Properties

Label 29.3.f.a.3.4
Level 29
Weight 3
Character 29.3
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 3.4
Character \(\chi\) = 29.3
Dual form 29.3.f.a.10.4

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.05804 + 1.29315i) q^{2}\) \(+(-2.93183 + 1.02589i) q^{3}\) \(+(0.827740 + 1.71882i) q^{4}\) \(+(5.87720 - 1.34143i) q^{5}\) \(+(-7.36043 - 1.67997i) q^{6}\) \(+(-9.36468 - 4.50979i) q^{7}\) \(+(0.569384 - 5.05343i) q^{8}\) \(+(0.506667 - 0.404053i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.05804 + 1.29315i) q^{2}\) \(+(-2.93183 + 1.02589i) q^{3}\) \(+(0.827740 + 1.71882i) q^{4}\) \(+(5.87720 - 1.34143i) q^{5}\) \(+(-7.36043 - 1.67997i) q^{6}\) \(+(-9.36468 - 4.50979i) q^{7}\) \(+(0.569384 - 5.05343i) q^{8}\) \(+(0.506667 - 0.404053i) q^{9}\) \(+(13.8301 + 4.83938i) q^{10}\) \(+(0.977326 + 8.67401i) q^{11}\) \(+(-4.19011 - 4.19011i) q^{12}\) \(+(8.98997 + 7.16926i) q^{13}\) \(+(-13.4410 - 21.3913i) q^{14}\) \(+(-15.8548 + 9.96220i) q^{15}\) \(+(12.4645 - 15.6300i) q^{16}\) \(+(-9.77422 + 9.77422i) q^{17}\) \(+(1.56524 - 0.176360i) q^{18}\) \(+(-4.49203 + 12.8375i) q^{19}\) \(+(7.17047 + 8.99148i) q^{20}\) \(+(32.0822 + 3.61479i) q^{21}\) \(+(-9.20542 + 19.1153i) q^{22}\) \(+(6.44949 - 28.2571i) q^{23}\) \(+(3.51492 + 15.3999i) q^{24}\) \(+(10.2178 - 4.92062i) q^{25}\) \(+(9.23075 + 26.3800i) q^{26}\) \(+(13.8021 - 21.9659i) q^{27}\) \(-19.8291i q^{28}\) \(+(-28.9618 - 1.48885i) q^{29}\) \(-45.5123 q^{30}\) \(+(32.8240 + 20.6247i) q^{31}\) \(+(26.6642 - 9.33019i) q^{32}\) \(+(-11.7639 - 24.4281i) q^{33}\) \(+(-32.7552 + 7.47617i) q^{34}\) \(+(-61.0877 - 13.9429i) q^{35}\) \(+(1.11388 + 0.536418i) q^{36}\) \(+(6.61609 - 58.7194i) q^{37}\) \(+(-25.8456 + 20.6112i) q^{38}\) \(+(-33.7119 - 11.7963i) q^{39}\) \(+(-3.43244 - 30.4638i) q^{40}\) \(+(28.8990 + 28.8990i) q^{41}\) \(+(61.3518 + 48.9264i) q^{42}\) \(+(23.3701 + 37.1932i) q^{43}\) \(+(-14.1001 + 8.85967i) q^{44}\) \(+(2.43577 - 3.05436i) q^{45}\) \(+(49.8139 - 49.8139i) q^{46}\) \(+(-16.5298 + 1.86246i) q^{47}\) \(+(-20.5091 + 58.6116i) q^{48}\) \(+(36.8081 + 46.1559i) q^{49}\) \(+(27.3916 + 3.08629i) q^{50}\) \(+(18.6290 - 38.6836i) q^{51}\) \(+(-4.88131 + 21.3864i) q^{52}\) \(+(-12.8958 - 56.5002i) q^{53}\) \(+(56.8105 - 27.3585i) q^{54}\) \(+(17.3795 + 49.6678i) q^{55}\) \(+(-28.1220 + 44.7559i) q^{56}\) \(-42.2456i q^{57}\) \(+(-57.6790 - 40.5160i) q^{58}\) \(-34.0756 q^{59}\) \(+(-30.2468 - 19.0053i) q^{60}\) \(+(5.90275 - 2.06546i) q^{61}\) \(+(40.8822 + 84.8927i) q^{62}\) \(+(-6.56698 + 1.49887i) q^{63}\) \(+(-11.0199 - 2.51523i) q^{64}\) \(+(62.4529 + 30.0757i) q^{65}\) \(+(7.37854 - 65.4863i) q^{66}\) \(+(-53.1751 + 42.4058i) q^{67}\) \(+(-24.8906 - 8.70961i) q^{68}\) \(+(10.0799 + 89.4613i) q^{69}\) \(+(-107.690 - 107.690i) q^{70}\) \(+(-24.4740 - 19.5174i) q^{71}\) \(+(-1.75337 - 2.79047i) q^{72}\) \(+(-43.4053 + 27.2734i) q^{73}\) \(+(89.5491 - 112.291i) q^{74}\) \(+(-24.9087 + 24.9087i) q^{75}\) \(+(-25.7836 + 2.90511i) q^{76}\) \(+(29.9657 - 85.6369i) q^{77}\) \(+(-54.1259 - 67.8718i) q^{78}\) \(+(36.9784 + 4.16647i) q^{79}\) \(+(52.2897 - 108.581i) q^{80}\) \(+(-19.2286 + 84.2460i) q^{81}\) \(+(22.1045 + 96.8459i) q^{82}\) \(+(62.9075 - 30.2947i) q^{83}\) \(+(20.3425 + 58.1356i) q^{84}\) \(+(-44.3336 + 70.5565i) q^{85}\) \(+106.766i q^{86}\) \(+(86.4382 - 25.3465i) q^{87}\) \(+44.3899 q^{88}\) \(+(23.7527 + 14.9248i) q^{89}\) \(+(8.96265 - 3.13617i) q^{90}\) \(+(-51.8564 - 107.681i) q^{91}\) \(+(53.9073 - 12.3040i) q^{92}\) \(+(-117.393 - 26.7942i) q^{93}\) \(+(-36.4274 - 17.5425i) q^{94}\) \(+(-9.17994 + 81.4742i) q^{95}\) \(+(-68.6029 + 54.7090i) q^{96}\) \(+(-33.9244 - 11.8707i) q^{97}\) \(+(16.0659 + 142.589i) q^{98}\) \(+(3.99994 + 3.99994i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.05804 + 1.29315i 1.02902 + 0.646575i 0.937053 0.349188i \(-0.113542\pi\)
0.0919649 + 0.995762i \(0.470685\pi\)
\(3\) −2.93183 + 1.02589i −0.977275 + 0.341963i −0.771214 0.636576i \(-0.780350\pi\)
