Properties

Label 29.3.f.a.8.2
Level 29
Weight 3
Character 29.8
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 8.2
Character \(\chi\) = 29.8
Dual form 29.3.f.a.11.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-2.20133 - 0.770280i) q^{2}\) \(+(-0.552425 + 4.90291i) q^{3}\) \(+(1.12521 + 0.897324i) q^{4}\) \(+(2.64264 + 5.48750i) q^{5}\) \(+(4.99268 - 10.3674i) q^{6}\) \(+(-3.22936 - 4.04949i) q^{7}\) \(+(3.17747 + 5.05691i) q^{8}\) \(+(-14.9590 - 3.41428i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-2.20133 - 0.770280i) q^{2}\) \(+(-0.552425 + 4.90291i) q^{3}\) \(+(1.12521 + 0.897324i) q^{4}\) \(+(2.64264 + 5.48750i) q^{5}\) \(+(4.99268 - 10.3674i) q^{6}\) \(+(-3.22936 - 4.04949i) q^{7}\) \(+(3.17747 + 5.05691i) q^{8}\) \(+(-14.9590 - 3.41428i) q^{9}\) \(+(-1.59042 - 14.1154i) q^{10}\) \(+(3.16517 - 5.03734i) q^{11}\) \(+(-5.02109 + 5.02109i) q^{12}\) \(+(14.6839 - 3.35151i) q^{13}\) \(+(3.98966 + 11.4018i) q^{14}\) \(+(-28.3645 + 9.92518i) q^{15}\) \(+(-4.38044 - 19.1919i) q^{16}\) \(+(22.0898 + 22.0898i) q^{17}\) \(+(30.2997 + 19.0386i) q^{18}\) \(+(-0.835449 + 0.0941325i) q^{19}\) \(+(-1.95054 + 8.54589i) q^{20}\) \(+(21.6383 - 13.5962i) q^{21}\) \(+(-10.8478 + 8.65079i) q^{22}\) \(+(-21.1449 - 10.1828i) q^{23}\) \(+(-26.5489 + 12.7853i) q^{24}\) \(+(-7.54184 + 9.45717i) q^{25}\) \(+(-34.9058 - 3.93294i) q^{26}\) \(+(10.3374 - 29.5427i) q^{27}\) \(-7.45431i q^{28}\) \(+(-18.7362 - 22.1350i) q^{29}\) \(+70.0850 q^{30}\) \(+(21.3525 + 7.47156i) q^{31}\) \(+(-2.46561 + 21.8829i) q^{32}\) \(+(22.9491 + 18.3013i) q^{33}\) \(+(-31.6117 - 65.6424i) q^{34}\) \(+(13.6875 - 28.4225i) q^{35}\) \(+(-13.7682 - 17.2648i) q^{36}\) \(+(4.25720 + 6.77529i) q^{37}\) \(+(1.91161 + 0.436313i) q^{38}\) \(+(8.32037 + 73.8453i) q^{39}\) \(+(-19.3529 + 30.8000i) q^{40}\) \(+(-8.24028 + 8.24028i) q^{41}\) \(+(-58.1059 + 13.2623i) q^{42}\) \(+(-3.09691 - 8.85047i) q^{43}\) \(+(8.08161 - 2.82788i) q^{44}\) \(+(-20.7952 - 91.1099i) q^{45}\) \(+(38.7033 + 38.7033i) q^{46}\) \(+(-22.1022 - 13.8877i) q^{47}\) \(+(96.5161 - 10.8748i) q^{48}\) \(+(4.93392 - 21.6169i) q^{49}\) \(+(23.8868 - 15.0091i) q^{50}\) \(+(-120.507 + 96.1013i) q^{51}\) \(+(19.5299 + 9.40509i) q^{52}\) \(+(47.7265 - 22.9839i) q^{53}\) \(+(-45.5123 + 57.0706i) q^{54}\) \(+(36.0068 + 4.05699i) q^{55}\) \(+(10.2167 - 29.1977i) q^{56}\) \(-4.14813i q^{57}\) \(+(24.1944 + 63.1585i) q^{58}\) \(+17.4148 q^{59}\) \(+(-40.8221 - 14.2843i) q^{60}\) \(+(6.87260 - 60.9960i) q^{61}\) \(+(-41.2488 - 32.8948i) q^{62}\) \(+(34.4818 + 71.6021i) q^{63}\) \(+(-11.8813 + 24.6717i) q^{64}\) \(+(57.1957 + 71.7211i) q^{65}\) \(+(-36.4214 - 57.9644i) q^{66}\) \(+(-26.2055 - 5.98124i) q^{67}\) \(+(5.03393 + 44.6774i) q^{68}\) \(+(61.6065 - 98.0462i) q^{69}\) \(+(-52.0241 + 52.0241i) q^{70}\) \(+(-4.93086 + 1.12544i) q^{71}\) \(+(-30.2659 - 86.4949i) q^{72}\) \(+(-53.0793 + 18.5732i) q^{73}\) \(+(-4.15264 - 18.1939i) q^{74}\) \(+(-42.2013 - 42.2013i) q^{75}\) \(+(-1.02452 - 0.643750i) q^{76}\) \(+(-30.6201 + 3.45006i) q^{77}\) \(+(38.5656 - 168.967i) q^{78}\) \(+(74.2026 - 46.6246i) q^{79}\) \(+(93.7398 - 74.7550i) q^{80}\) \(+(14.7171 + 7.08739i) q^{81}\) \(+(24.4869 - 11.7923i) q^{82}\) \(+(-48.3929 + 60.6827i) q^{83}\) \(+(36.5478 + 4.11795i) q^{84}\) \(+(-62.8424 + 179.593i) q^{85}\) \(+21.8683i q^{86}\) \(+(118.876 - 79.6337i) q^{87}\) \(+35.5306 q^{88}\) \(+(-138.036 - 48.3009i) q^{89}\) \(+(-24.4029 + 216.581i) q^{90}\) \(+(-60.9916 - 48.6392i) q^{91}\) \(+(-14.6551 - 30.4317i) q^{92}\) \(+(-48.4280 + 100.562i) q^{93}\) \(+(37.9568 + 47.5963i) q^{94}\) \(+(-2.72434 - 4.33577i) q^{95}\) \(+(-105.928 - 24.1773i) q^{96}\) \(+(0.115126 + 1.02177i) q^{97}\) \(+(-27.5123 + 43.7855i) q^{98}\) \(+(-64.5465 + 64.5465i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.20133 0.770280i −1.10067 0.385140i −0.282003 0.959414i \(-0.590999\pi\)
−0.818663 + 0.574274i \(0.805285\pi\)
\(3\) −0.552425 + 4.90291i −0.184142 + 1.63430i 0.473375 + 0.880861i \(0.343036\pi\)
−0.657516 + 0.753440i \(0.728393\pi\)
\(4\) 1.12521 + 0.897324i 0.281302 + 0.224331i
\(5\) 2.64264 + 5.48750i 0.528528 + 1.09750i 0.978840 + 0.204628i \(0.0655985\pi\)
−0.450312 + 0.892871i \(0.648687\pi\)
\(6\) 4.99268 10.3674i 0.832113 1.72790i
\(7\) −3.22936 4.04949i −0.461337 0.578499i 0.495689 0.868500i \(-0.334916\pi\)
−0.957026 + 0.290001i \(0.906344\pi\)
\(8\) 3.17747 + 5.05691i 0.397184 + 0.632114i
\(9\) −14.9590 3.41428i −1.66211 0.379365i
\(10\) −1.59042 14.1154i −0.159042 1.41154i
\(11\) 3.16517 5.03734i 0.287743 0.457940i −0.671306 0.741180i \(-0.734266\pi\)
0.959049 + 0.283240i \(0.0914093\pi\)
\(12\) −5.02109 + 5.02109i −0.418424 + 0.418424i
\(13\) 14.6839 3.35151i 1.12953 0.257808i 0.383385 0.923589i \(-0.374758\pi\)
0.746148 + 0.665780i \(0.231901\pi\)
\(14\) 3.98966 + 11.4018i 0.284976 + 0.814414i
\(15\) −28.3645 + 9.92518i −1.89097 + 0.661679i
\(16\) −4.38044 19.1919i −0.273777 1.19950i
\(17\) 22.0898 + 22.0898i 1.29940 + 1.29940i 0.928787 + 0.370615i \(0.120853\pi\)
0.370615 + 0.928787i \(0.379147\pi\)
\(18\) 30.2997 + 19.0386i 1.68332 + 1.05770i
\(19\) −0.835449 + 0.0941325i −0.0439710 + 0.00495434i −0.133923 0.990992i \(-0.542757\pi\)
0.0899516 + 0.995946i \(0.471329\pi\)
\(20\) −1.95054 + 8.54589i −0.0975272 + 0.427294i
\(21\) 21.6383 13.5962i 1.03039 0.647439i
\(22\) −10.8478 + 8.65079i −0.493080 + 0.393218i
\(23\) −21.1449 10.1828i −0.919344 0.442733i −0.0865068 0.996251i \(-0.527570\pi\)
−0.832837 + 0.553519i \(0.813285\pi\)
\(24\) −26.5489 + 12.7853i −1.10620 + 0.532720i
\(25\) −7.54184 + 9.45717i −0.301674 + 0.378287i
\(26\) −34.9058 3.93294i −1.34253 0.151267i
\(27\) 10.3374 29.5427i 0.382868 1.09417i
\(28\) 7.45431i 0.266225i
\(29\) −18.7362 22.1350i −0.646074 0.763274i
\(30\) 70.0850 2.33617
\(31\) 21.3525 + 7.47156i 0.688790 + 0.241018i 0.651904 0.758301i \(-0.273970\pi\)
0.0368860 + 0.999319i \(0.488256\pi\)
\(32\) −2.46561 + 21.8829i −0.0770504 + 0.683841i
\(33\) 22.9491 + 18.3013i 0.695427 + 0.554584i
\(34\) −31.6117 65.6424i −0.929756 1.93066i
\(35\) 13.6875 28.4225i 0.391073 0.812070i
