
−0.992705 + 0.120568i \(0.961528\pi\)
\(192\) −255.881 160.781i −1.33271 0.837400i
\(193\) 188.693 21.2606i 0.977683 0.110158i 0.391362 0.920237i \(-0.372004\pi\)
0.586321 + 0.810078i \(0.300576\pi\)
\(194\) −0.836468 + 3.66481i −0.00431169 + 0.0188908i
\(195\) −385.776 + 242.399i −1.97834 + 1.24307i
\(196\) −47.4475 + 37.8381i −0.242079 + 0.193052i
\(197\) −208.010 100.172i −1.05589 0.508488i −0.176353 0.984327i \(-0.556430\pi\)
−0.879532 + 0.475839i \(0.842144\pi\)
\(198\) 2.94686 1.41913i 0.0148831 0.00716734i
\(199\) −93.3547 + 117.063i −0.469119 + 0.588257i −0.958955 0.283558i \(-0.908485\pi\)
0.489836 + 0.871815i \(0.337057\pi\)
\(200\) −13.4257 1.51271i −0.0671285 0.00756356i
\(201\) 42.0073 120.050i 0.208992 0.597264i
\(202\) 4.19495i 0.0207671i
\(203\) 105.003 + 131.986i 0.517256 + 0.650179i
\(204\) 113.989 0.558772
\(205\) −31.5259 11.0314i −0.153785 0.0538116i
\(206\) −0.600050 + 5.32559i −0.00291286 + 0.0258524i
\(207\) 73.3988 + 58.5336i 0.354584 + 0.282771i
\(208\) −76.4955 158.845i −0.367767 0.763676i
\(209\) −42.3797 + 88.0024i −0.202774 + 0.421064i
\(210\) −4.93209 6.18464i −0.0234861 0.0294507i
\(211\) −66.0800 105.166i −0.313175 0.498416i 0.652632 0.757675i \(-0.273665\pi\)
−0.965808 + 0.259259i \(0.916522\pi\)
\(212\) −169.600 38.7101i −0.799999 0.182595i
\(213\) 50.6892 + 449.879i 0.237977 + 2.11211i
\(214\) 1.18862 1.89168i 0.00555430 0.00883962i
\(215\) 224.368 224.368i 1.04357 1.04357i
\(216\) −5.30514 + 1.21086i −0.0245608 + 0.00560585i
\(217\) 4.82813 + 13.7980i 0.0222495 + 0.0635853i
\(218\) 0.338227 0.118351i 0.00155150 0.000542894i
\(219\) 93.1120 + 407.950i 0.425169 + 1.86279i
\(220\) −183.553 183.553i −0.834332 0.834332i
\(221\) 56.2778 + 35.3617i 0.254651 + 0.160008i
\(222\) 5.15340 0.580649i 0.0232135 0.00261553i
\(223\) −26.1358 + 114.508i −0.117201 + 0.513491i 0.881913 + 0.471412i \(0.156255\pi\)
−0.999114 + 0.0420792i \(0.986602\pi\)
\(224\) 7.77912 4.88795i 0.0347282 0.0218212i
\(225\) 536.246 427.642i 2.38331 1.90063i
\(226\) 1.67634 + 0.807285i 0.00741745 + 0.00357206i
\(227\) 223.061 107.420i 0.982646 0.473217i 0.127632 0.991822i \(-0.459262\pi\)
0.855014 + 0.518604i \(0.173548\pi\)
\(228\) 154.996 194.358i 0.679806 0.852449i
\(229\) 131.941 + 14.8662i 0.576162 + 0.0649179i 0.395237 0.918579i \(-0.370662\pi\)
0.180925 + 0.983497i \(0.442091\pi\)
\(230\) −0.666999 + 1.90617i −0.00290000 + 0.00828772i
\(231\) 204.407i 0.884878i
\(232\) 4.05554 + 6.47116i 0.0174808 + 0.0278929i
\(233\) −300.048 −1.28776 −0.643879 0.765128i \(-0.722676\pi\)
−0.643879 + 0.765128i \(0.722676\pi\)
\(234\) −4.58146 1.60312i −0.0195789 0.00685095i
\(235\) −8.95491 + 79.4770i −0.0381060 + 0.338200i
\(236\) −221.328 176.503i −0.937832 0.747896i
\(237\) −125.566 260.740i −0.529813 1.10017i
\(238\) −0.500699 + 1.03971i −0.00210378 + 0.00436854i
\(239\) −137.342 172.222i −0.574654 0.720594i 0.406536 0.913635i \(-0.366736\pi\)
−0.981191 + 0.193041i \(0.938165\pi\)
\(240\) 351.400 + 559.250i 1.46417 + 2.33021i
\(241\) −32.7575 7.47668i −0.135923 0.0310236i 0.154018 0.988068i \(-0.450779\pi\)
−0.289941 + 0.957044i \(0.593636\pi\)
\(242\) −0.242464 2.15192i −0.00100192 0.00889224i
\(243\) −155.789 + 247.937i −0.641107 + 1.02032i
\(244\) 291.145 291.145i 1.19322 1.19322i
\(245\) 129.242 29.4987i 0.527519 0.120403i
\(246\) −0.196639 0.561963i −0.000799347 0.00228440i
\(247\) 136.817 47.8742i 0.553914 0.193823i
\(248\) 0.147292 + 0.645329i 0.000593920 + 0.00260213i
\(249\) −101.741 101.741i −0.408599 0.408599i
\(250\) 6.40521 + 4.02466i 0.0256208 + 0.0160986i
\(251\) −51.8762 + 5.84504i −0.206678 + 0.0232870i −0.214696 0.976681i \(-0.568876\pi\)
0.00801842 + 0.999968i \(0.497448\pi\)
\(252\) −69.1868 + 303.127i −0.274551 + 1.20289i
\(253\) −44.1855 + 27.7636i −0.174646 + 0.109738i
\(254\) 5.87984 4.68902i 0.0231490 0.0184607i
\(255\) −224.340 108.036i −0.879764 0.423672i
\(256\) −230.023 + 110.773i −0.898528 + 0.432709i
\(257\) −21.9630 + 27.5408i −0.0854593 + 0.107163i −0.822723 0.568443i \(-0.807546\pi\)
0.737264 + 0.675605i \(0.236118\pi\)
\(258\) 5.62054 + 0.633282i 0.0217850 + 0.00245458i
\(259\) 63.9752 182.831i 0.247008 0.705910i
\(260\) 385.223i 1.48163i