−0.206061 + 0.978539i \(0.566065\pi\)
\(4\) 0.827740 + 1.71882i 0.206935 + 0.429705i
\(5\) 5.87720 1.34143i 1.17544 0.268286i 0.410177 0.912006i \(-0.365467\pi\)
0.765262 + 0.643719i \(0.222610\pi\)
\(6\) −7.36043 1.67997i −1.22674 0.279995i
\(7\) −9.36468 4.50979i −1.33781 0.644256i −0.378237 0.925709i \(-0.623470\pi\)
−0.959575 + 0.281452i \(0.909184\pi\)
\(8\) 0.569384 5.05343i 0.0711730 0.631678i
\(9\) 0.506667 0.404053i 0.0562963 0.0448948i
\(10\) 13.8301 + 4.83938i 1.38301 + 0.483938i
\(11\) 0.977326 + 8.67401i 0.0888478 + 0.788546i 0.956571 + 0.291499i \(0.0941540\pi\)
−0.867723 + 0.497048i \(0.834417\pi\)
\(12\) −4.19011 4.19011i −0.349176 0.349176i
\(13\) 8.98997 + 7.16926i 0.691536 + 0.551482i 0.904970 0.425476i \(-0.139893\pi\)
−0.213433 + 0.976958i \(0.568465\pi\)
\(14\) −13.4410 21.3913i −0.960073 1.52795i
\(15\) −15.8548 + 9.96220i −1.05698 + 0.664147i
\(16\) 12.4645 15.6300i 0.779031 0.976873i
\(17\) −9.77422 + 9.77422i −0.574954 + 0.574954i −0.933509 0.358554i \(-0.883270\pi\)
0.358554 + 0.933509i \(0.383270\pi\)
\(18\) 1.56524 0.176360i 0.0869578 0.00979779i
\(19\) −4.49203 + 12.8375i −0.236423 + 0.675658i 0.763144 + 0.646228i \(0.223655\pi\)
−0.999567 + 0.0294292i \(0.990631\pi\)
\(20\) 7.17047 + 8.99148i 0.358523 + 0.449574i
\(21\) 32.0822 + 3.61479i 1.52772 + 0.172133i
\(22\) −9.20542 + 19.1153i −0.418428 + 0.868875i
\(23\) 6.44949 28.2571i 0.280413 1.22857i −0.616853 0.787078i \(-0.711593\pi\)
0.897266 0.441490i \(-0.145550\pi\)
\(24\) 3.51492 + 15.3999i 0.146455 + 0.641662i
\(25\) 10.2178 4.92062i 0.408711 0.196825i
\(26\) 9.23075 + 26.3800i 0.355029 + 1.01461i
\(27\) 13.8021 21.9659i 0.511189 0.813553i
\(28\) 19.8291i 0.708184i
\(29\) −28.9618 1.48885i −0.998681 0.0513395i
\(30\) −45.5123 −1.51708
\(31\) 32.8240 + 20.6247i 1.05884 + 0.665313i 0.944628 0.328144i \(-0.106423\pi\)
0.114212 + 0.993456i \(0.463566\pi\)
\(32\) 26.6642 9.33019i 0.833255 0.291568i
\(33\) −11.7639 24.4281i −0.356483 0.740244i
\(34\) −32.7552 + 7.47617i −0.963389 + 0.219887i
\(35\) −61.0877 13.9429i −1.74536 0.398367i
\(36\) 1.11388 + 0.536418i 0.0309412 + 0.0149005i
\(37\) 6.61609 58.7194i 0.178813 1.58701i −0.508768 0.860904i \(-0.669899\pi\)
0.687581 0.726107i \(-0.258672\pi\)
\(38\) −25.8456 + 20.6112i −0.680146 + 0.542399i
\(39\) −33.7119 11.7963i −0.864408 0.302469i
\(40\) −3.43244 30.4638i −0.0858110 0.761594i
\(41\) 28.8990 + 28.8990i 0.704854 + 0.704854i 0.965448 0.260594i \(-0.0839185\pi\)
−0.260594 + 0.965448i \(0.583919\pi\)
\(42\) 61.3518 + 48.9264i 1.46076 + 1.16491i
\(43\) 23.3701 + 37.1932i 0.543490 + 0.864959i 0.999689 0.0249182i \(-0.00793254\pi\)
−0.456200 + 0.889877i \(0.650790\pi\)
\(44\) −14.1001 + 8.85967i −0.320457 + 0.201356i
\(45\) 2.43577 3.05436i 0.0541282 0.0678747i
\(46\) 49.8139 49.8139i 1.08291 1.08291i
\(47\) −16.5298 + 1.86246i −0.351698 + 0.0396269i −0.286047 0.958216i \(-0.592341\pi\)
−0.0656518 + 0.997843i \(0.520913\pi\)
\(48\) −20.5091 + 58.6116i −0.427272 + 1.22107i
\(49\) 36.8081 + 46.1559i 0.751185 + 0.941956i
\(50\) 27.3916 + 3.08629i 0.547832 + 0.0617259i
\(51\) 18.6290 38.6836i 0.365275 0.758502i
\(52\) −4.88131 + 21.3864i −0.0938714 + 0.411278i
\(53\) −12.8958 56.5002i −0.243317 1.06604i −0.937975 0.346702i \(-0.887302\pi\)
0.694659 0.719340i \(-0.255555\pi\)
\(54\) 56.8105 27.3585i 1.05205 0.506638i
\(55\) 17.3795 + 49.6678i 0.315991 + 0.903052i
\(56\) −28.1220 + 44.7559i −0.502179 + 0.799213i
\(57\) 42.2456i 0.741151i
\(58\) −57.6790 40.5160i −0.994466 0.698551i
\(59\) −34.0756 −0.577552 −0.288776 0.957397i \(-0.593248\pi\)
−0.288776 + 0.957397i \(0.593248\pi\)
\(60\) −30.2468 19.0053i −0.504114 0.316756i
\(61\) 5.90275 2.06546i 0.0967664 0.0338600i −0.281462 0.959572i \(-0.590819\pi\)
0.378228 + 0.925712i \(0.376534\pi\)
\(62\) 40.8822 + 84.8927i 0.659390 + 1.36924i
\(63\) −6.56698 + 1.49887i −0.104238 + 0.0237916i
\(64\) −11.0199 2.51523i −0.172186 0.0393004i
\(65\) 62.4529 + 30.0757i 0.960814 + 0.462704i
\(66\) 7.37854 65.4863i 0.111796 0.992217i