\(36\) −13.7682 17.2648i −0.382451 0.479578i
\(37\) 4.25720 + 6.77529i 0.115059 + 0.183116i 0.899289 0.437355i \(-0.144085\pi\)
−0.784230 + 0.620470i \(0.786942\pi\)
\(38\) 1.91161 + 0.436313i 0.0503055 + 0.0114819i
\(39\) 8.32037 + 73.8453i 0.213343 + 1.89347i
\(40\) −19.3529 + 30.8000i −0.483822 + 0.769999i
\(41\) −8.24028 + 8.24028i −0.200982 + 0.200982i −0.800421 0.599438i \(-0.795391\pi\)
0.599438 + 0.800421i \(0.295391\pi\)
\(42\) −58.1059 + 13.2623i −1.38347 + 0.315769i
\(43\) −3.09691 8.85047i −0.0720212 0.205825i 0.902246 0.431222i \(-0.141918\pi\)
−0.974267 + 0.225398i \(0.927632\pi\)
\(44\) 8.08161 2.82788i 0.183673 0.0642699i
\(45\) −20.7952 91.1099i −0.462117 2.02467i
\(46\) 38.7033 + 38.7033i 0.841377 + 0.841377i
\(47\) −22.1022 13.8877i −0.470259 0.295483i 0.275978 0.961164i \(-0.410998\pi\)
−0.746237 + 0.665681i \(0.768141\pi\)
\(48\) 96.5161 10.8748i 2.01075 0.226557i
\(49\) 4.93392 21.6169i 0.100692 0.441162i
\(50\) 23.8868 15.0091i 0.477735 0.300181i
\(51\) −120.507 + 96.1013i −2.36289 + 1.88434i
\(52\) 19.5299 + 9.40509i 0.375574 + 0.180867i
\(53\) 47.7265 22.9839i 0.900501 0.433658i 0.0744311 0.997226i \(-0.476286\pi\)
0.826070 + 0.563568i \(0.190572\pi\)
\(54\) −45.5123 + 57.0706i −0.842821 + 1.05686i
\(55\) 36.0068 + 4.05699i 0.654669 + 0.0737635i
\(56\) 10.2167 29.1977i 0.182442 0.521388i
\(57\) 4.14813i 0.0727742i
\(58\) 24.1944 + 63.1585i 0.417145 + 1.08894i
\(59\) 17.4148 0.295166 0.147583 0.989050i \(-0.452851\pi\)
0.147583 + 0.989050i \(0.452851\pi\)
\(60\) −40.8221 14.2843i −0.680369 0.238071i
\(61\) 6.87260 60.9960i 0.112666 0.999935i −0.802443 0.596728i \(-0.796467\pi\)
0.915109 0.403207i \(-0.132104\pi\)
\(62\) −41.2488 32.8948i −0.665303 0.530561i
\(63\) 34.4818 + 71.6021i 0.547330 + 1.13654i
\(64\) −11.8813 + 24.6717i −0.185645 + 0.385496i
\(65\) 57.1957 + 71.7211i 0.879934 + 1.10340i
\(66\) −36.4214 57.9644i −0.551840 0.878249i
\(67\) −26.2055 5.98124i −0.391127 0.0892722i 0.0224346 0.999748i \(-0.492858\pi\)
−0.413562 + 0.910476i \(0.635715\pi\)
\(68\) 5.03393 + 44.6774i 0.0740285 + 0.657021i
\(69\) 61.6065 98.0462i 0.892848 1.42096i
\(70\) −52.0241 + 52.0241i −0.743201 + 0.743201i
\(71\) −4.93086 + 1.12544i −0.0694487 + 0.0158512i −0.257104 0.966384i \(-0.582768\pi\)
0.187655 + 0.982235i \(0.439911\pi\)
\(72\) −30.2659 86.4949i −0.420359 1.20132i
\(73\) −53.0793 + 18.5732i −0.727113 + 0.254428i −0.668353 0.743844i \(-0.733000\pi\)
−0.0587602 + 0.998272i \(0.518715\pi\)
\(74\) −4.15264 18.1939i −0.0561167 0.245863i
\(75\) −42.2013 42.2013i −0.562684 0.562684i
\(76\) −1.02452 0.643750i −0.0134806 0.00847040i
\(77\) −30.6201 + 3.45006i −0.397664 + 0.0448060i
\(78\) 38.5656 168.967i 0.494431 2.16625i
\(79\) 74.2026 46.6246i 0.939274 0.590185i 0.0269421 0.999637i \(-0.491423\pi\)
0.912332 + 0.409452i \(0.134280\pi\)
\(80\) 93.7398 74.7550i 1.17175 0.934438i
\(81\) 14.7171 + 7.08739i 0.181693 + 0.0874986i
\(82\) 24.4869 11.7923i 0.298621 0.143808i
\(83\) −48.3929 + 60.6827i −0.583047 + 0.731117i −0.982629 0.185580i \(-0.940584\pi\)
0.399583 + 0.916697i \(0.369155\pi\)
\(84\) 36.5478 + 4.11795i 0.435093 + 0.0490232i
\(85\) −62.8424 + 179.593i −0.739322 + 2.11286i
\(86\) 21.8683i 0.254283i
\(87\) 118.876 79.6337i 1.36639 0.915330i
\(88\) 35.5306 0.403757
\(89\) −138.036 48.3009i −1.55097 0.542707i −0.587197 0.809444i \(-0.699769\pi\)
−0.963769 + 0.266737i \(0.914054\pi\)
\(90\) −24.4029 + 216.581i −0.271143 + 2.40646i
\(91\) −60.9916 48.6392i −0.670237 0.534497i
\(92\) −14.6551 30.4317i −0.159295 0.330779i
\(93\) −48.4280 + 100.562i −0.520731 + 1.08131i
\(94\) 37.9568 + 47.5963i 0.403796 + 0.506344i
\(95\) −2.72434 4.33577i −0.0286773 0.0456397i
\(96\) −105.928 24.1773i −1.10341 0.251847i
\(97\) 0.115126 + 1.02177i 0.00118686 + 0.0105337i 0.994292 0.106696i \(-0.0340272\pi\)
−0.993105 + 0.117230i \(0.962599\pi\)
\(98\) −27.5123 + 43.7855i −0.280737 + 0.446791i
\(99\) −64.5465 + 64.5465i −0.651985 + 0.651985i
\(100\) −16.9723 + 3.87382i −0.169723 + 0.0387382i
\(101\) 43.9053 + 125.474i 0.434706 + 1.24232i 0.928040 + 0.372479i \(0.121492\pi\)
−0.493334 + 0.869840i \(0.664222\pi\)
\(102\) 339.301 118.727i 3.32649 1.16399i
\(103\) 1.55354 + 6.80648i 0.0150829 + 0.0660824i 0.981909 0.189352i \(-0.0606387\pi\)
−0.966826 + 0.255434i \(0.917782\pi\)
\(104\) 63.6060 + 63.6060i 0.611596 + 0.611596i
\(105\) 131.791 + 82.8100i 1.25516 + 0.788666i
\(106\) −122.766 + 13.8324i −1.15817 + 0.130494i
\(107\) 14.9676 65.5774i 0.139884 0.612873i −0.855574 0.517680i \(-0.826796\pi\)
0.995459 0.0951935i \(-0.0303470\pi\)
\(108\) 38.1412 23.9657i 0.353159 0.221905i
\(109\) 139.358 111.134i 1.27851 1.01958i 0.280291 0.959915i \(-0.409569\pi\)
0.998219 0.0596621i \(-0.0190023\pi\)
\(110\) −76.1379 36.6661i −0.692163 0.333328i
\(111\) −35.5704 + 17.1298i −0.320454 + 0.154322i
\(112\) −63.5716 + 79.7163i −0.567604 + 0.711752i
\(113\) 14.1294 + 1.59200i 0.125039 + 0.0140885i 0.174262 0.984699i \(-0.444246\pi\)
−0.0492231 + 0.998788i \(0.515675\pi\)
\(114\) −3.19522 + 9.13141i −0.0280282 + 0.0801001i
\(115\) 142.942i 1.24298i
\(116\) −1.21986 41.7189i −0.0105161 0.359645i
\(117\) −231.099 −1.97521
\(118\) −38.3357 13.4143i −0.324879 0.113680i
\(119\) 18.1165 160.789i 0.152240 1.35116i
\(120\) −140.318 111.900i −1.16932 0.932501i
\(121\) 37.1435 + 77.1292i 0.306971 + 0.637431i
\(122\) −62.1129 + 128.979i −0.509122 + 1.05720i
\(123\) −35.8492 44.9534i −0.291457 0.365475i
\(124\) 17.3216 + 27.5672i 0.139690 + 0.222316i
\(125\) 76.6224 + 17.4886i 0.612979 + 0.139908i
\(126\) −20.7522 184.181i −0.164700 1.46175i
\(127\) −56.8872 + 90.5354i −0.447931 + 0.712877i −0.992010 0.126156i \(-0.959736\pi\)
0.544080 + 0.839033i \(0.316879\pi\)
\(128\) 107.445 107.445i 0.839411 0.839411i
\(129\) 45.1038 10.2947i 0.349642 0.0798035i
\(130\) −70.6614 201.939i −0.543550 1.55338i
\(131\) −15.0564 + 5.26846i −0.114934 + 0.0402172i −0.387133 0.922024i \(-0.626535\pi\)
0.272199 + 0.962241i \(0.412249\pi\)
\(132\) 9.40033 + 41.1855i 0.0712146 + 0.312012i
\(133\) 3.07916 + 3.07916i 0.0231516 + 0.0231516i
