Properties

Label 29.3.f.a.8.1
Level 29
Weight 3
Character 29.8
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 8.1
Character \(\chi\) = 29.8
Dual form 29.3.f.a.11.1

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-2.32673 - 0.814157i) q^{2}\) \(+(0.184193 - 1.63476i) q^{3}\) \(+(1.62348 + 1.29468i) q^{4}\) \(+(-3.83207 - 7.95737i) q^{5}\) \(+(-1.75952 + 3.65367i) q^{6}\) \(+(2.23777 + 2.80607i) q^{7}\) \(+(2.52264 + 4.01476i) q^{8}\) \(+(6.13584 + 1.40047i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-2.32673 - 0.814157i) q^{2}\) \(+(0.184193 - 1.63476i) q^{3}\) \(+(1.62348 + 1.29468i) q^{4}\) \(+(-3.83207 - 7.95737i) q^{5}\) \(+(-1.75952 + 3.65367i) q^{6}\) \(+(2.23777 + 2.80607i) q^{7}\) \(+(2.52264 + 4.01476i) q^{8}\) \(+(6.13584 + 1.40047i) q^{9}\) \(+(2.43763 + 21.6345i) q^{10}\) \(+(4.04453 - 6.43684i) q^{11}\) \(+(2.41552 - 2.41552i) q^{12}\) \(+(-7.19807 + 1.64291i) q^{13}\) \(+(-2.92209 - 8.35085i) q^{14}\) \(+(-13.7142 + 4.79881i) q^{15}\) \(+(-4.44912 - 19.4929i) q^{16}\) \(+(1.60706 + 1.60706i) q^{17}\) \(+(-13.1362 - 8.25404i) q^{18}\) \(+(33.1033 - 3.72985i) q^{19}\) \(+(4.08097 - 17.8799i) q^{20}\) \(+(4.99943 - 3.14135i) q^{21}\) \(+(-14.6511 + 11.6839i) q^{22}\) \(+(-20.4388 - 9.84282i) q^{23}\) \(+(7.02782 - 3.38442i) q^{24}\) \(+(-33.0478 + 41.4406i) q^{25}\) \(+(18.0855 + 2.03775i) q^{26}\) \(+(8.30969 - 23.7477i) q^{27}\) \(+7.45278i q^{28}\) \(+(14.4627 + 25.1362i) q^{29}\) \(+35.8162 q^{30}\) \(+(5.30982 + 1.85799i) q^{31}\) \(+(-3.39483 + 30.1300i) q^{32}\) \(+(-9.77769 - 7.79745i) q^{33}\) \(+(-2.43079 - 5.04759i) q^{34}\) \(+(13.7537 - 28.5598i) q^{35}\) \(+(8.14825 + 10.2176i) q^{36}\) \(+(8.64092 + 13.7519i) q^{37}\) \(+(-80.0590 - 18.2729i) q^{38}\) \(+(1.35993 + 12.0697i) q^{39}\) \(+(22.2800 - 35.4584i) q^{40}\) \(+(-42.1095 + 42.1095i) q^{41}\) \(+(-14.1898 + 3.23874i) q^{42}\) \(+(1.74483 + 4.98643i) q^{43}\) \(+(14.8999 - 5.21368i) q^{44}\) \(+(-12.3689 - 54.1919i) q^{45}\) \(+(39.5419 + 39.5419i) q^{46}\) \(+(60.4551 + 37.9864i) q^{47}\) \(+(-32.6856 + 3.68278i) q^{48}\) \(+(8.03709 - 35.2128i) q^{49}\) \(+(110.632 - 69.5148i) q^{50}\) \(+(2.92317 - 2.33115i) q^{51}\) \(+(-13.8130 - 6.65197i) q^{52}\) \(+(-78.2991 + 37.7068i) q^{53}\) \(+(-38.6687 + 48.4891i) q^{54}\) \(+(-66.7192 - 7.51745i) q^{55}\) \(+(-5.62062 + 16.0628i) q^{56}\) \(-54.8029i q^{57}\) \(+(-13.1859 - 70.2600i) q^{58}\) \(+67.9548 q^{59}\) \(+(-28.4777 - 9.96476i) q^{60}\) \(+(5.72557 - 50.8159i) q^{61}\) \(+(-10.8418 - 8.64605i) q^{62}\) \(+(9.80078 + 20.3515i) q^{63}\) \(+(-2.27117 + 4.71614i) q^{64}\) \(+(40.6568 + 50.9820i) q^{65}\) \(+(16.4017 + 26.1031i) q^{66}\) \(+(-29.4645 - 6.72508i) q^{67}\) \(+(0.528398 + 4.68966i) q^{68}\) \(+(-19.8553 + 31.5995i) q^{69}\) \(+(-55.2532 + 55.2532i) q^{70}\) \(+(17.3364 - 3.95693i) q^{71}\) \(+(9.85600 + 28.1668i) q^{72}\) \(+(29.8255 - 10.4364i) q^{73}\) \(+(-8.90881 - 39.0321i) q^{74}\) \(+(61.6582 + 61.6582i) q^{75}\) \(+(58.5714 + 36.8029i) q^{76}\) \(+(27.1129 - 3.05489i) q^{77}\) \(+(6.66246 - 29.1901i) q^{78}\) \(+(-38.0418 + 23.9032i) q^{79}\) \(+(-138.063 + 110.101i) q^{80}\) \(+(13.7422 + 6.61788i) q^{81}\) \(+(132.261 - 63.6936i) q^{82}\) \(+(3.87179 - 4.85507i) q^{83}\) \(+(12.1835 + 1.37275i) q^{84}\) \(+(6.62962 - 18.9464i) q^{85}\) \(-13.0226i q^{86}\) \(+(43.7556 - 19.0131i) q^{87}\) \(+36.0453 q^{88}\) \(+(-19.6772 - 6.88537i) q^{89}\) \(+(-15.3415 + 136.160i) q^{90}\) \(+(-20.7177 - 16.5218i) q^{91}\) \(+(-20.4387 - 42.4413i) q^{92}\) \(+(4.01539 - 8.33804i) q^{93}\) \(+(-109.735 - 137.604i) q^{94}\) \(+(-156.534 - 249.122i) q^{95}\) \(+(48.6299 + 11.0995i) q^{96}\) \(+(5.86295 + 52.0352i) q^{97}\) \(+(-47.3689 + 75.3871i) q^{98}\) \(+(33.8312 - 33.8312i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.32673 0.814157i −1.16336 0.407078i −0.321574 0.946885i \(-0.604212\pi\)
−0.841789 + 0.539806i \(0.818498\pi\)
\(3\) 0.184193 1.63476i 0.0613977 0.544919i −0.924932 0.380133i \(-0.875878\pi\)
0.986329 0.164786i \(-0.0526933\pi\)
\(4\) 1.62348 + 1.29468i 0.405869 + 0.323670i
\(5\) −3.83207 7.95737i −0.766414 1.59147i −0.805755 0.592248i \(-0.798240\pi\)
0.0393418 0.999226i \(-0.487474\pi\)
\(6\) −1.75952 + 3.65367i −0.293253 + 0.608945i
\(7\) 2.23777 + 2.80607i 0.319681 + 0.400867i 0.915543 0.402219i \(-0.131761\pi\)
−0.595862 + 0.803087i \(0.703190\pi\)
\(8\) 2.52264 + 4.01476i 0.315330 + 0.501845i
\(9\) 6.13584 + 1.40047i 0.681761 + 0.155607i
\(10\) 2.43763 + 21.6345i 0.243763 + 2.16345i
\(11\) 4.04453 6.43684i 0.367685 0.585167i −0.610725 0.791843i \(-0.709122\pi\)
0.978409 + 0.206676i \(0.0662646\pi\)
\(12\) 2.41552 2.41552i 0.201294 0.201294i
\(13\) −7.19807 + 1.64291i −0.553698 + 0.126378i −0.490210 0.871605i \(-0.663080\pi\)
−0.0634884 + 0.997983i \(0.520223\pi\)
\(14\) −2.92209 8.35085i −0.208721 0.596489i
\(15\) −13.7142 + 4.79881i −0.914281 + 0.319921i
\(16\) −4.44912 19.4929i −0.278070 1.21830i
\(17\) 1.60706 + 1.60706i 0.0945331 + 0.0945331i 0.752792 0.658259i \(-0.228707\pi\)
−0.658259 + 0.752792i \(0.728707\pi\)
\(18\) −13.1362 8.25404i −0.729791 0.458558i
\(19\) 33.1033 3.72985i 1.74228 0.196308i 0.817270 0.576254i \(-0.195486\pi\)
0.925008 + 0.379947i \(0.124058\pi\)
\(20\) 4.08097 17.8799i 0.204049 0.893996i
\(21\) 4.99943 3.14135i 0.238068 0.149588i
\(22\) −14.6511 + 11.6839i −0.665960 + 0.531085i
\(23\) −20.4388 9.84282i −0.888644 0.427948i −0.0668700 0.997762i \(-0.521301\pi\)
−0.821774 + 0.569813i \(0.807016\pi\)
\(24\) 7.02782 3.38442i 0.292826 0.141017i
\(25\) −33.0478 + 41.4406i −1.32191 + 1.65762i
\(26\) 18.0855 + 2.03775i 0.695597 + 0.0783750i
\(27\) 8.30969 23.7477i 0.307766 0.879545i
\(28\) 7.45278i 0.266171i
\(29\) 14.4627 + 25.1362i 0.498714 + 0.866766i
\(30\) 35.8162 1.19387
\(31\) 5.30982 + 1.85799i 0.171284 + 0.0599350i 0.414559 0.910022i \(-0.363936\pi\)
−0.243275 + 0.969957i \(0.578222\pi\)
\(32\) −3.39483 + 30.1300i −0.106089 + 0.941562i
\(33\) −9.77769 7.79745i −0.296294 0.236286i
\(34\) −2.43079 5.04759i −0.0714939 0.148459i
\(35\) 13.7537 28.5598i 0.392962 0.815994i