\(67\) −53.1751 + 42.4058i −0.793659 + 0.632922i −0.934037 0.357176i \(-0.883740\pi\)
0.140378 + 0.990098i \(0.455168\pi\)
\(68\) −24.8906 8.70961i −0.366039 0.128083i
\(69\) 10.0799 + 89.4613i 0.146085 + 1.29654i
\(70\) −107.690 107.690i −1.53843 1.53843i
\(71\) −24.4740 19.5174i −0.344704 0.274893i 0.435799 0.900044i \(-0.356466\pi\)
−0.780504 + 0.625151i \(0.785037\pi\)
\(72\) −1.75337 2.79047i −0.0243523 0.0387565i
\(73\) −43.4053 + 27.2734i −0.594593 + 0.373608i −0.795456 0.606012i \(-0.792768\pi\)
0.200862 + 0.979619i \(0.435626\pi\)
\(74\) 89.5491 112.291i 1.21012 1.51745i
\(75\) −24.9087 + 24.9087i −0.332116 + 0.332116i
\(76\) −25.7836 + 2.90511i −0.339258 + 0.0382252i
\(77\) 29.9657 85.6369i 0.389164 1.11217i
\(78\) −54.1259 67.8718i −0.693922 0.870151i
\(79\) 36.9784 + 4.16647i 0.468081 + 0.0527401i 0.342855 0.939388i \(-0.388606\pi\)
0.125226 + 0.992128i \(0.460034\pi\)
\(80\) 52.2897 108.581i 0.653621 1.35726i
\(81\) −19.2286 + 84.2460i −0.237390 + 1.04007i
\(82\) 22.1045 + 96.8459i 0.269566 + 1.18105i
\(83\) 62.9075 30.2947i 0.757922 0.364996i −0.0146754 0.999892i \(-0.504671\pi\)
0.772597 + 0.634896i \(0.218957\pi\)
\(84\) 20.3425 + 58.1356i 0.242173 + 0.692090i
\(85\) −44.3336 + 70.5565i −0.521571 + 0.830076i
\(86\) 106.766i 1.24147i
\(87\) 86.4382 25.3465i 0.993543 0.291340i
\(88\) 44.3899 0.504431
\(89\) 23.7527 + 14.9248i 0.266885 + 0.167695i 0.658826 0.752296i \(-0.271053\pi\)
−0.391941 + 0.919990i \(0.628196\pi\)
\(90\) 8.96265 3.13617i 0.0995850 0.0348463i
\(91\) −51.8564 107.681i −0.569850 1.18331i
\(92\) 53.9073 12.3040i 0.585949 0.133739i
\(93\) −117.393 26.7942i −1.26229 0.288109i
\(94\) −36.4274 17.5425i −0.387526 0.186623i
\(95\) −9.17994 + 81.4742i −0.0966310 + 0.857623i
\(96\) −68.6029 + 54.7090i −0.714614 + 0.569885i
\(97\) −33.9244 11.8707i −0.349736 0.122378i 0.149693 0.988732i \(-0.452171\pi\)
−0.499430 + 0.866354i \(0.666457\pi\)
\(98\) 16.0659 + 142.589i 0.163938 + 1.45499i
\(99\) 3.99994 + 3.99994i 0.0404035 + 0.0404035i
\(100\) 16.9153 + 13.4895i 0.169153 + 0.134895i
\(101\) −33.1691 52.7883i −0.328407 0.522657i 0.641184 0.767387i \(-0.278443\pi\)
−0.969591 + 0.244730i \(0.921301\pi\)
\(102\) 88.3629 55.5221i 0.866303 0.544334i
\(103\) −73.2496 + 91.8521i −0.711161 + 0.891768i −0.997802 0.0662704i \(-0.978890\pi\)
0.286641 + 0.958038i \(0.407461\pi\)
\(104\) 41.3481 41.3481i 0.397578 0.397578i
\(105\) 193.402 21.7912i 1.84193 0.207535i
\(106\) 46.5232 132.956i 0.438898 1.25430i
\(107\) −42.6207 53.4447i −0.398324 0.499483i 0.541709 0.840566i \(-0.317778\pi\)
−0.940033 + 0.341083i \(0.889206\pi\)
\(108\) 49.1800 + 5.54126i 0.455371 + 0.0513080i
\(109\) 5.04985 10.4861i 0.0463289 0.0962029i −0.876519 0.481366i \(-0.840141\pi\)
0.922848 + 0.385163i \(0.125855\pi\)
\(110\) −28.4603 + 124.693i −0.258730 + 1.13357i
\(111\) 40.8424 + 178.942i 0.367950 + 1.61209i
\(112\) −187.214 + 90.1575i −1.67155 + 0.804978i
\(113\) −14.1909 40.5554i −0.125584 0.358897i 0.863876 0.503704i \(-0.168030\pi\)
−0.989460 + 0.144807i \(0.953744\pi\)
\(114\) 54.6299 86.9430i 0.479210 0.762658i
\(115\) 174.724i 1.51934i
\(116\) −21.4137 51.0124i −0.184601 0.439762i
\(117\) 7.45169 0.0636896
\(118\) −70.1287 44.0648i −0.594311 0.373431i
\(119\) 135.612 47.4528i 1.13960 0.398763i
\(120\) 41.3158 + 85.7931i 0.344298 + 0.714943i
\(121\) 43.6830 9.97036i 0.361016 0.0823996i
\(122\) 14.8190 + 3.38234i 0.121467 + 0.0277241i
\(123\) −114.374 55.0796i −0.929870 0.447802i
\(124\) −8.28039 + 73.4905i −0.0667773 + 0.592665i
\(125\) −64.3775 + 51.3393i −0.515020 + 0.410715i
\(126\) −15.4533 5.40735i −0.122645 0.0429155i
\(127\) 14.8633 + 131.916i 0.117034 + 1.03871i 0.905710 + 0.423897i \(0.139338\pi\)
−0.788676 + 0.614809i \(0.789233\pi\)
\(128\) −99.3283 99.3283i −0.776002 0.776002i
\(129\) −106.673 85.0690i −0.826924 0.659450i
\(130\) 89.6379 + 142.658i 0.689522 + 1.09737i
\(131\) 66.7432 41.9375i 0.509490 0.320134i −0.252637 0.967561i \(-0.581298\pi\)