\(134\) 53.0798 + 33.3523i 0.396118 + 0.248897i
\(135\) 189.434 21.3441i 1.40321 0.158104i
\(136\) −41.5166 + 181.896i −0.305269 + 1.33747i
\(137\) −120.235 + 75.5488i −0.877630 + 0.551451i −0.893824 0.448417i \(-0.851988\pi\)
0.0161943 + 0.999869i \(0.494845\pi\)
\(138\) −211.139 + 168.378i −1.53000 + 1.22013i
\(139\) 199.013 + 95.8394i 1.43174 + 0.689492i 0.979321 0.202311i \(-0.0648453\pi\)
0.452423 + 0.891803i \(0.350560\pi\)
\(140\) 40.9055 19.6991i 0.292182 0.140708i
\(141\) 80.2999 100.693i 0.569503 0.714134i
\(142\) 11.7214 + 1.32068i 0.0825448 + 0.00930057i
\(143\) 29.5944 84.5760i 0.206954 0.591440i
\(144\) 302.047i 2.09755i
\(145\) 71.9526 161.309i 0.496225 1.11248i
\(146\) 131.152 0.898299
\(147\) 103.260 + 36.1323i 0.702449 + 0.245798i
\(148\) −1.28940 + 11.4437i −0.00871213 + 0.0773223i
\(149\) −122.156 97.4158i −0.819836 0.653797i 0.121003 0.992652i \(-0.461389\pi\)
−0.940839 + 0.338855i \(0.889960\pi\)
\(150\) 60.3923 + 125.406i 0.402615 + 0.836040i
\(151\) 81.9702 170.213i 0.542849 1.12724i −0.431483 0.902121i \(-0.642009\pi\)
0.974332 0.225117i \(-0.0722764\pi\)
\(152\) −3.13064 3.92569i −0.0205963 0.0258269i
\(153\) −255.020 405.862i −1.66680 2.65269i
\(154\) 70.0626 + 15.9913i 0.454952 + 0.103840i
\(155\) 15.4268 + 136.916i 0.0995276 + 0.883332i
\(156\) −56.9011 + 90.5575i −0.364750 + 0.580497i
\(157\) −108.735 + 108.735i −0.692577 + 0.692577i −0.962798 0.270221i \(-0.912903\pi\)
0.270221 + 0.962798i \(0.412903\pi\)
\(158\) −199.259 + 45.4795i −1.26113 + 0.287845i
\(159\) 86.3225 + 246.696i 0.542909 + 1.55154i
\(160\) −126.598 + 44.2986i −0.791239 + 0.276866i
\(161\) 27.0492 + 118.510i 0.168007 + 0.736088i
\(162\) −26.9380 26.9380i −0.166284 0.166284i
\(163\) −194.774 122.385i −1.19493 0.750826i −0.220474 0.975393i \(-0.570760\pi\)
−0.974459 + 0.224567i \(0.927903\pi\)
\(164\) −16.6662 + 1.87783i −0.101623 + 0.0114502i
\(165\) −39.7821 + 174.297i −0.241104 + 1.05634i
\(166\) 153.271 96.3068i 0.923322 0.580162i
\(167\) −96.4643 + 76.9277i −0.577631 + 0.460645i −0.868204 0.496208i \(-0.834725\pi\)
0.290573 + 0.956853i \(0.406154\pi\)
\(168\) 137.510 + 66.2212i 0.818511 + 0.394174i
\(169\) 52.1212 25.1002i 0.308409 0.148522i
\(170\) 276.674 346.938i 1.62749 2.04081i
\(171\) 12.8188 + 1.44434i 0.0749640 + 0.00844641i
\(172\) 4.45707 12.7376i 0.0259132 0.0740556i
\(173\) 32.3262i 0.186857i 0.995626 + 0.0934283i \(0.0297826\pi\)
−0.995626 + 0.0934283i \(0.970217\pi\)
\(174\) −323.026 + 83.7326i −1.85647 + 0.481222i
\(175\) 62.6521 0.358012
\(176\) −110.541 38.6800i −0.628075 0.219773i
\(177\) −9.62036 + 85.3830i −0.0543523 + 0.482390i
\(178\) 266.658 + 212.653i 1.49808 + 1.19468i
\(179\) −116.664 242.255i −0.651754 1.35338i −0.920717 0.390231i \(-0.872395\pi\)
0.268963 0.963151i \(-0.413319\pi\)
\(180\) 58.3562 121.178i 0.324201 0.673210i
\(181\) −66.4061 83.2706i −0.366884 0.460058i 0.563784 0.825922i \(-0.309345\pi\)
−0.930668 + 0.365864i \(0.880774\pi\)
\(182\) 96.7970 + 154.052i 0.531852 + 0.846437i
\(183\) 295.261 + 67.3914i 1.61345 + 0.368259i
\(184\) −15.6935 139.284i −0.0852908 0.756976i
\(185\) −25.9291 + 41.2660i −0.140158 + 0.223059i
\(186\) 184.067 184.067i 0.989607 0.989607i
\(187\) 181.192 41.3559i 0.968941 0.221154i
\(188\) −12.4078 35.4594i −0.0659988 0.188614i
\(189\) −153.016 + 53.5427i −0.809610 + 0.283295i
\(190\) 2.65743 + 11.6430i 0.0139865 + 0.0612788i
\(191\) 72.7058 + 72.7058i 0.380659 + 0.380659i 0.871339 0.490681i \(-0.163252\pi\)
−0.490681 + 0.871339i \(0.663252\pi\)
\(192\) −114.400 71.8820i −0.595831 0.374386i
\(193\) −190.040 + 21.4124i −0.984665 + 0.110945i −0.589589 0.807703i \(-0.700710\pi\)
−0.395076 + 0.918649i \(0.629282\pi\)
\(194\) 0.533617 2.33793i 0.00275061 0.0120512i
\(195\) −383.238 + 240.805i −1.96532 + 1.23490i
\(196\) 24.9491 19.8962i 0.127291 0.101511i
\(197\) 46.6020 + 22.4423i 0.236558 + 0.113920i 0.548408 0.836211i \(-0.315234\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(198\) 191.807 92.3695i 0.968724 0.466513i
\(199\) 0.321680 0.403373i 0.00161648 0.00202700i −0.781023 0.624503i \(-0.785302\pi\)
0.782639 + 0.622476i \(0.213873\pi\)
\(200\) −71.7881 8.08857i −0.358940 0.0404429i
\(201\) 43.8020 125.179i 0.217920 0.622781i
\(202\) 310.030i 1.53480i
\(203\) −29.1295 + 147.354i −0.143495 + 0.725880i
\(204\) −221.830 −1.08740
\(205\) −66.9946 23.4424i −0.326803 0.114353i
\(206\) 1.82305 16.1800i 0.00884974 0.0785437i
\(207\) 281.538 + 224.519i 1.36009 + 1.08463i
\(208\) −128.644 267.132i −0.618480 1.28429i
\(209\) −2.17016 + 4.50639i −0.0103835 + 0.0215617i
\(210\) −226.330 283.808i −1.07776 1.35147i
\(211\) 81.6700 + 129.977i 0.387062 + 0.616005i 0.982249 0.187582i \(-0.0600650\pi\)
−0.595187 + 0.803587i \(0.702922\pi\)
\(212\) 74.3264 + 16.9645i 0.350596 + 0.0800213i
\(213\) −2.79398 24.7973i −0.0131173 0.116419i
\(214\) −83.4617 + 132.829i −0.390008 + 0.620694i
\(215\) 40.3829 40.3829i 0.187827 0.187827i
\(216\) 182.242 41.5955i 0.843713 0.192572i
\(217\) −38.6989 110.595i −0.178336 0.509655i
\(218\) −392.376 + 137.298i −1.79989 + 0.629810i
\(219\) −61.7405 270.503i −0.281920 1.23517i
\(220\) 36.8747 + 36.8747i 0.167612 + 0.167612i
\(221\) 398.399 + 250.331i 1.80271 + 1.13272i
\(222\) 91.4970 10.3092i 0.412149 0.0464380i
\(223\) −17.7211 + 77.6414i −0.0794670 + 0.348168i −0.998993 0.0448610i \(-0.985716\pi\)
0.919526 + 0.393029i \(0.128573\pi\)
\(224\) 96.5770 60.6834i 0.431148 0.270908i
\(225\) 145.108 115.719i 0.644922 0.514308i
\(226\) −29.8773 14.3881i −0.132200 0.0636643i
\(227\) −379.261 + 182.642i −1.67075 + 0.804592i −0.672855 + 0.739774i \(0.734932\pi\)
−0.997897 + 0.0648180i \(0.979353\pi\)
\(228\) 3.72222 4.66751i 0.0163255 0.0204716i
\(229\) −196.110 22.0963i −0.856378 0.0964906i −0.327152 0.944972i \(-0.606089\pi\)
−0.529226 + 0.848481i \(0.677518\pi\)
\(230\) −110.105 + 314.663i −0.478719 + 1.36810i
\(231\) 152.034i 0.658154i
\(232\) 52.4010 165.080i 0.225866 0.711553i
\(233\) 122.019 0.523687 0.261843 0.965110i \(-0.415670\pi\)
0.261843 + 0.965110i \(0.415670\pi\)
\(234\) 508.726 + 178.011i 2.17404 + 0.760730i