\(261\) −377.878 86.7140i −1.44781 0.332237i
\(262\) −6.85354 −0.0261585
\(263\) 72.7181 + 25.4452i 0.276495 + 0.0967497i 0.464965 0.885329i \(-0.346067\pi\)
−0.188470 + 0.982079i \(0.560353\pi\)
\(264\) 1.03630 9.19743i 0.00392539 0.0348388i
\(265\) 297.097 + 236.927i 1.12112 + 0.894063i
\(266\) 1.09195 + 2.26746i 0.00410507 + 0.00852428i
\(267\) 212.207 440.653i 0.794783 1.65038i
\(268\) −67.0491 84.0769i −0.250183 0.313720i
\(269\) −40.6748 64.7335i −0.151207 0.240645i 0.762528 0.646955i \(-0.223958\pi\)
−0.913735 + 0.406310i \(0.866815\pi\)
\(270\) 5.79349 + 1.32233i 0.0214574 + 0.00489750i
\(271\) −38.5675 342.296i −0.142316 1.26309i −0.838372 0.545098i \(-0.816492\pi\)
0.696057 0.717987i \(-0.254936\pi\)
\(272\) 51.2630 81.5846i 0.188467 0.299943i
\(273\) −214.494 + 214.494i −0.785694 + 0.785694i
\(274\) −2.22395 + 0.507602i −0.00811660 + 0.00185256i
\(275\) 125.920 + 359.858i 0.457890 + 1.30857i
\(276\) 125.361 43.8656i 0.454206 0.158934i
\(277\) 57.6112 + 252.411i 0.207983 + 0.911232i 0.965907 + 0.258889i \(0.0833565\pi\)
−0.757924 + 0.652343i \(0.773786\pi\)
\(278\) −2.51960 2.51960i −0.00906333 0.00906333i
\(279\) −28.4528 17.8781i −0.101981 0.0640792i
\(280\) −13.2944 + 1.49792i −0.0474802 + 0.00534973i
\(281\) −90.9123 + 398.313i −0.323531 + 1.41748i 0.507689 + 0.861540i \(0.330500\pi\)
−0.831220 + 0.555943i \(0.812357\pi\)
\(282\) −1.20716 + 0.758507i −0.00428070 + 0.00268974i
\(283\) −122.197 + 97.4487i −0.431791 + 0.344342i −0.815142 0.579261i \(-0.803341\pi\)
0.383351 + 0.923603i \(0.374770\pi\)
\(284\) 344.877 + 166.084i 1.21435 + 0.584802i
\(285\) −489.251 + 235.611i −1.71667 + 0.826705i
\(286\) 1.68220 2.10941i 0.00588181 0.00737555i
\(287\) −22.0977 2.48981i −0.0769955 0.00867531i
\(288\) −6.97517 + 19.9339i −0.0242194 + 0.0692149i
\(289\) 252.676i 0.874310i
\(290\) −0.924073 8.28861i −0.00318646 0.0285814i
\(291\) −540.020 −1.85574
\(292\) 333.943 + 116.852i 1.14364 + 0.400177i
\(293\) 15.8049 140.273i 0.0539417 0.478746i −0.937480 0.348040i \(-0.886847\pi\)
0.991421 0.130706i \(-0.0417243\pi\)
\(294\) 1.84751 + 1.47334i 0.00628403 + 0.00501135i
\(295\) 268.305 + 557.142i 0.909509 + 1.88862i
\(296\) 3.80553 7.90226i 0.0128565 0.0266968i
\(297\) 95.7394 + 120.053i 0.322355 + 0.404220i
\(298\) −0.957120 1.52325i −0.00321181 0.00511157i
\(299\) 75.4999 + 17.2324i 0.252508 + 0.0576333i
\(300\) −108.642 964.226i −0.362141 3.21409i
\(301\) 112.396 178.878i 0.373410 0.594279i
\(302\) −4.45497 + 4.45497i −0.0147516 + 0.0147516i
\(303\) 587.530 134.100i 1.93904 0.442574i
\(304\) −69.4021 198.340i −0.228297 0.652434i
\(305\) −848.937 + 297.056i −2.78340 + 0.973953i
\(306\) −0.590282 2.58620i −0.00192903 0.00845162i
\(307\) 211.914 + 211.914i 0.690275 + 0.690275i 0.962292 0.272017i \(-0.0876908\pi\)
−0.272017 + 0.962292i \(0.587691\pi\)
\(308\) −146.338 91.9501i −0.475123 0.298539i
\(309\) −765.066 + 86.2022i −2.47594 + 0.278972i
\(310\) 0.160851 0.704733i 0.000518873 0.00227333i
\(311\) 0.482806 0.303367i 0.00155243 0.000975456i −0.531256 0.847212i \(-0.678280\pi\)
0.532808 + 0.846236i \(0.321137\pi\)
\(312\) −10.7388 + 8.56389i −0.0344192 + 0.0274484i
\(313\) −11.9391 5.74959i −0.0381442 0.0183693i 0.414714 0.909952i \(-0.363881\pi\)
−0.452859 + 0.891582i \(0.649596\pi\)
\(314\) 1.90581 0.917792i 0.00606947 0.00292290i
\(315\) 423.461 531.004i 1.34432 1.68573i
\(316\) −243.152 27.3966i −0.769468 0.0866982i
\(317\) 168.368 481.169i 0.531131 1.51788i −0.295614 0.955307i \(-0.595524\pi\)
0.826745 0.562577i \(-0.190190\pi\)
\(318\) 6.77369i 0.0213009i
\(319\) 114.869 182.339i 0.360092 0.571596i
\(320\) 558.146 1.74421
\(321\) 302.939 + 106.003i 0.943734 + 0.330227i
\(322\) −0.150544 + 1.33611i −0.000467527 + 0.00414942i
\(323\) 61.9352 + 49.3917i 0.191750 + 0.152915i
\(324\) 39.1976 + 81.3947i 0.120980 + 0.251218i
\(325\) 245.483 509.751i 0.755333 1.56847i
\(326\) 6.05610 + 7.59411i 0.0185770 + 0.0232948i
\(327\) 27.3879 + 43.5876i 0.0837551 + 0.133296i
\(328\) −0.981680 0.224062i −0.00299293 0.000683116i
\(329\) 5.96210 + 52.9151i 0.0181219 + 0.160836i
\(330\) −5.37758 + 8.55837i −0.0162957 + 0.0259345i
\(331\) −88.5260 + 88.5260i −0.267450 + 0.267450i −0.828072 0.560622i \(-0.810562\pi\)