0.762127 + 0.647427i \(0.224155\pi\)
\(132\) 32.2500 40.4402i 0.244318 0.306365i
\(133\) 99.9609 99.9609i 0.751586 0.751586i
\(134\) −164.273 + 18.5092i −1.22592 + 0.138128i
\(135\) 51.6519 147.613i 0.382607 1.09343i
\(136\) 43.8280 + 54.9586i 0.322265 + 0.404107i
\(137\) −160.789 18.1166i −1.17364 0.132238i −0.496465 0.868057i \(-0.665369\pi\)
−0.677179 + 0.735819i \(0.736798\pi\)
\(138\) −94.9421 + 197.149i −0.687986 + 1.42862i
\(139\) 24.4796 107.252i 0.176112 0.771599i −0.807289 0.590156i \(-0.799066\pi\)
0.983401 0.181443i \(-0.0580767\pi\)
\(140\) −26.5994 116.540i −0.189996 0.832427i
\(141\) 46.5519 22.4182i 0.330155 0.158994i
\(142\) −25.1295 71.8160i −0.176968 0.505747i
\(143\) −53.4001 + 84.9858i −0.373428 + 0.594306i
\(144\) 12.9555i 0.0899688i
\(145\) −172.211 + 30.1000i −1.18766 + 0.207586i
\(146\) −124.598 −0.853412
\(147\) −155.266 97.5599i −1.05623 0.663673i
\(148\) 106.404 37.2325i 0.718949 0.251571i
\(149\) 62.5002 + 129.783i 0.419464 + 0.871027i 0.998448 + 0.0556878i \(0.0177351\pi\)
−0.578984 + 0.815339i \(0.696551\pi\)
\(150\) −83.4736 + 19.0523i −0.556491 + 0.127015i
\(151\) 279.422 + 63.7763i 1.85048 + 0.422359i 0.995372 0.0960946i \(-0.0306351\pi\)
0.855105 + 0.518454i \(0.173492\pi\)
\(152\) 62.3156 + 30.0096i 0.409971 + 0.197432i
\(153\) −1.00297 + 8.90159i −0.00655535 + 0.0581803i
\(154\) 172.412 137.494i 1.11956 0.892817i
\(155\) 220.580 + 77.1842i 1.42310 + 0.497963i
\(156\) −7.62897 67.7090i −0.0489037 0.434032i
\(157\) 181.866 + 181.866i 1.15838 + 1.15838i 0.984824 + 0.173555i \(0.0555255\pi\)
0.173555 + 0.984824i \(0.444474\pi\)
\(158\) 70.7150 + 56.3934i 0.447564 + 0.356920i
\(159\) 95.7712 + 152.419i 0.602335 + 0.958610i
\(160\) 144.195 90.6035i 0.901216 0.566272i
\(161\) −187.831 + 235.533i −1.16665 + 1.46294i
\(162\) −148.516 + 148.516i −0.916764 + 0.916764i
\(163\) 59.4854 6.70239i 0.364941 0.0411190i 0.0724098 0.997375i \(-0.476931\pi\)
0.292531 + 0.956256i \(0.405502\pi\)
\(164\) −25.7513 + 73.5931i −0.157020 + 0.448738i
\(165\) −101.907 127.788i −0.617621 0.774472i
\(166\) 168.641 + 19.0013i 1.01591 + 0.114466i
\(167\) 79.8635 165.838i 0.478225 0.993044i −0.512693 0.858572i \(-0.671352\pi\)
0.990917 0.134472i \(-0.0429337\pi\)
\(168\) 36.5342 160.067i 0.217465 0.952778i
\(169\) −8.18478 35.8598i −0.0484306 0.212188i
\(170\) −182.480 + 87.8778i −1.07341 + 0.516928i
\(171\) 2.91107 + 8.31936i 0.0170238 + 0.0486512i
\(172\) −44.5842 + 70.9553i −0.259210 + 0.412531i
\(173\) 24.3883i 0.140973i 0.997513 + 0.0704864i \(0.0224551\pi\)
−0.997513 + 0.0704864i \(0.977545\pi\)
\(174\) 210.670 + 59.6134i 1.21075 + 0.342606i
\(175\) −117.877 −0.673584
\(176\) 147.756 + 92.8415i 0.839525 + 0.527509i
\(177\) 99.9036 34.9578i 0.564427 0.197502i
\(178\) 29.5840 + 61.4317i 0.166202 + 0.345122i
\(179\) −109.960 + 25.0977i −0.614303 + 0.140211i −0.518340 0.855174i \(-0.673450\pi\)
−0.0959623 + 0.995385i \(0.530593\pi\)
\(180\) 7.26608 + 1.65844i 0.0403671 + 0.00921353i
\(181\) −181.835 87.5671i −1.00461 0.483796i −0.142111 0.989851i \(-0.545389\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(182\) 32.5252 288.669i 0.178710 1.58609i
\(183\) −15.1869 + 12.1111i −0.0829885 + 0.0661811i
\(184\) −139.123 48.6812i −0.756102 0.264572i
\(185\) −39.8840 353.980i −0.215589 1.91341i
\(186\) −206.950 206.950i −1.11263 1.11263i
\(187\) −94.3343 75.2291i −0.504462 0.402295i
\(188\) −16.8836 26.8702i −0.0898066 0.142926i
\(189\) −228.314 + 143.459i −1.20801 + 0.759044i
\(190\) −124.251 + 155.806i −0.653953 + 0.820031i
\(191\) −9.18326 + 9.18326i −0.0480799 + 0.0480799i −0.730738 0.682658i \(-0.760824\pi\)
0.682658 + 0.730738i \(0.260824\pi\)
\(192\) 34.8889 3.93103i 0.181713 0.0204741i
\(193\) −38.7349 + 110.698i −0.200699 + 0.573564i −0.999611 0.0278831i \(-0.991123\pi\)
0.798912 + 0.601447i \(0.205409\pi\)
\(194\) −54.4671 68.2996i −0.280758 0.352060i
\(195\) −213.955 24.1070i −1.09721 0.123626i
\(196\) −48.8661 + 101.471i −0.249317 + 0.517712i