\(36\) 8.14825 + 10.2176i 0.226340 + 0.283822i
\(37\) 8.64092 + 13.7519i 0.233538 + 0.371674i 0.942848 0.333223i \(-0.108136\pi\)
−0.709310 + 0.704897i \(0.750993\pi\)
\(38\) −80.0590 18.2729i −2.10682 0.480867i
\(39\) 1.35993 + 12.0697i 0.0348700 + 0.309480i
\(40\) 22.2800 35.4584i 0.557000 0.886461i
\(41\) −42.1095 + 42.1095i −1.02706 + 1.02706i −0.0274377 + 0.999624i \(0.508735\pi\)
−0.999624 + 0.0274377i \(0.991265\pi\)
\(42\) −14.1898 + 3.23874i −0.337853 + 0.0771129i
\(43\) 1.74483 + 4.98643i 0.0405774 + 0.115964i 0.962389 0.271674i \(-0.0875771\pi\)
−0.921812 + 0.387637i \(0.873291\pi\)
\(44\) 14.8999 5.21368i 0.338633 0.118493i
\(45\) −12.3689 54.1919i −0.274865 1.20426i
\(46\) 39.5419 + 39.5419i 0.859607 + 0.859607i
\(47\) 60.4551 + 37.9864i 1.28628 + 0.808222i 0.989192 0.146629i \(-0.0468423\pi\)
0.297086 + 0.954851i \(0.403985\pi\)
\(48\) −32.6856 + 3.68278i −0.680950 + 0.0767246i
\(49\) 8.03709 35.2128i 0.164022 0.718629i
\(50\) 110.632 69.5148i 2.21264 1.39030i
\(51\) 2.92317 2.33115i 0.0573170 0.0457088i
\(52\) −13.8130 6.65197i −0.265634 0.127923i
\(53\) −78.2991 + 37.7068i −1.47734 + 0.711450i −0.987095 0.160134i \(-0.948807\pi\)
−0.490246 + 0.871584i \(0.663093\pi\)
\(54\) −38.6687 + 48.4891i −0.716088 + 0.897946i
\(55\) −66.7192 7.51745i −1.21308 0.136681i
\(56\) −5.62062 + 16.0628i −0.100368 + 0.286836i
\(57\) 54.8029i 0.961454i
\(58\) −13.1859 70.2600i −0.227344 1.21138i
\(59\) 67.9548 1.15178 0.575888 0.817528i \(-0.304656\pi\)
0.575888 + 0.817528i \(0.304656\pi\)
\(60\) −28.4777 9.96476i −0.474628 0.166079i
\(61\) 5.72557 50.8159i 0.0938619 0.833047i −0.855273 0.518178i \(-0.826611\pi\)
0.949135 0.314870i \(-0.101961\pi\)
\(62\) −10.8418 8.64605i −0.174868 0.139452i
\(63\) 9.80078 + 20.3515i 0.155568 + 0.323040i
\(64\) −2.27117 + 4.71614i −0.0354871 + 0.0736897i
\(65\) 40.6568 + 50.9820i 0.625489 + 0.784338i
\(66\) 16.4017 + 26.1031i 0.248510 + 0.395502i
\(67\) −29.4645 6.72508i −0.439769 0.100374i −0.00309676 0.999995i \(-0.500986\pi\)
−0.436672 + 0.899621i \(0.643843\pi\)
\(68\) 0.528398 + 4.68966i 0.00777056 + 0.0689656i
\(69\) −19.8553 + 31.5995i −0.287758 + 0.457964i
\(70\) −55.2532 + 55.2532i −0.789331 + 0.789331i
\(71\) 17.3364 3.95693i 0.244175 0.0557314i −0.0986817 0.995119i \(-0.531463\pi\)
0.342857 + 0.939388i \(0.388605\pi\)
\(72\) 9.85600 + 28.1668i 0.136889 + 0.391206i
\(73\) 29.8255 10.4364i 0.408569 0.142965i −0.118166 0.992994i \(-0.537702\pi\)
0.526735 + 0.850029i \(0.323416\pi\)
\(74\) −8.90881 39.0321i −0.120389 0.527460i
\(75\) 61.6582 + 61.6582i 0.822109 + 0.822109i
\(76\) 58.5714 + 36.8029i 0.770677 + 0.484248i
\(77\) 27.1129 3.05489i 0.352116 0.0396739i
\(78\) 6.66246 29.1901i 0.0854161 0.374232i
\(79\) −38.0418 + 23.9032i −0.481541 + 0.302572i −0.750840 0.660484i \(-0.770351\pi\)
0.269299 + 0.963057i \(0.413208\pi\)
\(80\) −138.063 + 110.101i −1.72578 + 1.37627i
\(81\) 13.7422 + 6.61788i 0.169656 + 0.0817022i
\(82\) 132.261 63.6936i 1.61294 0.776751i
\(83\) 3.87179 4.85507i 0.0466480 0.0584948i −0.757960 0.652301i \(-0.773804\pi\)
0.804608 + 0.593806i \(0.202375\pi\)
\(84\) 12.1835 + 1.37275i 0.145042 + 0.0163423i
\(85\) 6.62962 18.9464i 0.0779955 0.222898i
\(86\) 13.0226i 0.151426i
\(87\) 43.7556 19.0131i 0.502938 0.218542i
\(88\) 36.0453 0.409605
\(89\) −19.6772 6.88537i −0.221093 0.0773637i 0.217460 0.976069i \(-0.430223\pi\)
−0.438552 + 0.898706i \(0.644509\pi\)
\(90\) −15.3415 + 136.160i −0.170462 + 1.51289i
\(91\) −20.7177 16.5218i −0.227667 0.181559i
\(92\) −20.4387 42.4413i −0.222159 0.461319i
\(93\) 4.01539 8.33804i 0.0431762 0.0896563i
\(94\) −109.735 137.604i −1.16740 1.46387i
\(95\) −156.534 249.122i −1.64772 2.62234i
\(96\) 48.6299 + 11.0995i 0.506562 + 0.115619i
\(97\) 5.86295 + 52.0352i 0.0604428 + 0.536445i 0.987050 + 0.160414i \(0.0512829\pi\)
−0.926607 + 0.376031i \(0.877289\pi\)
\(98\) −47.3689 + 75.3871i −0.483356 + 0.769256i
\(99\) 33.8312 33.8312i 0.341729 0.341729i
\(100\) −107.305 + 24.4916i −1.07305 + 0.244916i
\(101\) −13.5414 38.6991i −0.134073 0.383159i 0.857200 0.514984i \(-0.172202\pi\)
−0.991273 + 0.131825i \(0.957916\pi\)
\(102\) −8.69933 + 3.04403i −0.0852875 + 0.0298434i
\(103\) −18.1203 79.3902i −0.175925 0.770779i −0.983485 0.180992i \(-0.942069\pi\)
0.807559 0.589786i \(-0.200788\pi\)
\(104\) −24.7541 24.7541i −0.238020 0.238020i
\(105\) −44.1550 27.7444i −0.420524 0.264233i
\(106\) 212.880 23.9858i 2.00830 0.226281i
\(107\) 3.47716 15.2344i 0.0324968 0.142378i −0.956077 0.293116i \(-0.905308\pi\)
0.988574 + 0.150738i \(0.0481650\pi\)
\(108\) 44.2363 27.7955i 0.409595 0.257366i
\(109\) −24.8134 + 19.7880i −0.227646 + 0.181542i −0.730670 0.682731i \(-0.760792\pi\)
0.503024 + 0.864272i \(0.332221\pi\)
\(110\) 149.117 + 71.8109i 1.35561 + 0.652827i
\(111\) 24.0727 11.5928i 0.216871 0.104440i
\(112\) 44.7422 56.1050i 0.399484 0.500937i
\(113\) 80.1964 + 9.03596i 0.709703 + 0.0799643i 0.459434 0.888212i \(-0.348052\pi\)
0.250269 + 0.968176i \(0.419481\pi\)
\(114\) −44.6181 + 127.511i −0.391387 + 1.11852i
\(115\) 200.358i 1.74224i
\(116\) −9.06348 + 59.5327i −0.0781335 + 0.513213i
\(117\) −46.4671 −0.397155
\(118\) −158.112 55.3259i −1.33993 0.468863i
\(119\) −0.913300 + 8.10576i −0.00767479 + 0.0681156i
\(120\) −53.8621 42.9536i −0.448851 0.357947i
\(121\) 27.4253 + 56.9493i 0.226655 + 0.470655i
\(122\) −54.6939 + 113.573i −0.448311 + 0.930927i
\(123\) 61.0826 + 76.5951i 0.496606 + 0.622725i
\(124\) 6.21487 + 9.89091i 0.0501199 + 0.0797654i
\(125\) 241.135 + 55.0375i 1.92908 + 0.440300i
\(126\) −6.23440 55.3318i −0.0494793 0.439141i
\(127\) −47.5028 + 75.6003i −0.374038 + 0.595278i −0.979706 0.200439i \(-0.935763\pi\)
0.605668 + 0.795717i \(0.292906\pi\)
\(128\) 94.8838 94.8838i 0.741279 0.741279i
\(129\) 8.47300 1.93391i 0.0656821 0.0149915i
\(130\) −53.0899 151.722i −0.408384 1.16709i
\(131\) −122.442 + 42.8444i −0.934674 + 0.327057i −0.754291 0.656540i \(-0.772019\pi\)
−0.180383 + 0.983596i \(0.557734\pi\)
\(132\) −5.77866 25.3180i −0.0437778 0.191803i
\(133\) 84.5437 + 84.5437i 0.635667 + 0.635667i
\(134\) 63.0805 + 39.6361i 0.470750 + 0.295792i