\(235\) 17.8007 157.986i 0.0757477 0.672280i
\(236\) 19.5953 + 15.6267i 0.0830308 + 0.0662149i
\(237\) 187.605 + 389.565i 0.791581 + 1.64373i
\(238\) −163.733 + 339.994i −0.687952 + 1.42855i
\(239\) 191.297 + 239.879i 0.800405 + 1.00368i 0.999718 + 0.0237404i \(0.00755751\pi\)
−0.199313 + 0.979936i \(0.563871\pi\)
\(240\) 314.733 + 500.894i 1.31139 + 2.08706i
\(241\) −133.954 30.5741i −0.555826 0.126864i −0.0646245 0.997910i \(-0.520585\pi\)
−0.491201 + 0.871046i \(0.663442\pi\)
\(242\) −22.3541 198.398i −0.0923722 0.819826i
\(243\) 106.990 170.274i 0.440289 0.700717i
\(244\) 62.4663 62.4663i 0.256010 0.256010i
\(245\) 131.661 30.0508i 0.537393 0.122656i
\(246\) 44.2892 + 126.571i 0.180038 + 0.514518i
\(247\) −11.9522 + 4.18225i −0.0483894 + 0.0169322i
\(248\) 30.0639 + 131.718i 0.121225 + 0.531123i
\(249\) −270.788 270.788i −1.08750 1.08750i
\(250\) −155.200 97.5188i −0.620801 0.390075i
\(251\) −330.590 + 37.2486i −1.31709 + 0.148401i −0.742393 0.669964i \(-0.766309\pi\)
−0.574699 + 0.818365i \(0.694881\pi\)
\(252\) −25.4511 + 111.509i −0.100997 + 0.442495i
\(253\) −118.222 + 74.2836i −0.467279 + 0.293611i
\(254\) 194.965 155.480i 0.767580 0.612124i
\(255\) −845.813 407.322i −3.31691 1.59734i
\(256\) −220.597 + 106.234i −0.861707 + 0.414976i
\(257\) 44.4882 55.7865i 0.173106 0.217068i −0.687709 0.725987i \(-0.741383\pi\)
0.860814 + 0.508919i \(0.169955\pi\)
\(258\) −107.218 12.0806i −0.415575 0.0468240i
\(259\) 13.6885 39.1193i 0.0528512 0.151040i
\(260\) 132.024i 0.507786i
\(261\) 204.698 + 395.086i 0.784285 + 1.51374i
\(262\) 37.2023 0.141993
\(263\) 220.348 + 77.1032i 0.837826 + 0.293168i 0.714882 0.699246i \(-0.246481\pi\)
0.122944 + 0.992414i \(0.460766\pi\)
\(264\) −19.6280 + 174.203i −0.0743485 + 0.659861i
\(265\) 252.248 + 201.161i 0.951880 + 0.759099i
\(266\) −4.40644 9.15006i −0.0165656 0.0343987i
\(267\) 313.069 650.095i 1.17254 2.43481i
\(268\) −24.1196 30.2450i −0.0899984 0.112854i
\(269\) −176.731 281.266i −0.656993 1.04560i −0.994547 0.104293i \(-0.966742\pi\)
0.337553 0.941306i \(-0.390401\pi\)
\(270\) −433.448 98.9316i −1.60536 0.366413i
\(271\) 14.5758 + 129.364i 0.0537851 + 0.477356i 0.991515 + 0.129991i \(0.0414949\pi\)
−0.937730 + 0.347365i \(0.887077\pi\)
\(272\) 327.184 520.710i 1.20288 1.91437i
\(273\) 272.167 272.167i 0.996947 0.996947i
\(274\) 322.872 73.6933i 1.17836 0.268954i
\(275\) 23.7678 + 67.9244i 0.0864282 + 0.246998i
\(276\) 157.299 55.0415i 0.569926 0.199426i
\(277\) 10.5344 + 46.1541i 0.0380303 + 0.166621i 0.990377 0.138396i \(-0.0441948\pi\)
−0.952347 + 0.305018i \(0.901338\pi\)
\(278\) −364.270 364.270i −1.31032 1.31032i
\(279\) −293.901 184.670i −1.05341 0.661900i
\(280\) 187.222 21.0948i 0.668649 0.0753386i
\(281\) 15.5090 67.9492i 0.0551921 0.241812i −0.939806 0.341709i \(-0.888994\pi\)
0.994998 + 0.0998970i \(0.0318513\pi\)
\(282\) −254.328 + 159.805i −0.901874 + 0.566685i
\(283\) 430.103 342.995i 1.51980 1.21200i 0.613253 0.789887i \(-0.289861\pi\)
0.906544 0.422111i \(-0.138711\pi\)
\(284\) −6.55813 3.15823i −0.0230920 0.0111205i
\(285\) 22.7629 10.9620i 0.0798697 0.0384632i
\(286\) −130.294 + 163.384i −0.455574 + 0.571272i
\(287\) 59.9798 + 6.75810i 0.208989 + 0.0235474i
\(288\) 111.597 318.927i 0.387491 1.10739i
\(289\) 686.921i 2.37689i
\(290\) −282.645 + 299.672i −0.974638 + 1.03335i
\(291\) −5.07323 −0.0174338
\(292\) −76.3915 26.7305i −0.261615 0.0915430i
\(293\) 35.7040 316.882i 0.121857 1.08151i −0.772768 0.634689i \(-0.781128\pi\)
0.894624 0.446819i \(-0.147443\pi\)
\(294\) −199.478 159.078i −0.678496 0.541082i
\(295\) 46.0210 + 95.5636i 0.156003 + 0.323944i
\(296\) −20.7349 + 43.0566i −0.0700505 + 0.145461i
\(297\) −116.097 145.581i −0.390899 0.490171i
\(298\) 193.868 + 308.538i 0.650562 + 1.03536i
\(299\) −344.618 78.6568i −1.15257 0.263066i
\(300\) −9.61704 85.3536i −0.0320568 0.284512i
\(301\) −25.8389 + 41.1223i −0.0858434 + 0.136619i
\(302\) −311.555 + 311.555i −1.03164 + 1.03164i
\(303\) −639.443 + 145.949i −2.11037 + 0.481679i
\(304\) 5.46622 + 15.6216i 0.0179810 + 0.0513867i
\(305\) 352.877 123.477i 1.15698 0.404843i
\(306\) 248.756 + 1089.87i 0.812929 + 3.56168i
\(307\) 361.966 + 361.966i 1.17904 + 1.17904i 0.979989 + 0.199053i \(0.0637867\pi\)
0.199053 + 0.979989i \(0.436213\pi\)
\(308\) −37.5499 23.5942i −0.121915 0.0766044i
\(309\) −34.2298 + 3.85677i −0.110776 + 0.0124814i
\(310\) 71.5045 313.282i 0.230660 1.01059i
\(311\) 409.769 257.475i 1.31758 0.827893i 0.324567 0.945863i \(-0.394782\pi\)
0.993017 + 0.117970i \(0.0376387\pi\)
\(312\) −346.992 + 276.717i −1.11215 + 0.886912i
\(313\) 276.742 + 133.272i 0.884159 + 0.425789i 0.820142 0.572160i \(-0.193894\pi\)
0.0640173 + 0.997949i \(0.479609\pi\)
\(314\) 323.117 155.605i 1.02903 0.495557i
\(315\) −301.794 + 378.437i −0.958075 + 1.20139i
\(316\) 125.331 + 14.1214i 0.396617 + 0.0446880i
\(317\) 184.663 527.737i 0.582534 1.66479i −0.153747 0.988110i \(-0.549134\pi\)
0.736281 0.676676i \(-0.236580\pi\)
\(318\) 609.552i 1.91683i
\(319\) −170.804 + 24.3195i −0.535437 + 0.0762366i
\(320\) −166.784 −0.521200
\(321\) 313.252 + 109.611i 0.975861 + 0.341469i
\(322\) 31.7418 281.716i 0.0985769 0.874894i
\(323\) −20.5343 16.3756i −0.0635737 0.0506983i
\(324\) 10.2001 + 21.1808i 0.0314819 + 0.0653729i
\(325\) −79.0480 + 164.145i −0.243225 + 0.505061i
\(326\) 334.492 + 419.440i 1.02605 + 1.28663i
\(327\) 467.895 + 744.650i 1.43087 + 2.27722i
\(328\) −67.8536 15.4871i −0.206871 0.0472169i
\(329\) 15.1377 + 134.351i 0.0460113 + 0.408362i
\(330\) 221.831 353.042i 0.672214 1.06982i
\(331\) −418.557 + 418.557i −1.26452 + 1.26452i −0.315645 + 0.948877i \(0.602221\pi\)
−0.948877 + 0.315645i \(0.897779\pi\)
\(332\) −108.904 + 24.8567i −0.328025 + 0.0748695i
\(333\) −40.5504 115.887i −0.121773 0.348008i
\(334\) 271.606 95.0390i 0.813191 0.284548i
\(335\) −36.4297 159.609i −0.108745 0.476445i
\(336\) −355.723 355.723i −1.05870 1.05870i
\(337\) −535.661 336.578i −1.58950 0.998748i −0.978281 0.207285i \(-0.933537\pi\)
−0.611218 0.791463i \(-0.709320\pi\)
\(338\) −134.070 + 15.1061i −0.396657 + 0.0446926i