\(197\) −42.3417 + 185.511i −0.214932 + 0.941681i 0.746228 + 0.665690i \(0.231863\pi\)
−0.961160 + 0.275990i \(0.910994\pi\)
\(198\) 3.05950 + 13.4045i 0.0154520 + 0.0676997i
\(199\) 134.765 64.8992i 0.677209 0.326127i −0.0634720 0.997984i \(-0.520217\pi\)
0.740681 + 0.671857i \(0.234503\pi\)
\(200\) −19.0481 54.4364i −0.0952407 0.272182i
\(201\) 112.397 178.878i 0.559187 0.889941i
\(202\) 151.533i 0.750163i
\(203\) 264.503 + 144.554i 1.30297 + 0.712089i
\(204\) 81.9101 0.401520
\(205\) 208.611 + 131.079i 1.01762 + 0.639410i
\(206\) −269.529 + 94.3122i −1.30839 + 0.457826i
\(207\) −8.14963 16.9229i −0.0393702 0.0817530i
\(208\) 224.111 51.1518i 1.07746 0.245922i
\(209\) −115.743 26.4175i −0.553793 0.126400i
\(210\) 426.208 + 205.251i 2.02956 + 0.977385i
\(211\) −6.26902 + 55.6391i −0.0297110 + 0.263692i 0.970071 + 0.242821i \(0.0780727\pi\)
−0.999782 + 0.0208716i \(0.993356\pi\)
\(212\) 86.4393 68.9330i 0.407732 0.325156i
\(213\) 91.7762 + 32.1139i 0.430874 + 0.150769i
\(214\) −18.6030 165.106i −0.0869298 0.771523i
\(215\) 187.243 + 187.243i 0.870896 + 0.870896i
\(216\) −103.144 82.2550i −0.477521 0.380810i
\(217\) −214.373 341.173i −0.987896 1.57223i
\(218\) 23.9529 15.0506i 0.109876 0.0690394i
\(219\) 99.2773 124.490i 0.453321 0.568447i
\(220\) −70.9843 + 70.9843i −0.322656 + 0.322656i
\(221\) −157.944 + 17.7960i −0.714679 + 0.0805250i
\(222\) −147.344 + 421.085i −0.663712 + 1.89678i
\(223\) 83.8099 + 105.094i 0.375829 + 0.471275i 0.933391 0.358860i \(-0.116835\pi\)
−0.557562 + 0.830135i \(0.688263\pi\)
\(224\) −291.779 32.8756i −1.30258 0.146766i
\(225\) 3.18881 6.62164i 0.0141725 0.0294295i
\(226\) 23.2387 101.815i 0.102826 0.450511i
\(227\) −37.6983 165.167i −0.166072 0.727609i −0.987542 0.157357i \(-0.949703\pi\)
0.821470 0.570252i \(-0.193154\pi\)
\(228\) 72.6126 34.9684i 0.318476 0.153370i
\(229\) 51.6406 + 147.580i 0.225505 + 0.644456i 0.999930 + 0.0117911i \(0.00375331\pi\)
−0.774426 + 0.632665i \(0.781961\pi\)
\(230\) 225.944 359.588i 0.982366 1.56343i
\(231\) 281.814i 1.21997i
\(232\) −24.0141 + 145.508i −0.103509 + 0.627191i
\(233\) 296.039 1.27055 0.635276 0.772285i \(-0.280886\pi\)
0.635276 + 0.772285i \(0.280886\pi\)
\(234\) 15.3358 + 9.63615i 0.0655378 + 0.0411801i
\(235\) −94.6506 + 33.1197i −0.402769 + 0.140935i
\(236\) −28.2057 58.5698i −0.119516 0.248177i
\(237\) −112.689 + 25.7204i −0.475479 + 0.108525i
\(238\) 340.458 + 77.7074i 1.43050 + 0.326502i
\(239\) −231.857 111.656i −0.970113 0.467182i −0.119420 0.992844i \(-0.538103\pi\)
−0.850693 + 0.525662i \(0.823818\pi\)
\(240\) −41.9124 + 371.983i −0.174635 + 1.54993i
\(241\) −18.6581 + 14.8793i −0.0774196 + 0.0617400i −0.661435 0.750003i \(-0.730052\pi\)
0.584015 + 0.811743i \(0.301481\pi\)
\(242\) 102.794 + 35.9693i 0.424770 + 0.148633i
\(243\) −3.91073 34.7087i −0.0160935 0.142834i
\(244\) 8.43610 + 8.43610i 0.0345742 + 0.0345742i
\(245\) 278.243 + 221.892i 1.13569 + 0.905680i
\(246\) −164.160 261.259i −0.667316 1.06203i
\(247\) −132.419 + 83.2042i −0.536108 + 0.336859i
\(248\) 122.915 154.130i 0.495625 0.621493i
\(249\) −153.355 + 153.355i −0.615883 + 0.615883i
\(250\) −198.881 + 22.4085i −0.795522 + 0.0896338i
\(251\) 47.2947 135.160i 0.188425 0.538487i −0.810455 0.585801i \(-0.800780\pi\)
0.998880 + 0.0473132i \(0.0150659\pi\)
\(252\) −8.01203 10.0468i −0.0317938 0.0398681i
\(253\) 251.405 + 28.3266i 0.993697 + 0.111963i
\(254\) −139.997 + 290.708i −0.551171 + 1.14452i
\(255\) 57.5951 252.341i 0.225863 0.989571i
\(256\) −65.9139 288.788i −0.257476 1.12808i
\(257\) 78.7944 37.9454i 0.306593 0.147647i −0.274261 0.961655i \(-0.588433\pi\)
0.580854 + 0.814008i \(0.302719\pi\)
\(258\) −109.530 313.019i −0.424536 1.21325i
\(259\) −326.770 + 520.051i −1.26166 + 2.00792i
\(260\) 132.240i 0.508616i
\(261\) −15.2755 + 10.9477i −0.0585270 + 0.0419454i
\(262\) 191.591 0.731265
\(263\) −82.7439 51.9914i −0.314615 0.197686i 0.365462 0.930826i \(-0.380911\pi\)
−0.680077 + 0.733140i \(0.738054\pi\)
\(264\) −130.144 + 45.5392i −0.492968 + 0.172497i