\(135\) −220.813 + 24.8796i −1.63565 + 0.184293i
\(136\) −2.39793 + 10.5060i −0.0176318 + 0.0772501i
\(137\) −104.753 + 65.8204i −0.764618 + 0.480441i −0.857022 0.515281i \(-0.827688\pi\)
0.0924040 + 0.995722i \(0.470545\pi\)
\(138\) 71.9248 57.3581i 0.521195 0.415639i
\(139\) 40.2937 + 19.4044i 0.289883 + 0.139600i 0.573174 0.819434i \(-0.305712\pi\)
−0.283291 + 0.959034i \(0.591426\pi\)
\(140\) 59.3046 28.5596i 0.423604 0.203997i
\(141\) 73.2340 91.8326i 0.519390 0.651295i
\(142\) −43.5587 4.90789i −0.306751 0.0345626i
\(143\) −18.5377 + 52.9776i −0.129634 + 0.370473i
\(144\) 125.836i 0.873861i
\(145\) 144.596 211.409i 0.997215 1.45799i
\(146\) −77.8928 −0.533512
\(147\) −56.0840 19.6247i −0.381524 0.133501i
\(148\) −3.77603 + 33.5132i −0.0255137 + 0.226440i
\(149\) −92.6321 73.8716i −0.621692 0.495783i 0.261246 0.965272i \(-0.415867\pi\)
−0.882938 + 0.469489i \(0.844438\pi\)
\(150\) −93.2623 193.661i −0.621748 1.29107i
\(151\) −79.3234 + 164.717i −0.525320 + 1.09084i 0.454461 + 0.890767i \(0.349832\pi\)
−0.979781 + 0.200072i \(0.935882\pi\)
\(152\) 98.4822 + 123.493i 0.647909 + 0.812453i
\(153\) 7.61005 + 12.1113i 0.0497389 + 0.0791589i
\(154\) −65.5715 14.9663i −0.425789 0.0971836i
\(155\) −5.56290 49.3721i −0.0358897 0.318530i
\(156\) −13.4186 + 21.3556i −0.0860167 + 0.136895i
\(157\) −78.3608 + 78.3608i −0.499113 + 0.499113i −0.911162 0.412049i \(-0.864813\pi\)
0.412049 + 0.911162i \(0.364813\pi\)
\(158\) 107.974 24.6443i 0.683378 0.155977i
\(159\) 47.2194 + 134.945i 0.296978 + 0.848713i
\(160\) 252.765 88.4462i 1.57978 0.552789i
\(161\) −18.1177 79.3787i −0.112532 0.493035i
\(162\) −26.5863 26.5863i −0.164113 0.164113i
\(163\) −12.8408 8.06844i −0.0787782 0.0494996i 0.492067 0.870557i \(-0.336242\pi\)
−0.570845 + 0.821058i \(0.693384\pi\)
\(164\) −122.882 + 13.8455i −0.749282 + 0.0844238i
\(165\) −24.5784 + 107.685i −0.148960 + 0.652637i
\(166\) −12.9614 + 8.14417i −0.0780806 + 0.0490613i
\(167\) 205.173 163.620i 1.22858 0.979760i 0.228600 0.973521i \(-0.426585\pi\)
0.999981 0.00623948i \(-0.00198610\pi\)
\(168\) 25.2235 + 12.1470i 0.150140 + 0.0723036i
\(169\) −103.151 + 49.6747i −0.610359 + 0.293933i
\(170\) −30.8506 + 38.6854i −0.181474 + 0.227561i
\(171\) 208.340 + 23.4743i 1.21836 + 0.137277i
\(172\) −3.62315 + 10.3544i −0.0210648 + 0.0601998i
\(173\) 61.9144i 0.357887i −0.983859 0.178943i \(-0.942732\pi\)
0.983859 0.178943i \(-0.0572679\pi\)
\(174\) −117.287 + 8.61443i −0.674063 + 0.0495082i
\(175\) −190.238 −1.08708
\(176\) −143.467 50.2012i −0.815153 0.285234i
\(177\) 12.5168 111.090i 0.0707164 0.627625i
\(178\) 40.1778 + 32.0407i 0.225718 + 0.180004i
\(179\) 139.692 + 290.074i 0.780403 + 1.62052i 0.784182 + 0.620531i \(0.213083\pi\)
−0.00377939 + 0.999993i \(0.501203\pi\)
\(180\) 50.0805 103.993i 0.278225 0.577740i
\(181\) −185.369 232.445i −1.02414 1.28423i −0.958108 0.286408i \(-0.907539\pi\)
−0.0660276 0.997818i \(-0.521033\pi\)
\(182\) 34.7531 + 55.3093i 0.190951 + 0.303897i
\(183\) −82.0171 18.7199i −0.448181 0.102294i
\(184\) −12.0433 106.887i −0.0654525 0.580907i
\(185\) 76.3167 121.457i 0.412523 0.656526i
\(186\) −16.1312 + 16.1312i −0.0867267 + 0.0867267i
\(187\) 16.8442 3.84458i 0.0900760 0.0205593i
\(188\) 48.9672 + 139.940i 0.260464 + 0.744362i
\(189\) 85.2329 29.8243i 0.450968 0.157800i
\(190\) 161.387 + 707.082i 0.849405 + 3.72149i
\(191\) −191.734 191.734i −1.00384 1.00384i −0.999993 0.00384775i \(-0.998775\pi\)
−0.00384775 0.999993i \(-0.501225\pi\)
\(192\) 7.29142 + 4.58150i 0.0379761 + 0.0238620i
\(193\) 134.893 15.1987i 0.698925 0.0787500i 0.244650 0.969611i \(-0.421327\pi\)
0.454275 + 0.890861i \(0.349898\pi\)
\(194\) 28.7233 125.845i 0.148058 0.648685i
\(195\) 90.8319 57.0735i 0.465805 0.292684i
\(196\) 58.6374 46.7617i 0.299170 0.238580i
\(197\) −102.900 49.5541i −0.522336 0.251544i 0.154087 0.988057i \(-0.450756\pi\)
−0.676423 + 0.736514i \(0.736471\pi\)
\(198\) −106.260 + 51.1720i −0.536666 + 0.258445i
\(199\) −50.0688 + 62.7843i −0.251602 + 0.315499i −0.891553 0.452917i \(-0.850383\pi\)
0.639951 + 0.768416i \(0.278955\pi\)
\(200\) −249.742 28.1391i −1.24871 0.140696i
\(201\) −16.4210 + 46.9286i −0.0816967 + 0.233476i
\(202\) 101.067i 0.500332i
\(203\) −38.1698 + 96.8324i −0.188029 + 0.477007i
\(204\) 7.76379 0.0380578
\(205\) 496.447 + 173.714i 2.42170 + 0.847388i
\(206\) −22.4751 + 199.472i −0.109102 + 0.968311i
\(207\) −111.625 89.0179i −0.539251 0.430038i
\(208\) 64.0501 + 133.001i 0.307933 + 0.639430i
\(209\) 109.879 228.166i 0.525737 1.09170i
\(210\) 80.1483 + 100.503i 0.381659 + 0.478585i
\(211\) −34.1531 54.3543i −0.161863 0.257604i 0.755939 0.654642i \(-0.227181\pi\)
−0.917802 + 0.397039i \(0.870038\pi\)
\(212\) −175.935 40.1560i −0.829883 0.189415i
\(213\) −3.27537 29.0697i −0.0153773 0.136478i
\(214\) −20.4936 + 32.6154i −0.0957645 + 0.152408i
\(215\) 32.9926 32.9926i 0.153454 0.153454i
\(216\) 116.304 26.5456i 0.538444 0.122896i
\(217\) 6.66849 + 19.0575i 0.0307304 + 0.0878224i
\(218\) 73.8446 25.8393i 0.338736 0.118529i
\(219\) −11.5673 50.6799i −0.0528189 0.231415i
\(220\) −98.5845 98.5845i −0.448111 0.448111i
\(221\) −14.2080 8.92749i −0.0642897 0.0403959i
\(222\) −65.4489 + 7.37432i −0.294815 + 0.0332177i
\(223\) −47.0630 + 206.196i −0.211045 + 0.924648i 0.752814 + 0.658234i \(0.228696\pi\)
−0.963859 + 0.266414i \(0.914161\pi\)
\(224\) −92.1437 + 57.8977i −0.411356 + 0.258472i
\(225\) −260.812 + 207.991i −1.15916 + 0.924403i
\(226\) −179.238 86.3166i −0.793090 0.381932i
\(227\) 276.625 133.216i 1.21861 0.586853i 0.289688 0.957121i \(-0.406448\pi\)
0.928925 + 0.370268i \(0.120734\pi\)
\(228\) 70.9522 88.9713i 0.311194 0.390225i
\(229\) 85.7684 + 9.66378i 0.374535 + 0.0421999i 0.297226 0.954807i \(-0.403939\pi\)
0.0773089 + 0.997007i \(0.475367\pi\)
\(230\) 163.122 466.177i 0.709228 2.02686i
\(231\) 44.8858i 0.194311i
\(232\) −64.4317 + 121.474i −0.277723 + 0.523595i
\(233\) −141.899 −0.609008 −0.304504 0.952511i \(-0.598491\pi\)
−0.304504 + 0.952511i \(0.598491\pi\)
\(234\) 108.116 + 37.8315i 0.462035 + 0.161673i
\(235\) 70.6042 626.630i 0.300444 2.66651i