0.560622 + 0.828072i \(0.310562\pi\)
\(332\) −118.605 + 27.0709i −0.357245 + 0.0815388i
\(333\) 147.061 + 420.276i 0.441624 + 1.26209i
\(334\) −1.76966 + 0.619230i −0.00529838 + 0.00185398i
\(335\) 52.2717 + 229.017i 0.156035 + 0.683633i
\(336\) 310.948 + 310.948i 0.925439 + 0.925439i
\(337\) 175.703 + 110.401i 0.521373 + 0.327601i 0.766876 0.641795i \(-0.221810\pi\)
−0.245503 + 0.969396i \(0.578953\pi\)
\(338\) 1.55018 0.174664i 0.00458634 0.000516756i
\(339\) −59.4778 + 260.589i −0.175451 + 0.768700i
\(340\) −178.262 + 112.009i −0.524299 + 0.329439i
\(341\) 14.6036 11.6460i 0.0428257 0.0341524i
\(342\) −5.21224 2.51008i −0.0152405 0.00733942i
\(343\) 336.275 161.942i 0.980394 0.472133i
\(344\) 5.96424 7.47891i 0.0173379 0.0217410i
\(345\) −288.294 32.4830i −0.835636 0.0941535i
\(346\) 3.64788 10.4251i 0.0105430 0.0301302i
\(347\) 98.9513i 0.285162i −0.989783 0.142581i \(-0.954460\pi\)
0.989783 0.142581i \(-0.0455402\pi\)
\(348\) −388.290 + 387.382i −1.11578 + 1.11317i
\(349\) 293.432 0.840780 0.420390 0.907343i \(-0.361893\pi\)
0.420390 + 0.907343i \(0.361893\pi\)
\(350\) 9.27205 + 3.24443i 0.0264916 + 0.00926980i
\(351\) 25.5139 226.442i 0.0726893 0.645135i
\(352\) −9.17803 7.31923i −0.0260739 0.0207933i
\(353\) −139.632 289.949i −0.395558 0.821385i −0.999700 0.0245079i \(-0.992198\pi\)
0.604142 0.796877i \(-0.293516\pi\)
\(354\) −4.78266 + 9.93130i −0.0135103 + 0.0280545i
\(355\) −521.333 653.731i −1.46854 1.84150i
\(356\) −220.011 350.145i −0.618008 0.983554i
\(357\) −161.624 36.8897i −0.452730 0.103333i
\(358\) −0.588799 5.22573i −0.00164469 0.0145970i
\(359\) −246.904 + 392.946i −0.687756 + 1.09456i 0.302209 + 0.953242i \(0.402276\pi\)
−0.989965 + 0.141315i \(0.954867\pi\)
\(360\) 21.7460 21.7460i 0.0604057 0.0604057i
\(361\) −183.518 + 41.8867i −0.508360 + 0.116030i
\(362\) −2.65368 7.58377i −0.00733060 0.0209497i
\(363\) 293.640 102.749i 0.808926 0.283055i
\(364\) 57.0718 + 250.048i 0.156791 + 0.686944i
\(365\) −546.476 546.476i −1.49719 1.49719i
\(366\) −13.5750 8.52973i −0.0370901 0.0233053i
\(367\) 97.2298 10.9552i 0.264931 0.0298506i 0.0215005 0.999769i \(-0.493156\pi\)
0.243431 + 0.969918i \(0.421727\pi\)
\(368\) 24.9814 109.450i 0.0678841 0.297420i
\(369\) 43.2827 27.1963i 0.117297 0.0737027i
\(370\) −7.48855 + 5.97192i −0.0202393 + 0.0161403i
\(371\) 227.946 + 109.773i 0.614411 + 0.295885i
\(372\) −42.8313 + 20.6264i −0.115138 + 0.0554474i
\(373\) 205.926 258.222i 0.552079 0.692285i −0.424992 0.905197i \(-0.639723\pi\)
0.977071 + 0.212912i \(0.0682946\pi\)
\(374\) 1.46525 + 0.165094i 0.00391778 + 0.000441428i
\(375\) −358.925 + 1025.75i −0.957132 + 2.73533i
\(376\) 2.41118i 0.00641272i
\(377\) −311.876 + 70.7995i −0.827257 + 0.187797i
\(378\) 3.95645 0.0104668
\(379\) −219.932 76.9574i −0.580295 0.203054i 0.0241400 0.999709i \(-0.492315\pi\)
−0.604435 + 0.796655i \(0.706601\pi\)
\(380\) −51.4069 + 456.249i −0.135281 + 1.20066i
\(381\) 844.689 + 673.617i 2.21703 + 1.76802i
\(382\) 3.36510 + 6.98771i 0.00880917 + 0.0182924i
\(383\) −101.754 + 211.295i −0.265677 + 0.551685i −0.990543 0.137206i \(-0.956188\pi\)
0.724865 + 0.688891i \(0.241902\pi\)
\(384\) 24.8365 + 31.1440i 0.0646783 + 0.0811041i
\(385\) 200.856 + 319.660i 0.521703 + 0.830286i
\(386\) −6.09480 1.39110i −0.0157896 0.00360388i
\(387\) 54.3726 + 482.570i 0.140498 + 1.24695i
\(388\) −242.922 + 386.608i −0.626087 + 0.996412i
\(389\) 297.193 297.193i 0.763992 0.763992i −0.213049 0.977041i \(-0.568339\pi\)
0.977041 + 0.213049i \(0.0683394\pi\)
\(390\) 14.6237 3.33776i 0.0374967 0.00855837i
\(391\) 13.9784 + 39.9481i 0.0357505 + 0.102169i
\(392\) 3.77224 1.31996i 0.00962306 0.00336725i
\(393\) −219.087 959.883i −0.557473 2.44245i
\(394\) 5.37465 + 5.37465i 0.0136412 + 0.0136412i
\(395\) 452.575 + 284.372i 1.14576 + 0.719929i
\(396\) 394.785 44.4816i 0.996932 0.112327i
\(397\) 61.8313 270.901i 0.155746 0.682370i −0.835405 0.549635i \(-0.814767\pi\)
0.991152 0.132735i \(-0.0423759\pi\)
\(398\) 4.17389 2.62263i 0.0104872 0.00658952i
\(399\) −282.666 + 225.419i −0.708436 + 0.564959i
\(400\) −738.975 355.871i −1.84744 0.889679i