\(265\) −151.582 314.764i −0.572009 1.18779i
\(266\) 334.988 76.4587i 1.25935 0.287439i
\(267\) −84.9502 19.3893i −0.318165 0.0726192i
\(268\) −116.903 56.2975i −0.436205 0.210065i
\(269\) −2.99923 + 26.6189i −0.0111496 + 0.0989551i −0.998054 0.0623480i \(-0.980141\pi\)
0.986905 + 0.161303i \(0.0515697\pi\)
\(270\) 297.187 236.998i 1.10069 0.877772i
\(271\) −164.750 57.6486i −0.607935 0.212725i 0.00871663 0.999962i \(-0.497225\pi\)
−0.616651 + 0.787237i \(0.711511\pi\)
\(272\) 30.9402 + 274.602i 0.113751 + 1.00956i
\(273\) 262.502 + 262.502i 0.961547 + 0.961547i
\(274\) −307.482 245.209i −1.12220 0.894924i
\(275\) 52.6676 + 83.8200i 0.191518 + 0.304800i
\(276\) −145.424 + 91.3762i −0.526900 + 0.331073i
\(277\) 270.444 339.126i 0.976331 1.22428i 0.00180677 0.999998i \(-0.499425\pi\)
0.974524 0.224282i \(-0.0720037\pi\)
\(278\) 189.073 189.073i 0.680119 0.680119i
\(279\) 24.9643 2.81280i 0.0894779 0.0100817i
\(280\) −105.242 + 300.763i −0.375863 + 1.07415i
\(281\) 246.662 + 309.305i 0.877802 + 1.10073i 0.994202 + 0.107526i \(0.0342930\pi\)
−0.116400 + 0.993202i \(0.537136\pi\)
\(282\) 124.796 + 14.0611i 0.442537 + 0.0498620i
\(283\) 70.0980 145.560i 0.247696 0.514346i −0.739637 0.673006i \(-0.765003\pi\)
0.987333 + 0.158660i \(0.0507172\pi\)
\(284\) 13.2887 58.2217i 0.0467913 0.205006i
\(285\) −56.6696 248.286i −0.198841 0.871178i
\(286\) −219.799 + 105.849i −0.768527 + 0.370103i
\(287\) −140.302 400.959i −0.488855 1.39707i
\(288\) 9.73995 15.5010i 0.0338193 0.0538231i
\(289\) 97.9291i 0.338855i
\(290\) −393.340 160.748i −1.35635 0.554303i
\(291\) 111.638 0.383637
\(292\) −82.8063 52.0307i −0.283583 0.178187i
\(293\) −497.689 + 174.149i −1.69860 + 0.594365i −0.993406 0.114653i \(-0.963424\pi\)
−0.705191 + 0.709018i \(0.749139\pi\)
\(294\) −193.383 401.563i −0.657765 1.36586i
\(295\) −200.269 + 45.7100i −0.678877 + 0.154949i
\(296\) −292.967 66.8678i −0.989754 0.225905i
\(297\) 204.022 + 98.2517i 0.686942 + 0.330814i
\(298\) −39.2012 + 347.920i −0.131548 + 1.16752i
\(299\) 260.563 207.792i 0.871449 0.694957i
\(300\) −63.4315 22.1956i −0.211438 0.0739855i
\(301\) −51.1194 453.697i −0.169832 1.50730i
\(302\) 492.588 + 492.588i 1.63109 + 1.63109i
\(303\) 151.401 + 120.738i 0.499673 + 0.398476i
\(304\) 144.659 + 230.223i 0.475851 + 0.757313i
\(305\) 31.9209 20.0573i 0.104659 0.0657615i
\(306\) −13.5752 + 17.0228i −0.0443635 + 0.0556300i
\(307\) −263.183 + 263.183i −0.857275 + 0.857275i −0.991016 0.133742i \(-0.957301\pi\)
0.133742 + 0.991016i \(0.457301\pi\)
\(308\) 171.998 19.3795i 0.558436 0.0629206i
\(309\) 120.525 344.440i 0.390048 1.11469i
\(310\) 354.150 + 444.091i 1.14242 + 1.43255i
\(311\) −286.428 32.2726i −0.920989 0.103771i −0.361278 0.932458i \(-0.617659\pi\)
−0.559711 + 0.828688i \(0.689088\pi\)
\(312\) −78.8068 + 163.644i −0.252586 + 0.524500i
\(313\) 41.7918 183.102i 0.133520 0.584990i −0.863257 0.504765i \(-0.831579\pi\)
0.996777 0.0802250i \(-0.0255639\pi\)
\(314\) 139.106 + 609.465i 0.443014 + 1.94097i
\(315\) −36.5848 + 17.6183i −0.116142 + 0.0559311i
\(316\) 23.4471 + 67.0080i 0.0741997 + 0.212051i
\(317\) 299.014 475.878i 0.943261 1.50119i 0.0797787 0.996813i \(-0.474579\pi\)
0.863482 0.504379i \(-0.168279\pi\)
\(318\) 437.530i 1.37588i
\(319\) −15.3908 252.670i −0.0482471 0.792068i
\(320\) −68.1403 −0.212938
\(321\) 179.785 + 112.966i 0.560077 + 0.351920i
\(322\) −691.142 + 241.841i −2.14640 + 0.751059i
\(323\) −81.5704 169.383i −0.252540 0.524405i
\(324\) −160.720 + 36.6833i −0.496049 + 0.113220i
\(325\) 127.135 + 29.0176i 0.391183 + 0.0892851i
\(326\) 131.090 + 63.1297i 0.402117 + 0.193649i
\(327\) −4.04767 + 35.9241i −0.0123782 + 0.109860i
\(328\) 162.494 129.584i 0.495407 0.395074i
\(329\) 163.196 + 57.1047i 0.496036 + 0.173571i
\(330\) −44.4803 394.774i −0.134789 1.19628i
\(331\) −301.118 301.118i −0.909723 0.909723i 0.0865265 0.996250i \(-0.472423\pi\)
−0.996250 + 0.0865265i \(0.972423\pi\)
\(332\) 104.142 + 83.0506i 0.313681 + 0.250152i
\(333\) −20.3736 32.4244i −0.0611821 0.0973707i