\(339\) −15.6109 + 68.3958i −0.0460498 + 0.201757i
\(340\) −231.864 + 145.690i −0.681954 + 0.428500i
\(341\) 105.221 83.9110i 0.308566 0.246073i
\(342\) −27.1060 13.0536i −0.0792573 0.0381683i
\(343\) −332.133 + 159.947i −0.968316 + 0.466317i
\(344\) 34.9157 43.7829i 0.101499 0.127276i
\(345\) 700.832 + 78.9648i 2.03140 + 0.228883i
\(346\) 24.9002 71.1607i 0.0719659 0.205667i
\(347\) 141.419i 0.407547i −0.979018 0.203774i \(-0.934679\pi\)
0.979018 0.203774i \(-0.0653207\pi\)
\(348\) 205.218 + 17.0657i 0.589706 + 0.0490393i
\(349\) −571.537 −1.63764 −0.818821 0.574048i \(-0.805372\pi\)
−0.818821 + 0.574048i \(0.805372\pi\)
\(350\) −137.918 48.2596i −0.394052 0.137885i
\(351\) 52.7815 468.449i 0.150375 1.33461i
\(352\) 102.428 + 81.6833i 0.290987 + 0.232055i
\(353\) 6.08107 + 12.6275i 0.0172268 + 0.0357719i 0.909405 0.415912i \(-0.136538\pi\)
−0.892178 + 0.451684i \(0.850823\pi\)
\(354\) 86.9464 180.546i 0.245611 0.510017i
\(355\) −19.2063 24.0840i −0.0541023 0.0678421i
\(356\) −111.978 178.212i −0.314545 0.500595i
\(357\) 778.323 + 177.647i 2.18018 + 0.497611i
\(358\) 70.2120 + 623.148i 0.196123 + 1.74064i
\(359\) 8.23661 13.1085i 0.0229432 0.0365139i −0.835056 0.550165i \(-0.814565\pi\)
0.857999 + 0.513651i \(0.171708\pi\)
\(360\) 394.659 394.659i 1.09627 1.09627i
\(361\) −351.260 + 80.1728i −0.973019 + 0.222085i
\(362\) 82.0402 + 234.457i 0.226630 + 0.647672i
\(363\) −398.676 + 139.503i −1.09828 + 0.384305i
\(364\) −24.9832 109.459i −0.0686351 0.300710i
\(365\) −242.190 242.190i −0.663534 0.663534i
\(366\) −598.058 375.785i −1.63404 1.02673i
\(367\) 281.948 31.7679i 0.768249 0.0865609i 0.280864 0.959748i \(-0.409379\pi\)
0.487386 + 0.873187i \(0.337951\pi\)
\(368\) −102.805 + 450.417i −0.279361 + 1.22396i
\(369\) 151.401 95.1313i 0.410300 0.257808i
\(370\) 88.8650 70.8675i 0.240176 0.191534i
\(371\) −247.199 119.045i −0.666306 0.320876i
\(372\) −144.728 + 69.6974i −0.389054 + 0.187359i
\(373\) 146.301 183.455i 0.392227 0.491837i −0.546035 0.837762i \(-0.683863\pi\)
0.938262 + 0.345925i \(0.112435\pi\)
\(374\) −430.719 48.5304i −1.15166 0.129760i
\(375\) −128.073 + 366.011i −0.341527 + 0.976029i
\(376\) 155.896i 0.414618i
\(377\) −349.306 262.234i −0.926541 0.695580i
\(378\) 378.083 1.00022
\(379\) 549.482 + 192.272i 1.44982 + 0.507314i 0.936434 0.350844i \(-0.114105\pi\)
0.513386 + 0.858158i \(0.328391\pi\)
\(380\) 0.825134 7.32327i 0.00217140 0.0192718i
\(381\) −412.461 328.926i −1.08257 0.863324i
\(382\) −104.046 216.054i −0.272371 0.565585i
\(383\) −177.905 + 369.424i −0.464504 + 0.964553i 0.528770 + 0.848765i \(0.322654\pi\)
−0.993274 + 0.115788i \(0.963061\pi\)
\(384\) 467.436 + 586.146i 1.21728 + 1.52642i
\(385\) −99.8502 158.911i −0.259351 0.412755i
\(386\) 434.835 + 99.2484i 1.12652 + 0.257120i
\(387\) 16.1086 + 142.968i 0.0416242 + 0.369425i
\(388\) −0.787317 + 1.25301i −0.00202917 + 0.00322940i
\(389\) 57.4399 57.4399i 0.147661 0.147661i −0.629412 0.777072i \(-0.716704\pi\)
0.777072 + 0.629412i \(0.216704\pi\)
\(390\) 1029.12 234.890i 2.63877 0.602283i
\(391\) −242.150 692.024i −0.619309 1.76988i
\(392\) 124.992 43.7367i 0.318858 0.111573i
\(393\) −17.5132 76.7304i −0.0445629 0.195243i
\(394\) −85.2996 85.2996i −0.216496 0.216496i
\(395\) 451.943 + 283.975i 1.14416 + 0.718923i
\(396\) −130.548 + 14.7092i −0.329665 + 0.0371444i
\(397\) 22.5451 98.7767i 0.0567887 0.248808i −0.938564 0.345106i \(-0.887843\pi\)
0.995353 + 0.0962980i \(0.0307002\pi\)
\(398\) −1.01883 + 0.640176i −0.00255988 + 0.00160848i
\(399\) −16.7978 + 13.3958i −0.0420998 + 0.0335735i
\(400\) 214.538 + 103.316i 0.536345 + 0.258290i
\(401\) 107.974 51.9976i 0.269262 0.129670i −0.294381 0.955688i \(-0.595113\pi\)
0.563643 + 0.826018i \(0.309399\pi\)
\(402\) −192.846 + 241.821i −0.479715 + 0.601544i
\(403\) 338.579 + 38.1487i 0.840147 + 0.0946619i
\(404\) −63.1884 + 180.582i −0.156407 + 0.446985i
\(405\) 99.4895i 0.245653i
\(406\) 177.627 301.937i 0.437506 0.743687i
\(407\) 47.6042 0.116964
\(408\) −868.884 304.036i −2.12962 0.745186i
\(409\) −42.0942 + 373.596i −0.102920 + 0.913438i 0.831077 + 0.556157i \(0.187725\pi\)
−0.933997 + 0.357281i \(0.883704\pi\)
\(410\) 129.420 + 103.209i 0.315659 + 0.251730i
\(411\) −303.988 631.237i −0.739630 1.53586i
\(412\) −4.35957 + 9.05274i −0.0105815 + 0.0219727i
\(413\) −56.2386 70.5210i −0.136171 0.170753i
\(414\) −446.817 711.105i −1.07927 1.71765i
\(415\) −460.881 105.193i −1.11056 0.253477i
\(416\) 37.1359 + 329.590i 0.0892691 + 0.792285i
\(417\) −579.831 + 922.795i −1.39048 + 2.21294i
\(418\) 8.24843 8.24843i 0.0197331 0.0197331i
\(419\) −231.325 + 52.7983i −0.552087 + 0.126010i −0.489459 0.872027i \(-0.662806\pi\)
−0.0626288 + 0.998037i \(0.519948\pi\)
\(420\) 73.9854 + 211.438i 0.176156 + 0.503424i
\(421\) 120.085 42.0197i 0.285238 0.0998092i −0.183868 0.982951i \(-0.558862\pi\)
0.469106 + 0.883142i \(0.344576\pi\)
\(422\) −79.6642 349.032i −0.188778 0.827089i
\(423\) 283.209 + 283.209i 0.669524 + 0.669524i
\(424\) 267.877 + 168.318i 0.631786 + 0.396977i
\(425\) −375.505 + 42.3093i −0.883542 + 0.0995512i
\(426\) −12.9503 + 56.7392i −0.0303999 + 0.133191i
\(427\) −269.197 + 169.148i −0.630438 + 0.396131i
\(428\) 75.6860 60.3575i 0.176836 0.141022i
\(429\) 398.319 + 191.820i 0.928483 + 0.447134i
\(430\) −120.002 + 57.7901i −0.279075 + 0.134396i
\(431\) 102.073 127.996i 0.236828 0.296973i −0.649187 0.760629i \(-0.724891\pi\)
0.886016 + 0.463655i \(0.153462\pi\)
\(432\) −612.265 68.9857i −1.41728 0.159689i
\(433\) −29.3711 + 83.9378i −0.0678316 + 0.193852i −0.972809 0.231607i \(-0.925602\pi\)
0.904978 + 0.425459i \(0.139887\pi\)
\(434\) 273.266i 0.629644i
\(435\) 751.136 + 441.888i 1.72675 + 1.01583i
\(436\) 256.530 0.588371
\(437\) 18.6240 + 6.51683i 0.0426179 + 0.0149127i
\(438\) −72.4515 + 643.024i −0.165414 + 1.46809i
\(439\) 377.689 + 301.197i 0.860340 + 0.686098i 0.950801 0.309802i \(-0.100263\pi\)
−0.0904611 + 0.995900i \(0.528834\pi\)
\(440\) 93.8946 + 194.974i 0.213397 + 0.443123i
\(441\) −147.613 + 306.521i −0.334722 + 0.695058i
\(442\) −684.185 857.941i −1.54793 1.94104i