\(401\) 198.105 95.4022i 0.494027 0.237911i −0.170245 0.985402i \(-0.554456\pi\)
0.664272 + 0.747491i \(0.268742\pi\)
\(402\) −2.61075 + 3.27378i −0.00649441 + 0.00814373i
\(403\) −27.5450 3.10357i −0.0683498 0.00770117i
\(404\) 168.290 480.945i 0.416559 1.19046i
\(405\) 197.342i 0.487263i
\(406\) −1.82779 5.24322i −0.00450195 0.0129143i
\(407\) −247.502 −0.608112
\(408\) −7.08539 2.47928i −0.0173661 0.00607668i
\(409\) 43.0110 381.733i 0.105161 0.933333i −0.824737 0.565516i \(-0.808677\pi\)
0.929898 0.367816i \(-0.119895\pi\)
\(410\) 0.859713 + 0.685599i 0.00209686 + 0.00167219i
\(411\) −142.186 295.252i −0.345951 0.718375i
\(412\) −282.443 + 586.499i −0.685541 + 1.42354i
\(413\) 256.698 + 321.890i 0.621546 + 0.779394i
\(414\) −1.64439 2.61704i −0.00397197 0.00632135i
\(415\) 259.081 + 59.1336i 0.624292 + 0.142491i
\(416\) 1.95053 + 17.3114i 0.00468877 + 0.0416140i
\(417\) 272.343 433.431i 0.653101 1.03940i
\(418\) 2.27385 2.27385i 0.00543983 0.00543983i
\(419\) −258.143 + 58.9194i −0.616092 + 0.140619i −0.519167 0.854673i \(-0.673758\pi\)
−0.0969251 + 0.995292i \(0.530901\pi\)
\(420\) −317.346 906.922i −0.755585 2.15934i
\(421\) 210.923 73.8051i 0.501005 0.175309i −0.0679329 0.997690i \(-0.521640\pi\)
0.568937 + 0.822381i \(0.307355\pi\)
\(422\) 0.909903 + 3.98655i 0.00215617 + 0.00944679i
\(423\) −86.5545 86.5545i −0.204621 0.204621i
\(424\) 9.70009 + 6.09497i 0.0228776 + 0.0143749i
\(425\) 307.265 34.6204i 0.722976 0.0814598i
\(426\) 3.31663 14.5311i 0.00778553 0.0341106i
\(427\) −507.034 + 318.591i −1.18743 + 0.746114i
\(428\) 212.163 169.194i 0.495707 0.395313i
\(429\) 349.211 + 168.171i 0.814012 + 0.392008i
\(430\) −9.41192 + 4.53254i −0.0218882 + 0.0105408i
\(431\) −131.485 + 164.877i −0.305069 + 0.382545i −0.910608 0.413271i \(-0.864386\pi\)
0.605539 + 0.795816i \(0.292958\pi\)
\(432\) −328.268 36.9870i −0.759880 0.0856180i
\(433\) −53.6896 + 153.436i −0.123995 + 0.354356i −0.989102 0.147230i \(-0.952964\pi\)
0.865108 + 0.501586i \(0.167250\pi\)
\(434\) 0.481271i 0.00110892i
\(435\) 1131.33 394.385i 2.60077 0.906631i
\(436\) 43.5252 0.0998284
\(437\) 87.1207 + 30.4849i 0.199361 + 0.0697594i
\(438\) 1.54244 13.6895i 0.00352154 0.0312545i
\(439\) −404.677 322.719i −0.921816 0.735124i 0.0427165 0.999087i \(-0.486399\pi\)
−0.964533 + 0.263963i \(0.914970\pi\)
\(440\) 7.41704 + 15.4016i 0.0168569 + 0.0350037i
\(441\) −88.0296 + 182.795i −0.199614 + 0.414502i
\(442\) −1.36432 1.71080i −0.00308670 0.00387060i
\(443\) −205.271 326.686i −0.463365 0.737440i 0.530543 0.847658i \(-0.321988\pi\)
−0.993907 + 0.110218i \(0.964845\pi\)
\(444\) 614.124 + 140.170i 1.38316 + 0.315698i
\(445\) 101.139 + 897.633i 0.227278 + 2.01715i
\(446\) 2.05729 3.27415i 0.00461275 0.00734115i
\(447\) 182.745 182.745i 0.408825 0.408825i
\(448\) 362.292 82.6907i 0.808687 0.184577i
\(449\) 51.5162 + 147.225i 0.114735 + 0.327895i 0.986904 0.161311i \(-0.0515723\pi\)
−0.872168 + 0.489206i \(0.837287\pi\)
\(450\) −21.3138 + 7.45802i −0.0473640 + 0.0165734i
\(451\) 6.32274 + 27.7017i 0.0140194 + 0.0614229i
\(452\) 159.804 + 159.804i 0.353549 + 0.353549i
\(453\) −766.360 481.536i −1.69174 1.06299i
\(454\) −8.09964 + 0.912610i −0.0178406 + 0.00201016i
\(455\) 124.667 546.204i 0.273994 1.20045i
\(456\) −13.8616 + 8.70981i −0.0303982 + 0.0191005i
\(457\) −551.243 + 439.602i −1.20622 + 0.961930i −0.999863 0.0165465i \(-0.994733\pi\)
−0.206359 + 0.978476i \(0.566161\pi\)
\(458\) −3.93841 1.89664i −0.00859916 0.00414114i
\(459\) 112.205 54.0349i 0.244454 0.117723i
\(460\) −152.941 + 191.782i −0.332481 + 0.416917i
\(461\) 472.975 + 53.2915i 1.02598 + 0.115600i 0.608880 0.793262i \(-0.291619\pi\)
0.417097 + 0.908862i \(0.363048\pi\)
\(462\) −2.22264 + 6.35193i −0.00481090 + 0.0137488i
\(463\) 436.814i 0.943442i 0.881748 + 0.471721i \(0.156367\pi\)
−0.881748 + 0.471721i \(0.843633\pi\)
\(464\) 102.636 + 452.119i 0.221199 + 0.974395i
\(465\) 103.844 0.223321
\(466\) 9.32396 + 3.26259i 0.0200085 + 0.00700127i
\(467\) 22.5274 199.936i 0.0482385 0.428128i −0.946262 0.323400i \(-0.895174\pi\)
0.994501 0.104728i \(-0.0333973\pi\)
\(468\) −460.945 367.591i −0.984925 0.785451i
\(469\) 67.8589 + 140.911i 0.144689 + 0.300449i