\(236\) 110.323 + 87.9797i 0.467471 + 0.372796i
\(237\) 32.0690 + 66.5919i 0.135312 + 0.280978i
\(238\) 8.72436 18.1163i 0.0366570 0.0761190i
\(239\) 86.5736 + 108.560i 0.362233 + 0.454225i 0.929234 0.369491i \(-0.120468\pi\)
−0.567002 + 0.823717i \(0.691897\pi\)
\(240\) 154.559 + 245.979i 0.643994 + 1.02491i
\(241\) −178.803 40.8106i −0.741922 0.169339i −0.165178 0.986264i \(-0.552820\pi\)
−0.576744 + 0.816925i \(0.695677\pi\)
\(242\) −17.4456 154.834i −0.0720892 0.639809i
\(243\) 133.821 212.975i 0.550705 0.876442i
\(244\) 75.0857 75.0857i 0.307728 0.307728i
\(245\) −311.000 + 70.9837i −1.26939 + 0.289730i
\(246\) −79.7620 227.947i −0.324236 0.926613i
\(247\) −232.152 + 81.2336i −0.939887 + 0.328881i
\(248\) 5.93540 + 26.0047i 0.0239331 + 0.104858i
\(249\) −7.22371 7.22371i −0.0290109 0.0290109i
\(250\) −516.246 324.379i −2.06498 1.29752i
\(251\) −253.427 + 28.5543i −1.00967 + 0.113762i −0.601273 0.799043i \(-0.705340\pi\)
−0.408394 + 0.912806i \(0.633911\pi\)
\(252\) −10.4374 + 45.7291i −0.0414182 + 0.181465i
\(253\) −146.022 + 91.7517i −0.577162 + 0.362655i
\(254\) 172.077 137.227i 0.677467 0.540262i
\(255\) −29.7516 14.3276i −0.116673 0.0561867i
\(256\) −279.154 + 134.434i −1.09045 + 0.525131i
\(257\) −9.57230 + 12.0033i −0.0372463 + 0.0467054i −0.800106 0.599859i \(-0.795223\pi\)
0.762859 + 0.646564i \(0.223795\pi\)
\(258\) −21.2888 2.39868i −0.0825149 0.00929720i
\(259\) −19.2526 + 55.0206i −0.0743342 + 0.212435i
\(260\) 135.406i 0.520791i
\(261\) 53.5385 + 174.487i 0.205128 + 0.668531i
\(262\) 319.772 1.22050
\(263\) 210.667 + 73.7155i 0.801014 + 0.280287i 0.699579 0.714555i \(-0.253371\pi\)
0.101435 + 0.994842i \(0.467657\pi\)
\(264\) 6.63929 58.9253i 0.0251488 0.223202i
\(265\) 600.095 + 478.560i 2.26451 + 1.80589i
\(266\) −127.878 265.542i −0.480745 0.998277i
\(267\) −14.8803 + 30.8993i −0.0557315 + 0.115728i
\(268\) −39.1281 49.0651i −0.146000 0.183079i
\(269\) 206.896 + 329.273i 0.769129 + 1.22406i 0.969680 + 0.244379i \(0.0785840\pi\)
−0.200551 + 0.979683i \(0.564273\pi\)
\(270\) 534.027 + 121.888i 1.97788 + 0.451437i
\(271\) 43.4468 + 385.601i 0.160320 + 1.42288i 0.773929 + 0.633273i \(0.218289\pi\)
−0.613608 + 0.789611i \(0.710283\pi\)
\(272\) 24.1762 38.4762i 0.0888831 0.141457i
\(273\) −30.8253 + 30.8253i −0.112913 + 0.112913i
\(274\) 297.319 67.8611i 1.08511 0.247668i
\(275\) 133.084 + 380.331i 0.483940 + 1.38302i
\(276\) −73.1460 + 25.5949i −0.265022 + 0.0927351i
\(277\) −73.9544 324.015i −0.266983 1.16973i −0.913503 0.406833i \(-0.866633\pi\)
0.646519 0.762897i \(-0.276224\pi\)
\(278\) −77.9542 77.9542i −0.280411 0.280411i
\(279\) 29.9782 + 18.8365i 0.107449 + 0.0675144i
\(280\) 149.356 16.8284i 0.533415 0.0601015i
\(281\) −0.644237 + 2.82259i −0.00229266 + 0.0100448i −0.976061 0.217496i \(-0.930211\pi\)
0.973769 + 0.227540i \(0.0730684\pi\)
\(282\) −245.162 + 154.045i −0.869367 + 0.546260i
\(283\) 275.054 219.348i 0.971921 0.775081i −0.00245718 0.999997i \(-0.500782\pi\)
0.974378 + 0.224916i \(0.0722107\pi\)
\(284\) 33.2683 + 16.0212i 0.117142 + 0.0564125i
\(285\) −436.087 + 210.008i −1.53013 + 0.736872i
\(286\) 86.2642 108.172i 0.301623 0.378223i
\(287\) −212.393 23.9310i −0.740047 0.0833833i
\(288\) −63.0262 + 180.118i −0.218841 + 0.625411i
\(289\) 283.835i 0.982127i
\(290\) −508.556 + 374.167i −1.75364 + 1.29023i
\(291\) 86.1448 0.296030
\(292\) 61.9329 + 21.6713i 0.212099 + 0.0742167i
\(293\) −10.4159 + 92.4441i −0.0355493 + 0.315509i 0.963336 + 0.268299i \(0.0864615\pi\)
−0.998885 + 0.0472098i \(0.984967\pi\)
\(294\) 114.515 + 91.3224i 0.389506 + 0.310620i
\(295\) −260.407 540.742i −0.882737 1.83302i
\(296\) −33.4128 + 69.3824i −0.112881 + 0.234400i
\(297\) −119.251 149.537i −0.401520 0.503490i
\(298\) 155.386 + 247.296i 0.521431 + 0.829853i
\(299\) 163.291 + 37.2701i 0.546124 + 0.124649i
\(300\) 20.2730 + 179.928i 0.0675768 + 0.599761i
\(301\) −10.0878 + 16.0546i −0.0335142 + 0.0533375i
\(302\) 318.669 318.669i 1.05520 1.05520i
\(303\) −65.7579 + 15.0088i −0.217023 + 0.0495340i
\(304\) −219.986 628.683i −0.723637 2.06804i
\(305\) −426.302 + 149.169i −1.39771 + 0.489080i
\(306\) −7.84598 34.3755i −0.0256405 0.112338i
\(307\) −32.6117 32.6117i −0.106227 0.106227i 0.651996 0.758223i \(-0.273932\pi\)
−0.758223 + 0.651996i \(0.773932\pi\)
\(308\) 47.9724 + 30.1430i 0.155754 + 0.0978670i
\(309\) −133.121 + 14.9992i −0.430814 + 0.0485410i
\(310\) −27.2533 + 119.404i −0.0879138 + 0.385176i
\(311\) 55.7972 35.0597i 0.179412 0.112732i −0.439332 0.898325i \(-0.644785\pi\)
0.618744 + 0.785593i \(0.287642\pi\)
\(312\) −45.0264 + 35.9074i −0.144315 + 0.115088i
\(313\) −145.236 69.9418i −0.464012 0.223456i 0.187246 0.982313i \(-0.440044\pi\)
−0.651257 + 0.758857i \(0.725758\pi\)
\(314\) 246.122 118.526i 0.783828 0.377472i
\(315\) 124.387 155.977i 0.394881 0.495165i
\(316\) −92.7070 10.4456i −0.293377 0.0330556i
\(317\) 92.7815 265.154i 0.292686 0.836449i −0.699827 0.714312i \(-0.746740\pi\)
0.992513 0.122137i \(-0.0389747\pi\)
\(318\) 352.425i 1.10825i
\(319\) 220.293 + 8.57016i 0.690573 + 0.0268657i
\(320\) 46.2314 0.144473
\(321\) −24.2641 8.49038i −0.0755891 0.0264498i
\(322\) −22.4718 + 199.443i −0.0697883 + 0.619388i
\(323\) 59.1931 + 47.2050i 0.183261 + 0.146145i
\(324\) 13.7421 + 28.5357i 0.0424138 + 0.0880731i
\(325\) 169.797 352.587i 0.522452 1.08488i
\(326\) 23.3082 + 29.2275i 0.0714974 + 0.0896549i
\(327\) 27.7782 + 44.2087i 0.0849486 + 0.135195i
\(328\) −275.287 62.8324i −0.839289 0.191562i
\(329\) 28.6917 + 254.646i 0.0872088 + 0.774000i
\(330\) 144.860 230.543i 0.438969 0.698615i
\(331\) −35.3548 + 35.3548i −0.106812 + 0.106812i −0.758493 0.651681i \(-0.774064\pi\)
0.651681 + 0.758493i \(0.274064\pi\)
\(332\) 12.5715 2.86937i 0.0378660 0.00864268i
\(333\) 33.7602 + 96.4811i 0.101382 + 0.289733i
\(334\) −610.593 + 213.656i −1.82812 + 0.639688i
\(335\) 59.3960 + 260.231i 0.177301 + 0.776808i
\(336\) −83.4769 83.4769i −0.248443 0.248443i
\(337\) −233.227 146.546i −0.692069 0.434856i 0.139541 0.990216i \(-0.455437\pi\)
−0.831610 + 0.555361i \(0.812580\pi\)
\(338\) 280.446 31.5987i 0.829723 0.0934873i