\(334\) 378.816 238.026i 1.13418 0.712652i
\(335\) −255.636 + 320.558i −0.763093 + 0.956889i
\(336\) 456.387 456.387i 1.35829 1.35829i
\(337\) 354.089 39.8962i 1.05071 0.118386i 0.430316 0.902678i \(-0.358402\pi\)
0.620392 + 0.784292i \(0.286973\pi\)
\(338\) 29.5276 84.3850i 0.0873597 0.249660i
\(339\) 83.2108 + 104.343i 0.245459 + 0.307796i
\(340\) −157.971 17.7990i −0.464619 0.0523500i
\(341\) −146.819 + 304.873i −0.430554 + 0.894056i
\(342\) −4.76709 + 20.8860i −0.0139389 + 0.0610701i
\(343\) −23.2111 101.695i −0.0676709 0.296485i
\(344\) 201.260 96.9216i 0.585058 0.281749i
\(345\) 179.248 + 512.260i 0.519558 + 1.48481i
\(346\) −31.5377 + 50.1920i −0.0911495 + 0.145064i
\(347\) 8.03629i 0.0231593i 0.999933 + 0.0115797i \(0.00368600\pi\)
−0.999933 + 0.0115797i \(0.996314\pi\)
\(348\) 115.115 + 127.591i 0.330789 + 0.366642i
\(349\) 635.847 1.82191 0.910956 0.412504i \(-0.135346\pi\)
0.910956 + 0.412504i \(0.135346\pi\)
\(350\) −242.595 152.433i −0.693129 0.435522i
\(351\) 281.560 98.5221i 0.802166 0.280690i
\(352\) 106.990 + 222.167i 0.303948 + 0.631155i
\(353\) −466.124 + 106.390i −1.32047 + 0.301388i −0.823961 0.566646i \(-0.808241\pi\)
−0.496505 + 0.868034i \(0.665383\pi\)
\(354\) 250.811 + 57.2459i 0.708505 + 0.161712i
\(355\) −170.020 81.8772i −0.478929 0.230640i
\(356\) −5.99201 + 53.1806i −0.0168315 + 0.149384i
\(357\) −348.910 + 278.247i −0.977339 + 0.779402i
\(358\) −258.757 90.5430i −0.722785 0.252913i
\(359\) 9.68103 + 85.9215i 0.0269666 + 0.239336i 0.999964 + 0.00851817i \(0.00271145\pi\)
−0.972997 + 0.230817i \(0.925860\pi\)
\(360\) −14.0481 14.0481i −0.0390225 0.0390225i
\(361\) 137.618 + 109.747i 0.381214 + 0.304008i
\(362\) −260.985 415.356i −0.720954 1.14739i
\(363\) −117.842 + 74.0453i −0.324635 + 0.203982i
\(364\) 142.160 178.263i 0.390550 0.489735i
\(365\) −218.516 + 218.516i −0.598674 + 0.598674i
\(366\) −46.9167 + 5.28624i −0.128188 + 0.0144433i
\(367\) −170.932 + 488.497i −0.465756 + 1.33105i 0.436442 + 0.899732i \(0.356238\pi\)
−0.902198 + 0.431322i \(0.858047\pi\)
\(368\) −361.268 453.015i −0.981706 1.23102i
\(369\) 26.3189 + 2.96543i 0.0713250 + 0.00803640i
\(370\) 375.667 780.080i 1.01532 2.10833i
\(371\) −134.039 + 587.264i −0.361291 + 1.58292i
\(372\) −51.1165 223.956i −0.137410 0.602032i
\(373\) −148.476 + 71.5023i −0.398059 + 0.191695i −0.622194 0.782863i \(-0.713759\pi\)
0.224135 + 0.974558i \(0.428044\pi\)
\(374\) −96.8609 276.813i −0.258986 0.740141i
\(375\) 136.075 216.562i 0.362867 0.577499i
\(376\) 84.5927i 0.224981i
\(377\) −249.691 221.019i −0.662312 0.586258i
\(378\) −655.393 −1.73384
\(379\) −385.472 242.208i −1.01708 0.639072i −0.0831508 0.996537i \(-0.526498\pi\)
−0.933927 + 0.357465i \(0.883641\pi\)
\(380\) −147.638 + 51.6608i −0.388521 + 0.135950i
\(381\) −178.908 371.506i −0.469574 0.975080i
\(382\) −30.7748 + 7.02415i −0.0805623 + 0.0183878i
\(383\) 280.279 + 63.9719i 0.731799 + 0.167028i 0.572154 0.820146i \(-0.306108\pi\)
0.159645 + 0.987174i \(0.448965\pi\)
\(384\) 393.113 + 189.313i 1.02373 + 0.493003i
\(385\) 61.2379 543.502i 0.159060 1.41169i
\(386\) −222.867 + 177.730i −0.577375 + 0.460441i
\(387\) 26.8689 + 9.40184i 0.0694287 + 0.0242941i
\(388\) −7.67706 68.1358i −0.0197862 0.175608i
\(389\) −60.4535 60.4535i −0.155408 0.155408i 0.625121 0.780528i \(-0.285050\pi\)
−0.780528 + 0.625121i \(0.785050\pi\)
\(390\) −409.154 326.289i −1.04911 0.836639i
\(391\) 213.152 + 339.230i 0.545146 + 0.867595i
\(392\) 254.203 159.726i 0.648477 0.407465i
\(393\) −152.656 + 191.425i −0.388438 + 0.487086i
\(394\) −327.034 + 327.034i −0.830036 + 0.830036i
\(395\) 222.918 25.1169i 0.564350 0.0635870i
\(396\) −3.56427 + 10.1861i −0.00900068 + 0.0257225i
\(397\) −303.313 380.342i −0.764012 0.958040i 0.235894 0.971779i \(-0.424198\pi\)
−0.999906 + 0.0137384i \(0.995627\pi\)
\(398\) 361.275 + 40.7059i 0.907725 + 0.102276i
\(399\) −190.519 + 395.617i −0.477491 + 0.991521i
\(400\) 50.4501 221.036i 0.126125 0.552591i