\(470\) 1.14247 2.37237i 0.00243080 0.00504760i
\(471\) 189.466 + 237.583i 0.402263 + 0.504422i
\(472\) 9.91842 + 15.7851i 0.0210136 + 0.0334430i
\(473\) −263.169 60.0666i −0.556383 0.126991i
\(474\) 1.06677 + 9.46783i 0.00225057 + 0.0199743i
\(475\) 358.770 570.979i 0.755305 1.20206i
\(476\) −99.1149 + 99.1149i −0.208225 + 0.208225i
\(477\) −566.997 + 129.413i −1.18867 + 0.271307i
\(478\) 2.39524 + 6.84519i 0.00501095 + 0.0143205i
\(479\) −625.859 + 218.997i −1.30659 + 0.457197i −0.891681 0.452664i \(-0.850474\pi\)
−0.414913 + 0.909861i \(0.636188\pi\)
\(480\) −14.5226 63.6277i −0.0302554 0.132558i
\(481\) 259.716 + 259.716i 0.539950 + 0.539950i
\(482\) 0.936638 + 0.588529i 0.00194323 + 0.00122101i
\(483\) −191.944 + 21.6269i −0.397399 + 0.0447761i
\(484\) 58.5312 256.442i 0.120932 0.529839i
\(485\) 844.506 530.638i 1.74125 1.09410i
\(486\) 7.53709 6.01063i 0.0155084 0.0123676i
\(487\) −98.2132 47.2970i −0.201670 0.0971191i 0.330323 0.943868i \(-0.392842\pi\)
−0.531993 + 0.846749i \(0.678557\pi\)
\(488\) −24.4296 + 11.7647i −0.0500606 + 0.0241079i
\(489\) −870.009 + 1090.96i −1.77916 + 2.23100i
\(490\) −4.33695 0.488657i −0.00885092 0.000997259i
\(491\) −152.864 + 436.860i −0.311332 + 0.889735i 0.676805 + 0.736162i \(0.263364\pi\)
−0.988137 + 0.153573i \(0.950922\pi\)
\(492\) 72.3169i 0.146986i
\(493\) −123.445 123.734i −0.250395 0.250982i
\(494\) −4.77213 −0.00966019
\(495\) −819.125 286.624i −1.65480 0.579039i
\(496\) −4.49917 + 39.9313i −0.00907092 + 0.0805066i
\(497\) −435.249 347.099i −0.875752 0.698389i
\(498\) 2.05531 + 4.26789i 0.00412713 + 0.00857007i
\(499\) −119.381 + 247.898i −0.239241 + 0.496789i −0.985672 0.168674i \(-0.946052\pi\)
0.746431 + 0.665463i \(0.231766\pi\)
\(500\) 572.890 + 718.381i 1.14578 + 1.43676i
\(501\) −143.298 228.057i −0.286024 0.455204i
\(502\) 1.67561 + 0.382446i 0.00333786 + 0.000761845i
\(503\) −59.4343 527.494i −0.118160 1.04870i −0.903191 0.429239i \(-0.858782\pi\)
0.785031 0.619456i \(-0.212647\pi\)
\(504\) 10.8936 17.3371i 0.0216143 0.0343989i
\(505\) −787.035 + 787.035i −1.55849 + 1.55849i
\(506\) 1.67495 0.382297i 0.00331018 0.000755528i
\(507\) 74.0174 + 211.530i 0.145991 + 0.417218i
\(508\) 862.227 301.706i 1.69730 0.593910i
\(509\) 19.4786 + 85.3413i 0.0382683 + 0.167665i 0.990451 0.137864i \(-0.0440238\pi\)
−0.952183 + 0.305529i \(0.901167\pi\)
\(510\) 5.79660 + 5.79660i 0.0113659 + 0.0113659i
\(511\) −435.679 273.755i −0.852600 0.535724i
\(512\) 41.8304 4.71315i 0.0816999 0.00920537i
\(513\) 60.4362 264.788i 0.117809 0.516157i
\(514\) 0.981968 0.617011i 0.00191044 0.00120041i
\(515\) 1111.74 886.582i 2.15871 1.72152i
\(516\) 618.981 + 298.086i 1.19958 + 0.577685i
\(517\) 61.3023 29.5216i 0.118573 0.0571018i
\(518\) −3.97605 + 4.98581i −0.00767577 + 0.00962512i
\(519\) 1576.71 + 177.652i 3.03797 + 0.342298i
\(520\) 8.37865 23.9448i 0.0161128 0.0460477i
\(521\) 416.078i 0.798613i 0.916817 + 0.399307i \(0.130749\pi\)
−0.916817 + 0.399307i \(0.869251\pi\)
\(522\) 10.7997 + 6.80352i 0.0206890 + 0.0130336i
\(523\) −244.076 −0.466684 −0.233342 0.972395i \(-0.574966\pi\)
−0.233342 + 0.972395i \(0.574966\pi\)
\(524\) −785.748 274.945i −1.49952 0.524705i
\(525\) −158.004 + 1402.33i −0.300960 + 2.67110i
\(526\) −1.98303 1.58141i −0.00377002 0.00300649i
\(527\) −6.57292 13.6488i −0.0124723 0.0258991i
\(528\) 243.794 506.244i 0.461731 0.958795i
\(529\) −299.080 375.035i −0.565369 0.708951i
\(530\) −6.65602 10.5930i −0.0125585 0.0199868i
\(531\) −922.682 210.596i −1.73763 0.396603i
\(532\) 34.2263 + 303.767i 0.0643351 + 0.570990i
\(533\) 22.4341 35.7036i 0.0420902 0.0669861i
\(534\) −11.3858 + 11.3858i −0.0213217 + 0.0213217i
\(535\) −577.910 + 131.904i −1.08021 + 0.246550i
\(536\) 2.33897 + 6.68440i 0.00436376 + 0.0124709i
\(537\) 713.076 249.516i 1.32789 0.464648i
\(538\) 0.560080 + 2.45387i 0.00104104 + 0.00456110i
\(539\) −79.7449 79.7449i −0.147950 0.147950i
\(540\) 611.167 + 384.022i 1.13179 + 0.711151i
\(541\) 741.239 83.5176i 1.37013 0.154376i 0.603959 0.797015i \(-0.293589\pi\)
0.766169 + 0.642639i \(0.222160\pi\)
\(542\) −2.52350 + 11.0562i −0.00465591 + 0.0203989i
\(543\) 977.327 614.096i 1.79987 1.13093i
\(544\) −7.44370 + 5.93615i −0.0136833 + 0.0109120i