\(443\) −33.5662 53.4203i −0.0757703 0.120588i 0.806690 0.590975i \(-0.201257\pi\)
−0.882460 + 0.470388i \(0.844114\pi\)
\(444\) −55.3951 12.6436i −0.124764 0.0284765i
\(445\) −99.7284 885.114i −0.224109 1.98902i
\(446\) 98.8157 157.264i 0.221560 0.352610i
\(447\) 545.102 545.102i 1.21947 1.21947i
\(448\) 138.277 31.5608i 0.308654 0.0704482i
\(449\) 224.975 + 642.941i 0.501058 + 1.43194i 0.865592 + 0.500751i \(0.166943\pi\)
−0.364534 + 0.931190i \(0.618772\pi\)
\(450\) −408.566 + 142.964i −0.907925 + 0.317697i
\(451\) 15.4272 + 67.5910i 0.0342066 + 0.149869i
\(452\) 14.4700 + 14.4700i 0.0320133 + 0.0320133i
\(453\) 789.256 + 495.922i 1.74229 + 1.09475i
\(454\) 975.565 109.920i 2.14882 0.242114i
\(455\) 105.729 463.227i 0.232370 1.01808i
\(456\) 20.9767 13.1806i 0.0460016 0.0289047i
\(457\) −81.2493 + 64.7942i −0.177788 + 0.141782i −0.708341 0.705871i \(-0.750556\pi\)
0.530552 + 0.847652i \(0.321985\pi\)
\(458\) 414.684 + 199.701i 0.905424 + 0.436029i
\(459\) 880.946 424.241i 1.91927 0.924272i
\(460\) 128.266 160.840i 0.278838 0.349652i
\(461\) 286.769 + 32.3111i 0.622058 + 0.0700891i 0.417368 0.908738i \(-0.362953\pi\)
0.204690 + 0.978827i \(0.434381\pi\)
\(462\) −117.108 + 334.676i −0.253481 + 0.724408i
\(463\) 377.960i 0.816329i 0.912908 + 0.408164i \(0.133831\pi\)
−0.912908 + 0.408164i \(0.866169\pi\)
\(464\) −342.740 + 456.544i −0.738664 + 0.983931i
\(465\) −679.810 −1.46196
\(466\) −268.604 93.9888i −0.576404 0.201693i
\(467\) −89.7450 + 796.509i −0.192173 + 1.70559i 0.414019 + 0.910268i \(0.364125\pi\)
−0.606193 + 0.795318i \(0.707304\pi\)
\(468\) −260.035 207.371i −0.555630 0.443100i
\(469\) 60.4061 + 125.435i 0.128798 + 0.267451i
\(470\) −160.879 + 334.068i −0.342295 + 0.710782i
\(471\) −473.048 593.183i −1.00435 1.25941i
\(472\) 55.3349 + 88.0650i 0.117235 + 0.186578i
\(473\) −54.3851 12.4130i −0.114979 0.0262432i
\(474\) −112.906 1002.07i −0.238199 2.11407i
\(475\) 5.41060 8.61092i 0.0113907 0.0181283i
\(476\) 164.664 164.664i 0.345934 0.345934i
\(477\) −792.413 + 180.863i −1.66124 + 0.379168i
\(478\) −236.334 675.405i −0.494423 1.41298i
\(479\) −392.771 + 137.436i −0.819981 + 0.286924i −0.707485 0.706729i \(-0.750170\pi\)
−0.112496 + 0.993652i \(0.535885\pi\)
\(480\) −147.256 645.170i −0.306783 1.34411i
\(481\) 85.2198 + 85.2198i 0.177172 + 0.177172i
\(482\) 271.327 + 170.486i 0.562919 + 0.353705i
\(483\) −595.987 + 67.1516i −1.23393 + 0.139030i
\(484\) −27.4157 + 120.116i −0.0566441 + 0.248174i
\(485\) −5.30271 + 3.33192i −0.0109334 + 0.00686993i
\(486\) −366.680 + 292.418i −0.754486 + 0.601682i
\(487\) −642.025 309.183i −1.31833 0.634873i −0.363378 0.931642i \(-0.618377\pi\)
−0.954949 + 0.296769i \(0.904091\pi\)
\(488\) 330.289 159.059i 0.676822 0.325940i
\(489\) 707.638 887.350i 1.44711 1.81462i
\(490\) −312.978 35.2641i −0.638731 0.0719676i
\(491\) −16.0776 + 45.9471i −0.0327446 + 0.0935786i −0.959095 0.283084i \(-0.908643\pi\)
0.926351 + 0.376662i \(0.122928\pi\)
\(492\) 82.7504i 0.168192i
\(493\) 75.0788 902.836i 0.152290 1.83131i
\(494\) 29.5322 0.0597819
\(495\) −524.772 183.626i −1.06015 0.370961i
\(496\) 49.8605 442.525i 0.100525 0.892187i
\(497\) 20.4810 + 16.3330i 0.0412092 + 0.0328632i
\(498\) 387.512 + 804.678i 0.778137 + 1.61582i
\(499\) 336.600 698.958i 0.674550 1.40072i −0.229508 0.973307i \(-0.573712\pi\)
0.904058 0.427410i \(-0.140574\pi\)
\(500\) 70.5233 + 88.4334i 0.141047 + 0.176867i
\(501\) −323.880 515.452i −0.646467 1.02885i
\(502\) 756.431 + 172.650i 1.50683 + 0.343925i
\(503\) −52.8932 469.440i −0.105156 0.933281i −0.929909 0.367789i \(-0.880115\pi\)
0.824754 0.565492i \(-0.191314\pi\)
\(504\) −252.521 + 401.885i −0.501034 + 0.797391i
\(505\) −572.514 + 572.514i −1.13369 + 1.13369i
\(506\) 317.464 72.4592i 0.627400 0.143200i
\(507\) 94.2710 + 269.411i 0.185939 + 0.531383i
\(508\) −145.250 + 50.8250i −0.285924 + 0.100049i
\(509\) −171.270 750.383i −0.336483 1.47423i −0.806322 0.591477i \(-0.798545\pi\)
0.469838 0.882753i \(-0.344312\pi\)
\(510\) 1548.16 + 1548.16i 3.03562 + 3.03562i
\(511\) 246.624 + 154.964i 0.482631 + 0.303257i
\(512\) −36.5399 + 4.11706i −0.0713670 + 0.00804114i
\(513\) −5.85548 + 25.6545i −0.0114142 + 0.0500088i
\(514\) −140.905 + 88.5362i −0.274133 + 0.172249i
\(515\) −33.2451 + 26.5121i −0.0645537 + 0.0514798i
\(516\) 59.9889 + 28.8891i 0.116258 + 0.0559867i
\(517\) −139.914 + 67.3791i −0.270627 + 0.130327i
\(518\) −60.2657 + 75.5708i −0.116343 + 0.145890i
\(519\) −158.492 17.8578i −0.305380 0.0344081i
\(520\) −180.950 + 517.126i −0.347981 + 0.994472i
\(521\) 306.568i 0.588421i 0.955741 + 0.294211i \(0.0950567\pi\)
−0.955741 + 0.294211i \(0.904943\pi\)
\(522\) −146.282 1027.39i −0.280234 1.96818i
\(523\) 789.078 1.50875 0.754377 0.656442i \(-0.227939\pi\)
0.754377 + 0.656442i \(0.227939\pi\)
\(524\) −21.6691 7.58234i −0.0413532 0.0144701i
\(525\) −34.6106 + 307.177i −0.0659249 + 0.585099i
\(526\) −425.669 339.459i −0.809256 0.645360i
\(527\) 306.627 + 636.718i 0.581836 + 1.20819i
\(528\) 250.710 520.605i 0.474830 0.985994i
\(529\) 13.5904 + 17.0418i 0.0256907 + 0.0322151i
\(530\) −400.332 637.124i −0.755343 1.20212i
\(531\) −260.507 59.4590i −0.490597 0.111976i
\(532\) 0.701693 + 6.22770i 0.00131897 + 0.0117062i
\(533\) −93.3822 + 148.617i −0.175201 + 0.278831i
\(534\) −1189.92 + 1189.92i −2.22832 + 2.22832i
\(535\) 399.410 91.1628i 0.746561 0.170398i
\(536\) −53.0206 151.524i −0.0989191 0.282694i
\(537\) 1252.20 438.165i 2.33185 0.815949i
\(538\) 172.391 + 755.293i 0.320429 + 1.40389i
\(539\) −93.2750 93.2750i −0.173052 0.173052i
\(540\) 232.305 + 145.967i 0.430195 + 0.270309i
\(541\) 231.201 26.0502i 0.427359 0.0481518i 0.104334 0.994542i \(-0.466729\pi\)
0.323025 + 0.946390i \(0.395300\pi\)
\(542\) 67.5600 296.000i 0.124649 0.546125i
\(543\) 444.952 279.582i 0.819433 0.514884i
\(544\) −537.855 + 428.925i −0.988703 + 0.788465i
\(545\) 978.119 + 471.037i 1.79471 + 0.864288i
\(546\) −808.774 + 389.485i −1.48127 + 0.713342i
\(547\) 5.46184 6.84892i 0.00998507 0.0125209i −0.776814 0.629730i \(-0.783165\pi\)
0.786799 + 0.617209i \(0.211737\pi\)