\(339\) 29.5432 129.437i 0.0871482 0.381821i
\(340\) 35.2925 22.1758i 0.103802 0.0652228i
\(341\) 33.4353 26.6637i 0.0980506 0.0781928i
\(342\) −465.639 224.240i −1.36152 0.655672i
\(343\) 275.244 132.551i 0.802462 0.386445i
\(344\) −15.6178 + 19.5841i −0.0454005 + 0.0569304i
\(345\) 327.536 + 36.9045i 0.949380 + 0.106969i
\(346\) −50.4080 + 144.058i −0.145688 + 0.416352i
\(347\) 506.789i 1.46049i 0.683186 + 0.730244i \(0.260594\pi\)
−0.683186 + 0.730244i \(0.739406\pi\)
\(348\) 95.6521 + 25.7821i 0.274862 + 0.0740865i
\(349\) −308.138 −0.882917 −0.441459 0.897282i \(-0.645539\pi\)
−0.441459 + 0.897282i \(0.645539\pi\)
\(350\) 442.633 + 154.884i 1.26466 + 0.442525i
\(351\) −20.7983 + 184.590i −0.0592544 + 0.525897i
\(352\) 180.211 + 143.714i 0.511964 + 0.408277i
\(353\) 48.7910 + 101.316i 0.138218 + 0.287013i 0.958576 0.284838i \(-0.0919398\pi\)
−0.820358 + 0.571851i \(0.806226\pi\)
\(354\) −119.568 + 248.285i −0.337761 + 0.701369i
\(355\) −97.9212 122.789i −0.275834 0.345885i
\(356\) −23.0312 36.6540i −0.0646945 0.102961i
\(357\) 13.0827 + 2.98605i 0.0366463 + 0.00836428i
\(358\) −88.8599 788.653i −0.248212 2.20294i
\(359\) −38.4941 + 61.2630i −0.107226 + 0.170649i −0.896027 0.443999i \(-0.853559\pi\)
0.788801 + 0.614648i \(0.210702\pi\)
\(360\) 186.365 186.365i 0.517681 0.517681i
\(361\) 729.968 166.610i 2.02207 0.461525i
\(362\) 242.055 + 691.754i 0.668661 + 1.91092i
\(363\) 98.1498 34.3441i 0.270385 0.0946118i
\(364\) −12.2443 53.6457i −0.0336381 0.147378i
\(365\) −197.340 197.340i −0.540657 0.540657i
\(366\) 175.590 + 110.331i 0.479755 + 0.301450i
\(367\) 39.4991 4.45048i 0.107627 0.0121267i −0.0579866 0.998317i \(-0.518468\pi\)
0.165614 + 0.986191i \(0.447040\pi\)
\(368\) −100.930 + 442.203i −0.274266 + 1.20164i
\(369\) −317.350 + 199.404i −0.860028 + 0.540391i
\(370\) −276.453 + 220.464i −0.747171 + 0.595849i
\(371\) −281.023 135.334i −0.757475 0.364781i
\(372\) 17.3140 8.33798i 0.0465430 0.0224139i
\(373\) −312.636 + 392.033i −0.838165 + 1.05103i 0.159793 + 0.987151i \(0.448917\pi\)
−0.997958 + 0.0638753i \(0.979654\pi\)
\(374\) −42.3220 4.76854i −0.113160 0.0127501i
\(375\) 134.388 384.060i 0.358369 1.02416i
\(376\) 338.539i 0.900369i
\(377\) −145.400 157.171i −0.385677 0.416900i
\(378\) −222.595 −0.588876
\(379\) −296.798 103.854i −0.783109 0.274022i −0.0910346 0.995848i \(-0.529017\pi\)
−0.692075 + 0.721826i \(0.743303\pi\)
\(380\) 68.4044 607.106i 0.180012 1.59765i
\(381\) 114.839 + 91.5807i 0.301414 + 0.240369i
\(382\) 290.010 + 602.212i 0.759189 + 1.57647i
\(383\) 184.851 383.847i 0.482639 1.00221i −0.507438 0.861688i \(-0.669407\pi\)
0.990077 0.140522i \(-0.0448782\pi\)
\(384\) −137.635 172.589i −0.358425 0.449450i
\(385\) −128.208 204.041i −0.333007 0.529977i
\(386\) −326.232 74.4604i −0.845161 0.192903i
\(387\) 3.72266 + 33.0395i 0.00961928 + 0.0853735i
\(388\) −57.8505 + 92.0686i −0.149099 + 0.237290i
\(389\) 11.1950 11.1950i 0.0287790 0.0287790i −0.692571 0.721350i \(-0.743522\pi\)
0.721350 + 0.692571i \(0.243522\pi\)
\(390\) −257.808 + 58.8429i −0.661045 + 0.150879i
\(391\) −17.0284 48.6645i −0.0435510 0.124462i
\(392\) 161.646 56.5623i 0.412362 0.144292i
\(393\) 47.4872 + 208.055i 0.120833 + 0.529403i
\(394\) 199.076 + 199.076i 0.505268 + 0.505268i
\(395\) 335.985 + 211.114i 0.850596 + 0.534465i
\(396\) 98.7248 11.1236i 0.249305 0.0280899i
\(397\) 56.3270 246.785i 0.141882 0.621624i −0.853116 0.521722i \(-0.825290\pi\)
0.994997 0.0999023i \(-0.0318530\pi\)
\(398\) 167.613 105.318i 0.421137 0.264618i
\(399\) 153.781 122.636i 0.385415 0.307359i
\(400\) 954.829 + 459.821i 2.38707 + 1.14955i
\(401\) −400.299 + 192.774i −0.998253 + 0.480733i −0.860345 0.509712i \(-0.829752\pi\)
−0.137908 + 0.990445i \(0.544038\pi\)
\(402\) 76.4145 95.8207i 0.190086 0.238360i
\(403\) −41.2730 4.65035i −0.102414 0.0115393i
\(404\) 28.1188 80.3589i 0.0696010 0.198908i
\(405\) 134.712i 0.332621i
\(406\) 167.648 194.226i 0.412925 0.478390i
\(407\) 123.467 0.303360
\(408\) 16.7331 + 5.85517i 0.0410125 + 0.0143509i
\(409\) −60.3508 + 535.628i −0.147557 + 1.30960i 0.673683 + 0.739021i \(0.264711\pi\)
−0.821240 + 0.570583i \(0.806717\pi\)
\(410\) −1013.67 808.372i −2.47236 1.97164i
\(411\) 88.3058 + 183.369i 0.214856 + 0.446153i
\(412\) 73.3670 152.348i 0.178075 0.369777i
\(413\) 152.067 + 190.686i 0.368201 + 0.461709i
\(414\) 187.246 + 298.000i 0.452285 + 0.719808i
\(415\) −53.4705 12.2043i −0.128845 0.0294080i
\(416\) −25.0647 222.455i −0.0602516 0.534748i
\(417\) 39.1434 62.2963i 0.0938690 0.149392i
\(418\) −441.421 + 441.421i −1.05603 + 1.05603i
\(419\) −428.228 + 97.7402i −1.02202 + 0.233270i −0.700516 0.713637i \(-0.747047\pi\)
−0.321508 + 0.946907i \(0.604190\pi\)
\(420\) −35.7645 102.209i −0.0851536 0.243355i
\(421\) 736.985 257.882i 1.75056 0.612547i 0.751664 0.659546i \(-0.229251\pi\)
0.998895 + 0.0469987i \(0.0149657\pi\)
\(422\) 35.2120 + 154.274i 0.0834407 + 0.365577i
\(423\) 317.744 + 317.744i 0.751168 + 0.751168i
\(424\) −348.905 219.231i −0.822888 0.517055i
\(425\) −119.707 + 13.4878i −0.281664 + 0.0317360i
\(426\) −16.0464 + 70.3039i −0.0376676 + 0.165033i
\(427\) 155.405 97.6477i 0.363947 0.228683i
\(428\) 25.3688 20.2309i 0.0592729 0.0472685i
\(429\) 83.1911 + 40.0627i 0.193919 + 0.0933863i
\(430\) −103.626 + 49.9036i −0.240990 + 0.116055i
\(431\) 476.007 596.893i 1.10442 1.38490i 0.189209 0.981937i \(-0.439408\pi\)
0.915215 0.402967i \(-0.132021\pi\)
\(432\) −499.882 56.3231i −1.15713 0.130378i
\(433\) −91.9842 + 262.876i −0.212435 + 0.607104i −0.999958 0.00918154i \(-0.997077\pi\)
0.787523 + 0.616285i \(0.211363\pi\)
\(434\) 49.7707i 0.114679i
\(435\) −318.969 275.320i −0.733262 0.632919i
\(436\) −65.9032 −0.151154
\(437\) −713.304 249.596i −1.63228 0.571158i
\(438\) −14.3473 + 127.336i −0.0327564 + 0.290721i
\(439\) −116.941 93.2577i −0.266382 0.212432i 0.481185 0.876619i \(-0.340207\pi\)
−0.747567 + 0.664187i \(0.768778\pi\)
\(440\) −138.128 286.826i −0.313927 0.651876i
\(441\) 98.6287 204.805i 0.223648 0.464410i
\(442\) 25.7898 + 32.3394i 0.0583479 + 0.0731660i