\(545\) −85.6609 41.2521i −0.157176 0.0756919i
\(546\) 8.99773 4.33308i 0.0164794 0.00793604i
\(547\) 206.292 258.682i 0.377133 0.472910i −0.556651 0.830746i \(-0.687914\pi\)
0.933784 + 0.357836i \(0.116485\pi\)
\(548\) −275.336 31.0229i −0.502438 0.0566112i
\(549\) 454.634 1299.27i 0.828112 2.36661i
\(550\) 12.5518i 0.0228214i
\(551\) −378.827 + 42.2343i −0.687526 + 0.0766503i
\(552\) −8.74630 −0.0158447
\(553\) 335.897 + 117.535i 0.607408 + 0.212541i
\(554\) 0.954352 8.47011i 0.00172266 0.0152890i
\(555\) −1075.79 857.916i −1.93836 1.54579i
\(556\) −187.789 389.949i −0.337751 0.701347i
\(557\) 8.12730 16.8765i 0.0145912 0.0302989i −0.893546 0.448972i \(-0.851790\pi\)
0.908137 + 0.418673i \(0.137505\pi\)
\(558\) 0.689771 + 0.864945i 0.00123615 + 0.00155008i
\(559\) 213.126 + 339.188i 0.381262 + 0.606776i
\(560\) −791.819 180.728i −1.41396 0.322728i
\(561\) 23.7171 + 210.495i 0.0422765 + 0.375215i
\(562\) 7.15619 11.3890i 0.0127334 0.0202651i
\(563\) −682.747 + 682.747i −1.21269 + 1.21269i −0.242557 + 0.970137i \(0.577986\pi\)
−0.970137 + 0.242557i \(0.922014\pi\)
\(564\) −168.828 + 38.5339i −0.299340 + 0.0683225i
\(565\) −163.048 465.966i −0.288581 0.824718i
\(566\) 4.85688 1.69949i 0.00858105 0.00300264i
\(567\) −29.2366 128.094i −0.0515637 0.225916i
\(568\) −17.8246 17.8246i −0.0313814 0.0313814i
\(569\) 814.946 + 512.065i 1.43224 + 0.899938i 0.999998 0.00181851i \(-0.000578849\pi\)
0.432245 + 0.901756i \(0.357722\pi\)
\(570\) 17.7654 2.00168i 0.0311673 0.00351172i
\(571\) −32.2889 + 141.467i −0.0565480 + 0.247753i −0.995300 0.0968408i \(-0.969126\pi\)
0.938752 + 0.344594i \(0.111983\pi\)
\(572\) 277.485 174.356i 0.485114 0.304817i
\(573\) −871.102 + 694.681i −1.52025 + 1.21236i
\(574\) 0.659612 + 0.317652i 0.00114915 + 0.000553401i
\(575\) 324.594 156.316i 0.564512 0.271855i
\(576\) −532.599 + 667.858i −0.924652 + 1.15948i
\(577\) 263.320 + 29.6690i 0.456360 + 0.0514194i 0.337153 0.941450i \(-0.390536\pi\)
0.119207 + 0.992869i \(0.461965\pi\)
\(578\) −2.74749 + 7.85188i −0.00475344 + 0.0135846i
\(579\) 898.086i 1.55110i
\(580\) 226.573 987.349i 0.390643 1.70233i
\(581\) 176.930 0.304527
\(582\) 16.7811 + 5.87195i 0.0288335 + 0.0100893i
\(583\) 36.1952 321.241i 0.0620844 0.551014i
\(584\) −18.2158 14.5266i −0.0311914 0.0248743i
\(585\) 558.780 + 1160.32i 0.955180 + 1.98345i
\(586\) −2.01640 + 4.18711i −0.00344096 + 0.00714523i
\(587\) 606.443 + 760.455i 1.03312 + 1.29549i 0.954379 + 0.298599i \(0.0965194\pi\)
0.0787436 + 0.996895i \(0.474909\pi\)
\(588\) 152.708 + 243.033i 0.259707 + 0.413321i
\(589\) −32.2094 7.35160i −0.0546850 0.0124815i
\(590\) −2.27944 20.2306i −0.00386346 0.0342891i
\(591\) −580.944 + 924.567i −0.982985 + 1.56441i
\(592\) 376.504 376.504i 0.635987 0.635987i
\(593\) 829.756 189.386i 1.39925 0.319370i 0.544654 0.838661i \(-0.316661\pi\)
0.854597 + 0.519291i \(0.173804\pi\)
\(594\) −1.66968 4.77168i −0.00281092 0.00803314i
\(595\) 289.004 101.127i 0.485721 0.169961i
\(596\) −48.6239 213.035i −0.0815837 0.357442i
\(597\) 500.743 + 500.743i 0.838765 + 0.838765i
\(598\) −2.15878 1.35645i −0.00361000 0.00226831i
\(599\) −970.894 + 109.393i −1.62086 + 0.182627i −0.875220 0.483724i \(-0.839284\pi\)
−0.745638 + 0.666351i \(0.767855\pi\)
\(600\) −14.2190 + 62.2976i −0.0236984 + 0.103829i
\(601\) −265.894 + 167.072i −0.442419 + 0.277990i −0.734764 0.678323i \(-0.762707\pi\)
0.292345 + 0.956313i \(0.405564\pi\)
\(602\) −5.43776 + 4.33647i −0.00903282 + 0.00720343i
\(603\) −323.913 155.988i −0.537170 0.258687i
\(604\) −689.477 + 332.035i −1.14152 + 0.549726i
\(605\) −358.243 + 449.223i −0.592137 + 0.742517i
\(606\) −19.7156 2.22142i −0.0325340 0.00366570i
\(607\) −250.177 + 714.965i −0.412154 + 1.17787i 0.531536 + 0.847036i \(0.321615\pi\)
−0.943690 + 0.330832i \(0.892671\pi\)
\(608\) 20.7635i 0.0341505i
\(609\) 675.919 423.605i 1.10988 0.695574i
\(610\) 29.6107 0.0485422
\(611\) −95.3061 33.3491i −0.155984 0.0545811i
\(612\) 36.0761 320.184i 0.0589479 0.523177i
\(613\) −84.7718 67.6033i −0.138290 0.110283i 0.551902 0.833909i \(-0.313902\pi\)
−0.690192 + 0.723627i \(0.742474\pi\)
\(614\) −4.28096 8.88950i −0.00697224 0.0144780i