\(548\) −203.082 22.8818i −0.370587 0.0417551i
\(549\) −311.065 + 888.972i −0.566602 + 1.61926i
\(550\) 167.832i 0.305149i
\(551\) 17.7367 + 16.7290i 0.0321901 + 0.0303611i
\(552\) 691.564 1.25283
\(553\) −428.433 149.915i −0.774743 0.271094i
\(554\) 12.3619 109.715i 0.0223139 0.198042i
\(555\) −187.999 149.925i −0.338738 0.270134i
\(556\) 137.932 + 286.418i 0.248079 + 0.515141i
\(557\) −184.669 + 383.470i −0.331543 + 0.688456i −0.998389 0.0567395i \(-0.981930\pi\)
0.666846 + 0.745195i \(0.267644\pi\)
\(558\) 504.726 + 632.907i 0.904527 + 1.13424i
\(559\) −75.1373 119.580i −0.134414 0.213918i
\(560\) −605.440 138.188i −1.08114 0.246764i
\(561\) 102.669 + 911.213i 0.183011 + 1.62427i
\(562\) −86.4803 + 137.633i −0.153880 + 0.244898i
\(563\) 493.000 493.000i 0.875666 0.875666i −0.117416 0.993083i \(-0.537461\pi\)
0.993083 + 0.117416i \(0.0374612\pi\)
\(564\) 180.708 41.2455i 0.320405 0.0731303i
\(565\) 28.6029 + 81.7423i 0.0506245 + 0.144677i
\(566\) −1211.00 + 423.748i −2.13958 + 0.748671i
\(567\) −18.8266 82.4846i −0.0332038 0.145475i
\(568\) −21.3589 21.3589i −0.0376037 0.0376037i
\(569\) −267.135 167.852i −0.469482 0.294995i 0.276436 0.961032i \(-0.410846\pi\)
−0.745919 + 0.666037i \(0.767989\pi\)
\(570\) −58.5524 + 6.59727i −0.102724 + 0.0115742i
\(571\) −136.850 + 599.581i −0.239668 + 1.05005i 0.701647 + 0.712525i \(0.252448\pi\)
−0.941315 + 0.337529i \(0.890409\pi\)
\(572\) 109.192 68.6099i 0.190895 0.119947i
\(573\) −396.634 + 316.305i −0.692206 + 0.552016i
\(574\) −126.830 61.0780i −0.220958 0.106408i
\(575\) 255.772 123.174i 0.444822 0.214215i
\(576\) 261.968 328.497i 0.454805 0.570308i
\(577\) −468.624 52.8013i −0.812173 0.0915100i −0.303898 0.952705i \(-0.598288\pi\)
−0.508275 + 0.861195i \(0.669717\pi\)
\(578\) 529.121 1512.14i 0.915434 2.61616i
\(579\) 943.578i 1.62967i
\(580\) 225.709 116.942i 0.389153 0.201624i
\(581\) 402.012 0.691932
\(582\) 11.1679 + 3.90781i 0.0191888 + 0.00671444i
\(583\) 35.2850 313.163i 0.0605231 0.537157i
\(584\) −262.581 209.401i −0.449625 0.358564i
\(585\) −610.712 1268.16i −1.04395 2.16779i
\(586\) −322.684 + 670.061i −0.550656 + 1.14345i
\(587\) −125.247 157.054i −0.213367 0.267554i 0.663618 0.748072i \(-0.269020\pi\)
−0.876985 + 0.480518i \(0.840449\pi\)
\(588\) 83.7668 + 133.314i 0.142461 + 0.226725i
\(589\) −18.5422 4.23215i −0.0314809 0.00718531i
\(590\) −27.6968 245.816i −0.0469438 0.416638i
\(591\) −135.777 + 216.087i −0.229741 + 0.365630i
\(592\) 111.383 111.383i 0.188146 0.188146i
\(593\) −372.413 + 85.0008i −0.628015 + 0.143340i −0.524671 0.851305i \(-0.675812\pi\)
−0.103344 + 0.994646i \(0.532954\pi\)
\(594\) 143.430 + 409.899i 0.241464 + 0.690066i
\(595\) 930.202 325.492i 1.56337 0.547045i
\(596\) −50.0370 219.226i −0.0839546 0.367829i
\(597\) 1.80000 + 1.80000i 0.00301507 + 0.00301507i
\(598\) 698.031 + 438.602i 1.16728 + 0.733448i
\(599\) −289.961 + 32.6708i −0.484076 + 0.0545422i −0.350630 0.936514i \(-0.614033\pi\)
−0.133445 + 0.991056i \(0.542604\pi\)
\(600\) 79.3150 347.502i 0.132192 0.579170i
\(601\) 434.543 273.041i 0.723033 0.454312i −0.119585 0.992824i \(-0.538156\pi\)
0.842618 + 0.538512i \(0.181013\pi\)
\(602\) 88.5556 70.6207i 0.147102 0.117310i
\(603\) 371.585 + 178.946i 0.616228 + 0.296760i
\(604\) 244.970 117.971i 0.405579 0.195317i
\(605\) −325.089 + 407.649i −0.537338 + 0.673800i
\(606\) 1520.05 + 171.268i 2.50833 + 0.282621i
\(607\) 182.154 520.567i 0.300090 0.857607i −0.690814 0.723033i \(-0.742748\pi\)
0.990904 0.134574i \(-0.0429667\pi\)
\(608\) 18.5142i 0.0304509i
\(609\) −706.369 224.221i −1.15988 0.368179i
\(610\) −871.912 −1.42936
\(611\) −371.091 129.850i −0.607350 0.212521i
\(612\) 77.2389 685.515i 0.126207 1.12012i
\(613\) 280.338 + 223.562i 0.457321 + 0.364701i 0.824888 0.565295i \(-0.191238\pi\)
−0.367567 + 0.929997i \(0.619809\pi\)
\(614\) −517.992 1075.62i −0.843636 1.75183i
\(615\) 151.945 315.518i 0.247066 0.513037i
\(616\) −114.741 143.881i −0.186268 0.233573i
\(617\) −279.227 444.387i −0.452555 0.720238i 0.540049 0.841634i \(-0.318406\pi\)
−0.992604 + 0.121396i \(0.961263\pi\)
\(618\) 78.3219 + 17.8765i 0.126734 + 0.0289263i
\(619\) 112.177 + 995.602i 0.181224 + 1.60840i 0.674327 + 0.738433i \(0.264434\pi\)
−0.493103 + 0.869971i \(0.664137\pi\)
\(620\) −105.500 + 167.902i −0.170161 + 0.270810i
\(621\) −519.413 + 519.413i −0.836414 + 0.836414i
\(622\) −1100.36 + 251.151i −1.76907 + 0.403780i
\(623\) 250.174 + 714.957i 0.401564 + 1.14760i
\(624\) 1380.79 483.159i 2.21280 0.774293i
\(625\) 173.808 + 761.503i 0.278093 + 1.21841i
\(626\) −506.544 506.544i −0.809176 0.809176i
\(627\) −20.8955 13.1295i −0.0333262 0.0209402i
\(628\) −219.919 + 24.7790i −0.350190 + 0.0394569i
\(629\) −55.6242 + 243.706i −0.0884328 + 0.387449i
\(630\) 955.851 600.601i 1.51722 0.953335i
\(631\) −434.398 + 346.421i −0.688427 + 0.549002i −0.904025 0.427480i \(-0.859401\pi\)
0.215598 + 0.976482i \(0.430830\pi\)
\(632\) 471.553 + 227.088i 0.746128 + 0.359317i
\(633\) −682.382 + 328.618i −1.07801 + 0.519143i
\(634\) −813.011 + 1019.48i −1.28235 + 1.60802i
\(635\) −647.145 72.9158i −1.01913 0.114828i
\(636\) −124.235 + 355.043i −0.195338 + 0.558244i
\(637\) 333.957i 0.524266i
\(638\) 394.730 + 78.0319i 0.618699 + 0.122307i
\(639\) 77.6031 0.121445
\(640\) 873.540 + 305.665i 1.36491 + 0.477601i
\(641\) −75.0000 + 665.643i −0.117005 + 1.03845i 0.788771 + 0.614687i \(0.210718\pi\)
−0.905775 + 0.423758i \(0.860711\pi\)
\(642\) −605.139 482.583i −0.942585 0.751686i
\(643\) 38.4657 + 79.8749i 0.0598223 + 0.124222i 0.928737 0.370740i \(-0.120896\pi\)
−0.868914 + 0.494963i \(0.835182\pi\)
\(644\) −75.9061 + 157.621i −0.117867 + 0.244753i
\(645\) 175.685 + 220.302i 0.272380 + 0.341554i
\(646\) 32.5891 + 51.8652i 0.0504475 + 0.0802867i
\(647\) −399.560 91.1970i −0.617558 0.140954i −0.0977136 0.995215i \(-0.531153\pi\)
−0.519844 + 0.854261i \(0.674010\pi\)
\(648\) 10.9229 + 96.9431i 0.0168563 + 0.149604i
\(649\) 55.1207 87.7241i 0.0849318 0.135168i
\(650\) 300.448 300.448i 0.462228 0.462228i
\(651\) 563.616 128.642i 0.865769 0.197606i
\(652\) −109.343 312.484i −0.167704 0.479270i