\(443\) −391.882 623.676i −0.884609 1.40785i −0.912872 0.408246i \(-0.866141\pi\)
0.0282635 0.999601i \(-0.491002\pi\)
\(444\) 54.0904 + 12.3458i 0.121825 + 0.0278058i
\(445\) 20.6151 + 182.964i 0.0463261 + 0.411156i
\(446\) 277.379 441.446i 0.621926 0.989790i
\(447\) −137.824 + 137.824i −0.308332 + 0.308332i
\(448\) −18.3162 + 4.18055i −0.0408843 + 0.00933158i
\(449\) −24.4486 69.8700i −0.0544511 0.155612i 0.913445 0.406961i \(-0.133412\pi\)
−0.967897 + 0.251349i \(0.919126\pi\)
\(450\) 776.175 271.596i 1.72483 0.603546i
\(451\) 100.739 + 441.365i 0.223367 + 0.978637i
\(452\) 118.498 + 118.498i 0.262165 + 0.262165i
\(453\) 254.661 + 160.014i 0.562166 + 0.353232i
\(454\) −752.089 + 84.7401i −1.65658 + 0.186652i
\(455\) −52.0787 + 228.172i −0.114459 + 0.501476i
\(456\) 220.021 138.248i 0.482501 0.303176i
\(457\) 617.662 492.569i 1.35156 1.07783i 0.362237 0.932086i \(-0.382013\pi\)
0.989322 0.145746i \(-0.0465582\pi\)
\(458\) −191.692 92.3139i −0.418541 0.201559i
\(459\) 51.5182 24.8099i 0.112240 0.0540520i
\(460\) −259.399 + 325.276i −0.563911 + 0.707122i
\(461\) 444.021 + 50.0291i 0.963169 + 0.108523i 0.579522 0.814957i \(-0.303239\pi\)
0.383647 + 0.923480i \(0.374668\pi\)
\(462\) −36.5441 + 104.437i −0.0790997 + 0.226054i
\(463\) 515.055i 1.11243i −0.831039 0.556215i \(-0.812253\pi\)
0.831039 0.556215i \(-0.187747\pi\)
\(464\) 425.630 393.754i 0.917307 0.848607i
\(465\) −81.7361 −0.175777
\(466\) 330.160 + 115.528i 0.708498 + 0.247914i
\(467\) 62.2491 552.476i 0.133296 1.18303i −0.731834 0.681483i \(-0.761335\pi\)
0.865129 0.501549i \(-0.167236\pi\)
\(468\) −75.4383 60.1600i −0.161193 0.128547i
\(469\) −47.0636 97.7286i −0.100349 0.208376i
\(470\) −674.452 + 1400.51i −1.43500 + 2.97982i
\(471\) 113.667 + 142.534i 0.241332 + 0.302621i
\(472\) 171.426 + 272.822i 0.363190 + 0.578013i
\(473\) 39.1539 + 8.93661i 0.0827777 + 0.0188935i
\(474\) −20.3995 181.050i −0.0430368 0.381963i
\(475\) −939.423 + 1495.08i −1.97773 + 3.14754i
\(476\) −11.9771 + 11.9771i −0.0251619 + 0.0251619i
\(477\) −533.238 + 121.708i −1.11790 + 0.255153i
\(478\) −113.048 323.074i −0.236503 0.675886i
\(479\) 47.7444 16.7065i 0.0996752 0.0348779i −0.279981 0.960006i \(-0.590328\pi\)
0.379656 + 0.925128i \(0.376042\pi\)
\(480\) −98.0306 429.500i −0.204230 0.894792i
\(481\) −84.7912 84.7912i −0.176281 0.176281i
\(482\) 382.800 + 240.529i 0.794190 + 0.499023i
\(483\) −133.102 + 14.9970i −0.275574 + 0.0310497i
\(484\) −29.2067 + 127.963i −0.0603444 + 0.264386i
\(485\) 391.596 246.056i 0.807414 0.507332i
\(486\) −484.761 + 386.584i −0.997450 + 0.795440i
\(487\) 565.353 + 272.260i 1.16089 + 0.559055i 0.912288 0.409550i \(-0.134314\pi\)
0.248603 + 0.968606i \(0.420029\pi\)
\(488\) 218.457 105.203i 0.447658 0.215581i
\(489\) −15.5551 + 19.5055i −0.0318101 + 0.0398886i
\(490\) 781.404 + 88.0431i 1.59470 + 0.179680i
\(491\) −213.075 + 608.934i −0.433962 + 1.24019i 0.494634 + 0.869101i \(0.335302\pi\)
−0.928596 + 0.371091i \(0.878984\pi\)
\(492\) 203.433i 0.413482i
\(493\) −17.1530 + 63.6380i −0.0347931 + 0.129083i
\(494\) 606.291 1.22731
\(495\) −398.851 139.564i −0.805759 0.281947i
\(496\) 12.5934 111.770i 0.0253900 0.225342i
\(497\) 49.8983 + 39.7926i 0.100399 + 0.0800655i
\(498\) 10.9264 + 22.6888i 0.0219405 + 0.0455599i
\(499\) 59.2142 122.960i 0.118666 0.246412i −0.833172 0.553014i \(-0.813478\pi\)
0.951838 + 0.306602i \(0.0991920\pi\)
\(500\) 320.221 + 401.545i 0.640443 + 0.803090i
\(501\) −229.688 365.546i −0.458458 0.729632i
\(502\) 612.902 + 139.891i 1.22092 + 0.278667i
\(503\) 0.982486 + 8.71980i 0.00195325 + 0.0173356i 0.994651 0.103292i \(-0.0329377\pi\)
−0.992698 + 0.120628i \(0.961509\pi\)
\(504\) −56.9827 + 90.6874i −0.113061 + 0.179935i
\(505\) −256.052 + 256.052i −0.507033 + 0.507033i
\(506\) 414.454 94.5963i 0.819078 0.186949i
\(507\) 62.2065 + 177.776i 0.122695 + 0.350643i
\(508\) −174.998 + 61.2345i −0.344484 + 0.120540i
\(509\) −29.4818 129.168i −0.0579210 0.253768i 0.937675 0.347512i \(-0.112974\pi\)
−0.995596 + 0.0937442i \(0.970116\pi\)
\(510\) 57.5589 + 57.5589i 0.112861 + 0.112861i
\(511\) 96.0279 + 60.3383i 0.187922 + 0.118079i
\(512\) 225.597 25.4186i 0.440619 0.0496458i
\(513\) 186.503 817.122i 0.363553 1.59283i
\(514\) 32.0447 20.1350i 0.0623437 0.0391732i
\(515\) −562.299 + 448.419i −1.09184 + 0.870716i
\(516\) 16.2595 + 7.83017i 0.0315107 + 0.0151747i
\(517\) 489.025 235.502i 0.945889 0.455516i
\(518\) 89.5908 112.343i 0.172955 0.216879i
\(519\) −101.215 11.4042i −0.195019 0.0219734i
\(520\) −102.118 + 291.837i −0.196381 + 0.561224i
\(521\) 754.287i 1.44777i 0.689921 + 0.723884i \(0.257645\pi\)
−0.689921 + 0.723884i \(0.742355\pi\)
\(522\) 17.4899 449.571i 0.0335055 0.861247i
\(523\) −645.744 −1.23469 −0.617346 0.786692i \(-0.711792\pi\)
−0.617346 + 0.786692i \(0.711792\pi\)
\(524\) −254.252 88.9667i −0.485214 0.169784i
\(525\) −35.0406 + 310.994i −0.0667440 + 0.592369i
\(526\) −430.148 343.031i −0.817771 0.652151i
\(527\) 5.54731 + 11.5191i 0.0105262 + 0.0218579i
\(528\) −108.492 + 225.287i −0.205478 + 0.426680i
\(529\) −8.96189 11.2379i −0.0169412 0.0212436i
\(530\) −1006.63 1602.05i −1.89931 3.02273i
\(531\) 416.960 + 95.1684i 0.785236 + 0.179225i
\(532\) 27.7977 + 246.712i 0.0522514 + 0.463744i
\(533\) 233.925 372.290i 0.438884 0.698480i
\(534\) 59.7793 59.7793i 0.111946 0.111946i
\(535\) −134.551 + 30.7103i −0.251496 + 0.0574024i
\(536\) −47.3288 135.258i −0.0883000 0.252347i
\(537\) 499.931 174.933i 0.930969 0.325760i
\(538\) −213.310 934.573i −0.396487 1.73712i
\(539\) −194.153 194.153i −0.360209 0.360209i
\(540\) −390.696 245.490i −0.723511 0.454612i
\(541\) 447.985 50.4757i 0.828068 0.0933008i 0.312251 0.950000i \(-0.398917\pi\)
0.515817 + 0.856699i \(0.327488\pi\)
\(542\) 212.851 932.561i 0.392714 1.72059i
\(543\) −414.135 + 260.218i −0.762679 + 0.479223i
\(544\) −53.8764 + 42.9650i −0.0990376 + 0.0789798i
\(545\) 252.547 + 121.620i 0.463390 + 0.223157i
\(546\) 96.8186 46.6254i 0.177323 0.0853945i
\(547\) −506.301 + 634.881i −0.925596 + 1.16066i 0.0611077 + 0.998131i \(0.480537\pi\)
−0.986704 + 0.162530i \(0.948035\pi\)