\(615\) −68.5401 + 142.325i −0.111447 + 0.231423i
\(616\) 7.09618 + 8.89833i 0.0115198 + 0.0144453i
\(617\) −477.375 759.739i −0.773704 1.23134i −0.968136 0.250427i \(-0.919429\pi\)
0.194432 0.980916i \(-0.437714\pi\)
\(618\) 24.7117 + 5.64028i 0.0399866 + 0.00912667i
\(619\) −34.8184 309.021i −0.0562494 0.499227i −0.989976 0.141239i \(-0.954891\pi\)
0.933726 0.357988i \(-0.116537\pi\)
\(620\) 46.7133 74.3437i 0.0753440 0.119909i
\(621\) 102.604 102.604i 0.165224 0.165224i
\(622\) −0.0183018 + 0.00417728i −2.94242e−5 + 6.71588e-6i
\(623\) 198.636 + 567.668i 0.318837 + 0.911185i
\(624\) −787.053 + 275.402i −1.26130 + 0.441349i
\(625\) −161.220 706.351i −0.257952 1.13016i
\(626\) 0.308489 + 0.308489i 0.000492794 + 0.000492794i
\(627\) 391.156 + 245.780i 0.623853 + 0.391993i
\(628\) 255.318 28.7674i 0.406558 0.0458080i
\(629\) −44.6672 + 195.700i −0.0710130 + 0.311128i
\(630\) −18.9330 + 11.8964i −0.0300523 + 0.0188831i
\(631\) −60.2526 + 48.0499i −0.0954875 + 0.0761487i −0.670070 0.742298i \(-0.733736\pi\)
0.574582 + 0.818447i \(0.305164\pi\)
\(632\) 14.5180 + 6.99151i 0.0229716 + 0.0110625i
\(633\) −529.255 + 254.876i −0.836106 + 0.402647i
\(634\) −10.4641 + 13.1215i −0.0165049 + 0.0206964i
\(635\) −1982.88 223.416i −3.12264 0.351837i
\(636\) −271.742 + 776.594i −0.427267 + 1.22106i
\(637\) 167.361i 0.262733i
\(638\) −5.55224 + 4.41714i −0.00870257 + 0.00692341i
\(639\) 1279.70 2.00267
\(640\) −69.4433 24.2993i −0.108505 0.0379676i
\(641\) 36.9672 328.093i 0.0576712 0.511846i −0.931356 0.364110i \(-0.881373\pi\)
0.989027 0.147735i \(-0.0471984\pi\)
\(642\) −8.26117 6.58806i −0.0128679 0.0102618i
\(643\) −351.977 730.888i −0.547399 1.13668i −0.972793 0.231677i \(-0.925579\pi\)
0.425394 0.905008i \(-0.360135\pi\)
\(644\) −70.8608 + 147.144i −0.110032 + 0.228485i
\(645\) −935.683 1173.31i −1.45067 1.81908i
\(646\) −1.38757 2.20830i −0.00214794 0.00341842i
\(647\) 643.781 + 146.939i 0.995024 + 0.227108i 0.688878 0.724877i \(-0.258103\pi\)
0.306146 + 0.951985i \(0.400961\pi\)
\(648\) −0.666113 5.91191i −0.00102795 0.00912332i
\(649\) 279.885 445.434i 0.431255 0.686339i
\(650\) −13.1712 + 13.1712i −0.0202634 + 0.0202634i
\(651\) 67.4052 15.3848i 0.103541 0.0236326i
\(652\) 389.668 + 1113.61i 0.597650 + 1.70799i
\(653\) 510.481 178.625i 0.781747 0.273545i 0.0902449 0.995920i \(-0.471235\pi\)
0.691502 + 0.722375i \(0.256949\pi\)
\(654\) −0.377124 1.65229i −0.000576642 0.00252643i
\(655\) 1285.83 + 1285.83i 1.96309 + 1.96309i
\(656\) −51.7587 32.5221i −0.0789004 0.0495764i
\(657\) 1175.36 132.431i 1.78898 0.201569i
\(658\) 0.390105 1.70916i 0.000592865 0.00259751i
\(659\) 67.5559 42.4482i 0.102513 0.0644131i −0.479800 0.877378i \(-0.659291\pi\)
0.582313 + 0.812965i \(0.302148\pi\)
\(660\) −959.870 + 765.471i −1.45435 + 1.15980i
\(661\) −174.005 83.7962i −0.263245 0.126772i 0.297606 0.954689i \(-0.403812\pi\)
−0.560851 + 0.827917i \(0.689526\pi\)
\(662\) 3.71354 1.78834i 0.00560957 0.00270143i
\(663\) 195.996 245.771i 0.295620 0.370696i
\(664\) 7.96109 + 0.897000i 0.0119896 + 0.00135090i
\(665\) 220.543 630.275i 0.331643 0.947782i
\(666\) 14.6591i 0.0220107i
\(667\) −183.375 88.5736i −0.274925 0.132794i
\(668\) −227.731 −0.340914
\(669\) 524.332 + 183.472i 0.783755 + 0.274248i
\(670\) 0.865900 7.68507i 0.00129239 0.0114703i
\(671\) 598.213 + 477.059i 0.891524 + 0.710967i
\(672\) −18.8532 39.1491i −0.0280554 0.0582575i
\(673\) 217.268 451.162i 0.322835 0.670374i −0.674880 0.737927i \(-0.735805\pi\)
0.997716 + 0.0675528i \(0.0215191\pi\)
\(674\) −4.25949 5.34124i −0.00631973 0.00792469i
\(675\) −564.017 897.628i −0.835581 1.32982i
\(676\) 184.733 + 42.1641i 0.273274 + 0.0623730i
\(677\) 32.4892 + 288.350i 0.0479900 + 0.425923i 0.994619 + 0.103598i \(0.0330357\pi\)
−0.946629 + 0.322325i \(0.895536\pi\)
\(678\) 4.68181 7.45106i 0.00690533 0.0109898i
\(679\) 469.552 469.552i 0.691535 0.691535i
\(680\) 13.5166 3.08509i 0.0198774 0.00453689i
\(681\) −386.738 1105.23i −0.567898 1.62296i
\(682\) −0.580438 + 0.203104i −0.000851082 + 0.000297807i
\(683\) −135.936 595.576i −0.199028 0.871999i −0.971517 0.236971i \(-0.923845\pi\)
0.772489 0.635029i \(-0.219012\pi\)
\(684\) −496.878 496.878i −0.726430 0.726430i