\(653\) −28.0410 + 9.81196i −0.0429418 + 0.0150260i −0.351664 0.936126i \(-0.614384\pi\)
0.308723 + 0.951152i \(0.400098\pi\)
\(654\) −456.403 1999.63i −0.697864 3.05754i
\(655\) −68.6992 68.6992i −0.104884 0.104884i
\(656\) 194.243 + 122.051i 0.296102 + 0.186053i
\(657\) 857.425 96.6086i 1.30506 0.147045i
\(658\) 70.1647 307.411i 0.106633 0.467191i
\(659\) 839.507 527.497i 1.27391 0.800451i 0.286416 0.958105i \(-0.407536\pi\)
0.987494 + 0.157655i \(0.0503933\pi\)
\(660\) −201.164 + 160.423i −0.304794 + 0.243065i
\(661\) 34.7693 + 16.7440i 0.0526010 + 0.0253313i 0.459999 0.887919i \(-0.347850\pi\)
−0.407398 + 0.913251i \(0.633564\pi\)
\(662\) 1243.79 598.977i 1.87883 0.904799i
\(663\) −1447.43 + 1815.03i −2.18316 + 2.73760i
\(664\) −460.634 51.9010i −0.693726 0.0781642i
\(665\) −8.75977 + 25.0340i −0.0131726 + 0.0376451i
\(666\) 286.340i 0.429940i
\(667\) 170.777 + 658.829i 0.256038 + 0.987750i
\(668\) −177.572 −0.265826
\(669\) −370.879 129.776i −0.554378 0.193985i
\(670\) −42.7496 + 379.413i −0.0638054 + 0.566289i
\(671\) −285.505 227.682i −0.425491 0.339318i
\(672\) 244.173 + 507.031i 0.363353 + 0.754511i
\(673\) 340.019 706.057i 0.505229 1.04912i −0.479903 0.877321i \(-0.659328\pi\)
0.985132 0.171797i \(-0.0549575\pi\)
\(674\) 919.909 + 1153.53i 1.36485 + 1.71147i
\(675\) 201.427 + 320.569i 0.298411 + 0.474918i
\(676\) 81.1703 + 18.5266i 0.120074 + 0.0274062i
\(677\) 72.2705 + 641.418i 0.106751 + 0.947442i 0.926904 + 0.375298i \(0.122460\pi\)
−0.820153 + 0.572144i \(0.806112\pi\)
\(678\) 87.0486 138.537i 0.128390 0.204332i
\(679\) 3.76586 3.76586i 0.00554618 0.00554618i
\(680\) −1107.87 + 252.864i −1.62922 + 0.371858i
\(681\) −685.965 1960.38i −1.00729 2.87867i
\(682\) −296.261 + 103.666i −0.434401 + 0.152003i
\(683\) 196.973 + 862.994i 0.288393 + 1.26353i 0.886729 + 0.462289i \(0.152972\pi\)
−0.598336 + 0.801245i \(0.704171\pi\)
\(684\) 13.1278 + 13.1278i 0.0191927 + 0.0191927i
\(685\) −732.313 460.143i −1.06907 0.671741i
\(686\) 854.338 96.2608i 1.24539 0.140322i
\(687\) 216.673 949.305i 0.315389 1.38181i
\(688\) −156.292 + 98.2047i −0.227168 + 0.142739i
\(689\) 623.782 497.450i 0.905344 0.721988i
\(690\) −1481.94 713.664i −2.14774 1.03430i
\(691\) 553.507 266.555i 0.801023 0.385752i 0.0118551 0.999930i \(-0.496226\pi\)
0.789168 + 0.614177i \(0.210512\pi\)
\(692\) −29.0071 + 36.3737i −0.0419177 + 0.0525632i
\(693\) 469.825 + 52.9365i 0.677958 + 0.0763875i
\(694\) −108.932 + 311.310i −0.156963 + 0.448574i
\(695\) 1345.35i 1.93575i
\(696\) 780.425 + 348.112i 1.12130 + 0.500160i
\(697\) −364.053 −0.522314
\(698\) 1258.14 + 440.244i 1.80250 + 0.630721i
\(699\) −67.4063 + 598.248i −0.0964325 + 0.855862i
\(700\) 70.4967 + 56.2192i 0.100710 + 0.0803132i
\(701\) 92.4303 + 191.933i 0.131855 + 0.273800i 0.956435 0.291946i \(-0.0943028\pi\)
−0.824580 + 0.565745i \(0.808588\pi\)
\(702\) −477.026 + 990.555i −0.679525 + 1.41105i
\(703\) −4.19445 5.25967i −0.00596650 0.00748175i
\(704\) 86.6736 + 137.940i 0.123116 + 0.195938i
\(705\) 764.756 + 174.550i 1.08476 + 0.247589i
\(706\) −3.65977 32.4814i −0.00518381 0.0460076i
\(707\) 366.321 582.996i 0.518134 0.824606i
\(708\) −87.4412 + 87.4412i −0.123504 + 0.123504i
\(709\) 976.236 222.819i 1.37692 0.314273i 0.530904 0.847432i \(-0.321852\pi\)
0.846015 + 0.533159i \(0.178995\pi\)
\(710\) 23.7281 + 67.8110i 0.0334199 + 0.0955085i
\(711\) −1269.18 + 444.106i −1.78507 + 0.624622i
\(712\) −194.352 851.511i −0.272966 1.19594i
\(713\) −375.415 375.415i −0.526528 0.526528i
\(714\) −1576.51 990.587i −2.20800 1.38738i
\(715\) 542.318 61.1045i 0.758486 0.0854609i
\(716\) 86.1102 377.273i 0.120266 0.526918i
\(717\) −1281.78 + 805.395i −1.78770 + 1.12328i
\(718\) −28.2287 + 22.5116i −0.0393158 + 0.0313533i
\(719\) −1085.74 522.866i −1.51007 0.727213i −0.518298 0.855200i \(-0.673434\pi\)
−0.991776 + 0.127987i \(0.959148\pi\)
\(720\) −1657.48 + 798.202i −2.30206 + 1.10861i
\(721\) 22.5459 28.2716i 0.0312703 0.0392117i
\(722\) 834.995 + 94.0814i 1.15650 + 0.130307i
\(723\) 223.902 639.874i 0.309684 0.885026i
\(724\) 153.285i 0.211719i
\(725\) 350.639 10.2527i 0.483640 0.0141417i
\(726\) 985.075 1.35685
\(727\) −984.289 344.418i −1.35391 0.473752i −0.446792 0.894638i \(-0.647433\pi\)
−0.907113 + 0.420886i \(0.861719\pi\)
\(728\) 52.1652 462.979i 0.0716555 0.635960i
\(729\) 890.673 + 710.288i 1.22177 + 0.974332i
\(730\) 346.587 + 719.695i 0.474776 + 0.985883i
\(731\) 127.095 263.916i 0.173865 0.361034i
\(732\) 271.759 + 340.775i 0.371255 + 0.465539i
\(733\) 365.036 + 580.951i 0.498002 + 0.792566i 0.997267 0.0738833i \(-0.0235392\pi\)
−0.499264 + 0.866450i \(0.666396\pi\)
\(734\) −645.131 147.247i −0.878924 0.200609i
\(735\) 74.6034 + 662.124i 0.101501 + 0.900849i
\(736\) 274.966 437.605i 0.373594 0.594572i
\(737\) −113.074 + 113.074i −0.153425 + 0.153425i
\(738\) −406.561 + 92.7949i −0.550895 + 0.125738i
\(739\) 282.220 + 806.539i 0.381895 + 1.09139i 0.961098 + 0.276209i \(0.0890782\pi\)
−0.579203 + 0.815183i \(0.696636\pi\)
\(740\) −66.2047 + 23.1660i −0.0894658 + 0.0313054i
\(741\) −13.9025 60.9108i −0.0187618 0.0822008i
\(742\) 452.470 + 452.470i 0.609798 + 0.609798i
\(743\) −277.918 174.627i −0.374048 0.235030i 0.331868 0.943326i \(-0.392321\pi\)
−0.705915 + 0.708296i \(0.749464\pi\)
\(744\) −662.411 + 74.6358i −0.890337 + 0.100317i
\(745\) 211.756 927.763i 0.284236 1.24532i
\(746\) −463.369 + 291.154i −0.621138 + 0.390287i
\(747\) 931.095 742.523i 1.24645 0.994007i
\(748\) 240.988 + 116.054i 0.322177 + 0.155152i
\(749\) −313.891 + 151.162i −0.419080 + 0.201818i
\(750\) 563.862 707.060i 0.751816 0.942747i
\(751\) 971.174 + 109.425i 1.29318 + 0.145706i 0.731608 0.681725i \(-0.238770\pi\)
0.561567 + 0.827431i \(0.310199\pi\)
\(752\) −169.715 + 485.018i −0.225685 + 0.644970i
\(753\) 1641.43i 2.17985i
\(754\) 566.945 + 846.326i 0.751917 + 1.12245i
\(755\) 1150.66 1.52405
\(756\) −220.221 77.0585i −0.291297 0.101929i
\(757\) −0.974699 + 8.65069i −0.00128758 + 0.0114276i −0.994340 0.106249i \(-0.966116\pi\)
0.993052 + 0.117676i \(0.0375446\pi\)
\(758\) −1061.49 846.509i −1.40038