\(548\) −255.280 28.7631i −0.465839 0.0524875i
\(549\) 106.297 303.780i 0.193620 0.553333i
\(550\) 993.277i 1.80596i
\(551\) 572.518 + 778.148i 1.03905 + 1.41225i
\(552\) −176.952 −0.320566
\(553\) −152.203 53.2580i −0.275231 0.0963075i
\(554\) −91.7276 + 814.105i −0.165573 + 1.46950i
\(555\) −184.496 147.131i −0.332426 0.265101i
\(556\) 40.2934 + 83.6702i 0.0724702 + 0.150486i
\(557\) −293.291 + 609.025i −0.526554 + 1.09340i 0.452868 + 0.891578i \(0.350401\pi\)
−0.979422 + 0.201824i \(0.935313\pi\)
\(558\) −54.4151 68.2344i −0.0975181 0.122284i
\(559\) −20.7517 33.0261i −0.0371229 0.0590807i
\(560\) −617.903 141.032i −1.10340 0.251844i
\(561\) −3.18237 28.2443i −0.00567268 0.0503464i
\(562\) 3.79699 6.04288i 0.00675622 0.0107525i
\(563\) 429.885 429.885i 0.763562 0.763562i −0.213403 0.976964i \(-0.568455\pi\)
0.976964 + 0.213403i \(0.0684546\pi\)
\(564\) 237.788 54.2735i 0.421609 0.0962296i
\(565\) −235.416 672.779i −0.416665 1.19076i
\(566\) −818.558 + 286.426i −1.44622 + 0.506053i
\(567\) 12.1815 + 53.3707i 0.0214842 + 0.0941283i
\(568\) 59.6197 + 59.6197i 0.104964 + 0.104964i
\(569\) 630.677 + 396.281i 1.10840 + 0.696451i 0.956438 0.291936i \(-0.0942994\pi\)
0.151958 + 0.988387i \(0.451442\pi\)
\(570\) 1185.63 133.589i 2.08006 0.234367i
\(571\) 30.9764 135.717i 0.0542495 0.237682i −0.940533 0.339703i \(-0.889674\pi\)
0.994782 + 0.102020i \(0.0325307\pi\)
\(572\) −98.6846 + 62.0076i −0.172526 + 0.108405i
\(573\) −348.754 + 278.122i −0.608645 + 0.485379i
\(574\) 474.698 + 228.602i 0.827000 + 0.398262i
\(575\) 1083.35 521.714i 1.88409 0.907328i
\(576\) −20.5404 + 25.7568i −0.0356604 + 0.0447167i
\(577\) −751.398 84.6622i −1.30225 0.146728i −0.566545 0.824031i \(-0.691720\pi\)
−0.735705 + 0.677302i \(0.763149\pi\)
\(578\) −231.086 + 660.406i −0.399803 + 1.14257i
\(579\) 223.316i 0.385693i
\(580\) 508.456 156.012i 0.876648 0.268986i
\(581\) 22.2878 0.0383611
\(582\) −200.435 70.1354i −0.344391 0.120508i
\(583\) −73.9703 + 656.505i −0.126879 + 1.12608i
\(584\) 117.139 + 93.4151i 0.200580 + 0.159957i
\(585\) 178.065 + 369.756i 0.304385 + 0.632062i
\(586\) 99.4990 206.612i 0.169794 0.352580i
\(587\) −481.461 603.732i −0.820205 1.02850i −0.999004 0.0446193i \(-0.985793\pi\)
0.178799 0.983886i \(-0.442779\pi\)
\(588\) −65.6435 104.471i −0.111639 0.177672i
\(589\) 182.702 + 41.7006i 0.310191 + 0.0707990i
\(590\) 165.648 + 1470.17i 0.280760 + 2.49181i
\(591\) −99.9625 + 159.089i −0.169141 + 0.269187i
\(592\) 229.620 229.620i 0.387872 0.387872i
\(593\) −636.417 + 145.258i −1.07322 + 0.244954i −0.722390 0.691486i \(-0.756956\pi\)
−0.350826 + 0.936441i \(0.614099\pi\)
\(594\) 155.719 + 445.020i 0.262154 + 0.749192i
\(595\) 68.0004 23.7944i 0.114286 0.0399905i
\(596\) −54.7460 239.858i −0.0918557 0.402446i
\(597\) 93.4148 + 93.4148i 0.156474 + 0.156474i
\(598\) −349.590 219.662i −0.584598 0.367327i
\(599\) −106.941 + 12.0494i −0.178533 + 0.0201158i −0.200778 0.979637i \(-0.564347\pi\)
0.0222453 + 0.999753i \(0.492919\pi\)
\(600\) −92.0014 + 403.084i −0.153336 + 0.671807i
\(601\) 561.034 352.521i 0.933500 0.586557i 0.0228515 0.999739i \(-0.492726\pi\)
0.910649 + 0.413182i \(0.135583\pi\)
\(602\) 36.5424 29.1416i 0.0607017 0.0484080i
\(603\) −171.371 82.5281i −0.284198 0.136862i
\(604\) −342.035 + 164.715i −0.566283 + 0.272708i
\(605\) 348.071 436.467i 0.575323 0.721433i
\(606\) 165.220 + 18.6158i 0.272641 + 0.0307192i
\(607\) −170.406 + 486.993i −0.280735 + 0.802294i 0.714031 + 0.700114i \(0.246868\pi\)
−0.994766 + 0.102180i \(0.967418\pi\)
\(608\) 1010.06i 1.66129i
\(609\) 151.267 + 80.2343i 0.248386 + 0.131748i
\(610\) 1113.33 1.82514
\(611\) −497.568 174.107i −0.814351 0.284954i
\(612\) −3.32555 + 29.5150i −0.00543390 + 0.0482272i
\(613\) 437.145 + 348.611i 0.713124 + 0.568697i 0.911436 0.411442i \(-0.134975\pi\)
−0.198313 + 0.980139i \(0.563546\pi\)
\(614\) 49.3275 + 102.430i 0.0803380 + 0.166824i
\(615\) 375.423 779.575i 0.610444 1.26760i
\(616\) 80.6609 + 101.146i 0.130943 + 0.164197i
\(617\) 365.703 + 582.013i 0.592711 + 0.943295i 0.999556 + 0.0297975i \(0.00948624\pi\)
−0.406844 + 0.913497i \(0.633371\pi\)
\(618\) 321.949 + 73.4827i 0.520953 + 0.118904i
\(619\) −113.508 1007.42i −0.183374 1.62749i −0.662024 0.749483i \(-0.730302\pi\)
0.478650 0.878006i \(-0.341126\pi\)
\(620\) 54.8898 87.3567i 0.0885320 0.140898i
\(621\) −403.585 + 403.585i −0.649895 + 0.649895i
\(622\) −158.369 + 36.1467i −0.254612 + 0.0581136i
\(623\) −24.7123 70.6236i −0.0396665 0.113360i
\(624\) 229.223 80.2085i 0.367344 0.128539i
\(625\) −191.227 837.819i −0.305963 1.34051i
\(626\) 280.980 + 280.980i 0.448850 + 0.448850i
\(627\) −352.757 221.652i −0.562611 0.353512i
\(628\) −228.669 + 25.7648i −0.364123 + 0.0410268i
\(629\) −8.21373 + 35.9867i −0.0130584 + 0.0572126i
\(630\) −416.405 + 261.645i −0.660960 + 0.415309i
\(631\) −402.770 + 321.198i −0.638304 + 0.509030i −0.888328 0.459209i \(-0.848133\pi\)
0.250025 + 0.968240i \(0.419561\pi\)
\(632\) −191.931 92.4293i −0.303689 0.146249i
\(633\) −95.1470 + 45.8204i −0.150311 + 0.0723860i
\(634\) −431.754 + 541.403i −0.681001 + 0.853948i
\(635\) 783.614 + 88.2921i 1.23404 + 0.139043i
\(636\) −98.0514 + 280.215i −0.154169 + 0.440589i
\(637\) 266.669i 0.418632i
\(638\) −505.583 199.293i −0.792450 0.312372i
\(639\) 111.915 0.175141
\(640\) −1118.63 391.424i −1.74785 0.611600i
\(641\) 44.9011 398.508i 0.0700485 0.621698i −0.908817 0.417194i \(-0.863013\pi\)
0.978866 0.204504i \(-0.0655580\pi\)
\(642\) 49.5435 + 39.5096i 0.0771705 + 0.0615414i
\(643\) −470.130 976.234i −0.731150 1.51825i −0.850833 0.525437i \(-0.823902\pi\)
0.119683 0.992812i \(-0.461812\pi\)
\(644\) 73.3564 152.326i 0.113907 0.236531i
\(645\) −47.8579 60.0119i −0.0741983 0.0930417i
\(646\) −99.2940 158.026i −0.153706 0.244622i
\(647\) −625.852 142.847i −0.967313 0.220783i −0.290449 0.956891i \(-0.593805\pi\)
−0.676865 + 0.736108i \(0.736662\pi\)
\(648\) 8.09736 + 71.8660i 0.0124959 + 0.110904i
\(649\) 274.845 437.414i 0.423491 0.673981i
\(650\) −682.132 + 682.132i −1.04943 + 1.04943i
\(651\) 32.3826 7.39112i 0.0497429 0.0113535i