\(685\) 512.480 + 322.012i 0.748145 + 0.470091i
\(686\) −12.2106 + 1.37581i −0.0177997 + 0.00200555i
\(687\) 139.738 612.231i 0.203403 0.891166i
\(688\) 491.712 308.963i 0.714698 0.449075i
\(689\) −375.076 + 299.113i −0.544378 + 0.434127i
\(690\) 8.60552 + 4.14420i 0.0124718 + 0.00600609i
\(691\) 525.520 253.077i 0.760521 0.366248i −0.0130852 0.999914i \(-0.504165\pi\)
0.773606 + 0.633667i \(0.218451\pi\)
\(692\) 836.449 1048.87i 1.20874 1.51571i
\(693\) −574.157 64.6920i −0.828509 0.0933506i
\(694\) −1.07596 + 3.07490i −0.00155037 + 0.00443070i
\(695\) 945.431i 1.36033i
\(696\) 32.5610 15.6336i 0.0467831 0.0224621i
\(697\) 23.0448 0.0330629
\(698\) −9.11839 3.19066i −0.0130636 0.00457115i
\(699\) −158.889 + 1410.18i −0.227309 + 2.01742i
\(700\) 932.869 + 743.938i 1.33267 + 1.06277i
\(701\) −400.779 832.225i −0.571724 1.18720i −0.963642 0.267197i \(-0.913902\pi\)
0.391918 0.920000i \(-0.371812\pi\)
\(702\) −3.25509 + 6.75926i −0.00463688 + 0.00962857i
\(703\) 272.943 + 342.260i 0.388255 + 0.486857i
\(704\) −252.622 402.046i −0.358838 0.571088i
\(705\) 368.788 + 84.1734i 0.523103 + 0.119395i
\(706\) 1.18627 + 10.5284i 0.00168027 + 0.0149128i
\(707\) −394.262 + 627.465i −0.557655 + 0.887503i
\(708\) −946.742 + 946.742i −1.33721 + 1.33721i
\(709\) −776.868 + 177.315i −1.09572 + 0.250092i −0.731924 0.681386i \(-0.761378\pi\)
−0.363799 + 0.931478i \(0.618520\pi\)
\(710\) 9.09199 + 25.9834i 0.0128056 + 0.0365964i
\(711\) −772.131 + 270.180i −1.08598 + 0.380000i
\(712\) 6.05979 + 26.5497i 0.00851094 + 0.0372889i
\(713\) −12.4810 12.4810i −0.0175049 0.0175049i
\(714\) 4.62135 + 2.90378i 0.00647247 + 0.00406692i
\(715\) −711.362 + 80.1512i −0.994911 + 0.112100i
\(716\) 142.137 622.744i 0.198516 0.869754i
\(717\) −882.145 + 554.289i −1.23033 + 0.773067i
\(718\) 11.9453 9.52604i 0.0166369 0.0132675i
\(719\) 1063.27 + 512.044i 1.47882 + 0.712162i 0.987324 0.158718i \(-0.0507361\pi\)
0.491495 + 0.870880i \(0.336450\pi\)
\(720\) 1682.09 810.051i 2.33623 1.12507i
\(721\) 590.278 740.186i 0.818694 1.02661i
\(722\) 6.15826 + 0.693870i 0.00852945 + 0.000961038i
\(723\) −52.4858 + 149.996i −0.0725945 + 0.207463i
\(724\) 975.927i 1.34797i
\(725\) −929.003 + 1162.14i −1.28138 + 1.60295i
\(726\) −10.2421 −0.0141076
\(727\) −870.912 304.745i −1.19795 0.419182i −0.343721 0.939072i \(-0.611687\pi\)
−0.854233 + 0.519890i \(0.825973\pi\)
\(728\) 1.89109 16.7839i 0.00259765 0.0230548i
\(729\) 923.802 + 736.708i 1.26722 + 1.01057i
\(730\) 11.0395 + 22.9239i 0.0151227 + 0.0314025i
\(731\) −94.9894 + 197.247i −0.129944 + 0.269832i
\(732\) −1214.16 1522.51i −1.65869 2.07994i
\(733\) 503.422 + 801.192i 0.686797 + 1.09303i 0.990131 + 0.140147i \(0.0447574\pi\)
−0.303334 + 0.952884i \(0.598100\pi\)
\(734\) −3.14053 0.716806i −0.00427866 0.000976575i
\(735\) −70.1997 623.039i −0.0955098 0.847673i
\(736\) −5.90191 + 9.39283i −0.00801890 + 0.0127620i
\(737\) 141.308 141.308i 0.191734 0.191734i
\(738\) −1.64073 + 0.374485i −0.00222321 + 0.000507433i
\(739\) −400.530 1144.65i −0.541990 1.54892i −0.810559 0.585657i \(-0.800836\pi\)
0.268569 0.963260i \(-0.413449\pi\)
\(740\) −1098.13 + 384.252i −1.48396 + 0.519259i
\(741\) −152.551 668.369i −0.205872 0.901982i
\(742\) −5.88979 5.88979i −0.00793772 0.00793772i
\(743\) 670.026 + 421.005i 0.901785 + 0.566629i 0.901216 0.433371i \(-0.142676\pi\)
0.000569123 1.00000i \(0.499819\pi\)
\(744\) 3.11095 0.350519i 0.00418138 0.000471128i
\(745\) −106.214 + 465.354i −0.142569 + 0.624636i
\(746\) −9.20693 + 5.78510i −0.0123417 + 0.00775482i
\(747\) −317.980 + 253.581i −0.425676 + 0.339465i
\(748\) 161.366 + 77.7096i 0.215730 + 0.103890i
\(749\) −355.579 + 171.238i −0.474738 + 0.228622i
\(750\) 22.3071 27.9722i 0.0297428 0.0372963i
\(751\) −73.9585 8.33312i −0.0984800 0.0110960i 0.0625869 0.998040i \(-0.480065\pi\)
−0.161067 + 0.986943i \(0.551494\pi\)
\(752\) −48.3453 + 138.163i −0.0642890 + 0.183727i
\(753\) 246.905i 0.327895i
\(754\) 10.4614 + 1.19112i 0.0138745 + 0.00157974i
\(755\) 1671.64 2.21409
\(756\) 453.602 + 158.722i 0.600002 + 0.209950i
\(757\) −21.2663 + 188.743i −0.0280928 + 0.249331i 0.971815 + 0.235745i \(0.0757531\pi\)
−0.999908 +