\(652\) −10.4008 29.7237i −0.0159521 0.0455885i
\(653\) −459.623 + 160.829i −0.703863 + 0.246292i −0.658394 0.752673i \(-0.728764\pi\)
−0.0454690 + 0.998966i \(0.514478\pi\)
\(654\) −28.6394 125.477i −0.0437911 0.191861i
\(655\) 810.136 + 810.136i 1.23685 + 1.23685i
\(656\) 1008.18 + 633.484i 1.53687 + 0.965677i
\(657\) 197.621 22.2665i 0.300793 0.0338912i
\(658\) 140.564 615.851i 0.213623 0.935943i
\(659\) 782.367 491.594i 1.18720 0.745969i 0.214206 0.976788i \(-0.431284\pi\)
0.972997 + 0.230820i \(0.0741407\pi\)
\(660\) −179.320 + 143.003i −0.271697 + 0.216671i
\(661\) −504.495 242.952i −0.763229 0.367552i 0.0114268 0.999935i \(-0.496363\pi\)
−0.774656 + 0.632383i \(0.782077\pi\)
\(662\) 111.045 53.4767i 0.167742 0.0807805i
\(663\) −17.2113 + 21.5823i −0.0259597 + 0.0325525i
\(664\) 29.2591 + 3.29671i 0.0440649 + 0.00496492i
\(665\) 348.768 996.722i 0.524463 1.49883i
\(666\) 251.971i 0.378335i
\(667\) −48.1895 656.109i −0.0722482 0.983671i
\(668\) 544.929 0.815762
\(669\) 328.413 + 114.917i 0.490901 + 0.171774i
\(670\) 73.6705 653.844i 0.109956 0.975886i
\(671\) −303.936 242.381i −0.452960 0.361224i
\(672\) 77.6765 + 161.297i 0.115590 + 0.240025i
\(673\) −326.415 + 677.808i −0.485015 + 1.00714i 0.504594 + 0.863357i \(0.331642\pi\)
−0.989609 + 0.143787i \(0.954072\pi\)
\(674\) 423.344 + 530.857i 0.628107 + 0.787621i
\(675\) 709.503 + 1129.17i 1.05112 + 1.67284i
\(676\) −231.776 52.9013i −0.342863 0.0782563i
\(677\) 34.5918 + 307.011i 0.0510957 + 0.453487i 0.993045 + 0.117733i \(0.0375626\pi\)
−0.941950 + 0.335754i \(0.891009\pi\)
\(678\) −174.121 + 277.112i −0.256816 + 0.408720i
\(679\) −132.894 + 132.894i −0.195721 + 0.195721i
\(680\) 92.7893 21.1785i 0.136455 0.0311449i
\(681\) −166.823 476.753i −0.244968 0.700077i
\(682\) −99.5032 + 34.8177i −0.145899 + 0.0510523i
\(683\) −39.2932 172.155i −0.0575304 0.252057i 0.937983 0.346682i \(-0.112692\pi\)
−0.995513 + 0.0946254i \(0.969835\pi\)
\(684\) 307.844 + 307.844i 0.450064 + 0.450064i
\(685\) 925.177 + 581.327i 1.35062 + 0.848653i
\(686\) −748.335 + 84.3171i −1.09087 + 0.122911i
\(687\) 31.5959 138.431i 0.0459911 0.201500i
\(688\) 89.4368 56.1969i 0.129995 0.0816815i
\(689\) 501.653 400.055i 0.728089 0.580632i
\(690\) −732.041 352.532i −1.06093 0.510916i
\(691\) −1218.08 + 586.597i −1.76278 + 0.848910i −0.791430 + 0.611260i \(0.790663\pi\)
−0.971351 + 0.237651i \(0.923623\pi\)
\(692\) 80.1593 100.517i 0.115837 0.145255i
\(693\) 170.639 + 19.2264i 0.246232 + 0.0277437i
\(694\) 412.606 1179.16i 0.594533 1.69908i
\(695\) 394.991i 0.568333i
\(696\) 186.713 + 127.705i 0.268266 + 0.183484i
\(697\) −135.345 −0.194182
\(698\) 716.953 + 250.873i 1.02715 + 0.359417i
\(699\) −26.1368 + 231.970i −0.0373917 + 0.331860i
\(700\) −308.848 246.298i −0.441211 0.351854i
\(701\) −358.817 745.091i −0.511865 1.06290i −0.983467 0.181087i \(-0.942039\pi\)
0.471602 0.881811i \(-0.343676\pi\)
\(702\) 198.677 412.557i 0.283016 0.587688i
\(703\) 337.335 + 423.005i 0.479851 + 0.601714i
\(704\) 21.1712 + 33.6938i 0.0300727 + 0.0478605i
\(705\) −1011.38 230.842i −1.43459 0.327435i
\(706\) −31.0366 275.457i −0.0439611 0.390166i
\(707\) 78.2899 124.598i 0.110735 0.176234i
\(708\) 164.146 164.146i 0.231845 0.231845i
\(709\) −149.080 + 34.0265i −0.210268 + 0.0479923i −0.326357 0.945246i \(-0.605821\pi\)
0.116089 + 0.993239i \(0.462964\pi\)
\(710\) 127.866 + 365.420i 0.180093 + 0.514676i
\(711\) −266.894 + 93.3902i −0.375378 + 0.131351i
\(712\) −21.9955 96.3688i −0.0308926 0.135349i
\(713\) −90.2386 90.2386i −0.126562 0.126562i
\(714\) −28.0088 17.5991i −0.0392280 0.0246486i
\(715\) 492.600 55.5027i 0.688952 0.0776262i
\(716\) −148.766 + 651.785i −0.207773 + 0.910314i
\(717\) 193.415 121.531i 0.269756 0.169499i
\(718\) 139.443 111.202i 0.194210 0.154877i
\(719\) 188.055 + 90.5627i 0.261551 + 0.125957i 0.560064 0.828449i \(-0.310776\pi\)
−0.298513 + 0.954406i \(0.596491\pi\)
\(720\) −1001.32 + 482.212i −1.39073 + 0.669739i
\(721\) 182.226 228.504i 0.252740 0.316926i
\(722\) −1834.08 206.651i −2.54028 0.286221i
\(723\) −99.6498 + 284.783i −0.137828 + 0.393890i
\(724\) 617.362i 0.852710i
\(725\) −1519.62 231.353i −2.09603 0.319107i
\(726\) −256.329 −0.353070
\(727\) 1244.50 + 435.470i 1.71183 + 0.598996i 0.995147 0.0984004i \(-0.0313726\pi\)
0.716686 + 0.697396i \(0.245658\pi\)
\(728\) 14.0678 124.855i 0.0193239 0.171505i
\(729\) −216.189 172.405i −0.296556 0.236495i
\(730\) 298.490 + 619.822i 0.408891 + 0.849071i
\(731\) −5.20946 + 10.8176i −0.00712648 + 0.0147983i
\(732\) −108.917 136.577i −0.148793 0.186581i
\(733\) 63.1015 + 100.425i 0.0860866 + 0.137006i 0.886992 0.461785i \(-0.152791\pi\)
−0.800905 + 0.598791i \(0.795648\pi\)
\(734\) −95.5271 21.8034i −0.130146 0.0297050i
\(735\) 58.7572 + 521.485i 0.0799418 + 0.709503i
\(736\) 365.950 582.406i 0.497215 0.791313i
\(737\) −162.458 + 162.458i −0.220432 + 0.220432i
\(738\) 900.734 205.587i 1.22051 0.278573i
\(739\) 235.151 + 672.023i 0.318202 + 0.909369i 0.986251 + 0.165252i \(0.0528437\pi\)
−0.668050 + 0.744117i \(0.732871\pi\)
\(740\) 281.147 98.3776i 0.379928 0.132943i
\(741\) 90.0364 + 394.475i 0.121507 + 0.532355i
\(742\) 543.681 + 543.681i 0.732724 + 0.732724i
\(743\) −1147.96 721.309i −1.54503 0.970806i −0.990326 0.138757i \(-0.955689\pi\)
−0.554702 0.832049i \(-0.687168\pi\)
\(744\) 43.6046 4.91306i 0.0586084 0.00660358i
\(745\) −232.852 + 1020.19i −0.312552 + 1.36938i
\(746\) 1046.59 657.618i 1.40294 0.881526i
\(747\) 30.5561 24.3676i 0.0409050 0.0326207i
\(748\) 32.3237 + 15.5663i 0.0432135 + 0.0208105i
\(749\) 50.5299 24.3339i 0.0674632 0.0324885i
\(750\) −625.370 + 784.189i −0.833826 + 1.04559i
\(751\) 601.896 + 67.8174i 0.801460 + 0.0903028i 0.503187 0.864178i \(-0.332161\pi\)
0.298273 + 0.954481i \(0.403589\pi\)
\(752\) 471.492 1347.45i 0.626984 1.79182i
\(753\) 419.551i 0.557172i
\(754\) 210.345 + 484.074i 0.278972 + 0.642007i
\(755\) 1614.68 2.13866
\(756\) 176.987 + 61.9303i 0.234109 + 0.0819184i
\(757\) −84.2696 + 747.913i −0.111320 + 0.987997i 0.806563 + 0.591148i \(0.201325\pi\)
−0.917884 + 0.396849i \(0.870104\pi\)
\(758\) 606.015 +