\(401\) −122.942 538.643i −0.306588 1.34325i −0.859980 0.510328i \(-0.829524\pi\)
0.553392 0.832921i \(-0.313333\pi\)
\(402\) 462.632 222.792i 1.15083 0.554209i
\(403\) 147.223 + 420.740i 0.365318 + 1.04402i
\(404\) 63.2782 100.707i 0.156629 0.249274i
\(405\) 520.924i 1.28623i
\(406\) 357.427 + 639.540i 0.880362 + 1.57522i
\(407\) 515.799 1.26732
\(408\) −184.878 116.166i −0.453131 0.284721i
\(409\) 137.784 48.2128i 0.336881 0.117880i −0.156537 0.987672i \(-0.550033\pi\)
0.493418 + 0.869792i \(0.335747\pi\)
\(410\) 259.824 + 539.531i 0.633718 + 1.31593i
\(411\) 489.991 111.837i 1.19219 0.272110i
\(412\) −218.509 49.8732i −0.530361 0.121051i
\(413\) 319.107 + 153.674i 0.772656 + 0.372092i
\(414\) 5.11158 45.3666i 0.0123468 0.109581i
\(415\) 329.082 262.434i 0.792968 0.632371i
\(416\) 306.601 + 107.284i 0.737021 + 0.257895i
\(417\) 38.2590 + 339.558i 0.0917483 + 0.814289i
\(418\) −204.041 204.041i −0.488136 0.488136i
\(419\) −148.931 118.769i −0.355444 0.283457i 0.429445 0.903093i \(-0.358709\pi\)
−0.784890 + 0.619635i \(0.787280\pi\)
\(420\) 197.542 + 314.386i 0.470338 + 0.748538i
\(421\) −357.054 + 224.352i −0.848108 + 0.532902i −0.884556 0.466434i \(-0.845539\pi\)
0.0364479 + 0.999336i \(0.488396\pi\)
\(422\) −84.8515 + 106.400i −0.201070 + 0.252134i
\(423\) −7.62258 + 7.62258i −0.0180203 + 0.0180203i
\(424\) −292.862 + 32.9976i −0.690713 + 0.0778246i
\(425\) −51.7755 + 147.966i −0.121825 + 0.348155i
\(426\) 147.351 + 184.772i 0.345894 + 0.433737i
\(427\) −64.5922 7.27779i −0.151270 0.0170440i
\(428\) 56.5829 117.496i 0.132203 0.274522i
\(429\) 69.3738 303.946i 0.161710 0.708499i
\(430\) 143.219 + 627.485i 0.333068 + 1.45927i
\(431\) −95.2983 + 45.8932i −0.221110 + 0.106481i −0.541160 0.840920i \(-0.682015\pi\)
0.320050 + 0.947401i \(0.396300\pi\)
\(432\) −171.291 489.521i −0.396506 1.13315i
\(433\) −408.562 + 650.223i −0.943562 + 1.50167i −0.0803883 + 0.996764i \(0.525616\pi\)
−0.863174 + 0.504907i \(0.831527\pi\)
\(434\) 979.364i 2.25660i
\(435\) 474.014 264.918i 1.08969 0.609006i
\(436\) 22.2037 0.0509260
\(437\) 333.779 + 209.727i 0.763796 + 0.479925i
\(438\) 365.300 127.824i 0.834019 0.291836i
\(439\) 228.661 + 474.820i 0.520869 + 1.08160i 0.981047 + 0.193769i \(0.0620711\pi\)
−0.460179 + 0.887826i \(0.652215\pi\)
\(440\) 260.888 59.5461i 0.592928 0.135332i
\(441\) 37.2989 + 8.51322i 0.0845779 + 0.0193044i
\(442\) −348.067 167.620i −0.787483 0.379232i
\(443\) 26.7609 237.510i 0.0604084 0.536139i −0.926667 0.375883i \(-0.877339\pi\)
0.987075 0.160256i \(-0.0512320\pi\)
\(444\) −273.763 + 218.319i −0.616583 + 0.491709i
\(445\) 159.620 + 55.8535i 0.358697 + 0.125514i
\(446\) 36.5811 + 324.666i 0.0820204 + 0.727952i
\(447\) −316.383 316.383i −0.707791 0.707791i
\(448\) 91.8550 + 73.2519i 0.205034 + 0.163509i
\(449\) 162.359 + 258.393i 0.361601 + 0.575485i 0.977133 0.212627i \(-0.0682019\pi\)
−0.615532 + 0.788112i \(0.711059\pi\)
\(450\) 15.1255 9.50395i 0.0336121 0.0211199i
\(451\) −222.427 + 278.914i −0.493185 + 0.618435i
\(452\) 57.9610 57.9610i 0.128232 0.128232i
\(453\) −884.644 + 99.6755i −1.95286 + 0.220034i
\(454\) 136.001 388.670i 0.299563 0.856100i
\(455\) −449.216 563.299i −0.987289 1.23802i
\(456\) −213.485 24.0540i −0.468169 0.0527500i
\(457\) 181.449 376.783i 0.397045 0.824472i −0.602606 0.798039i \(-0.705871\pi\)
0.999651 0.0264327i \(-0.00841477\pi\)
\(458\) −84.5653 + 370.505i −0.184640 + 0.808963i
\(459\) 79.7950 + 349.605i 0.173845 + 0.761666i
\(460\) 300.319 144.626i 0.652867 0.314404i
\(461\) −196.436 561.383i −0.426109 1.21775i −0.934294 0.356502i \(-0.883969\pi\)
0.508185 0.861248i \(-0.330317\pi\)
\(462\) −364.428 + 579.983i −0.788804 + 1.25537i
\(463\) 903.693i 1.95182i −0.218171 0.975910i \(-0.570009\pi\)
0.218171 0.975910i \(-0.429991\pi\)
\(464\) −384.264 + 434.114i −0.828155 + 0.935590i
\(465\) −725.884 −1.56104
\(466\) 609.258 + 382.822i 1.30742 + 0.821507i
\(467\) 674.139 235.892i 1.44355 0.505121i 0.508945 0.860799i \(-0.330036\pi\)
0.934609 + 0.355678i \(0.115750\pi\)
\(468\) 6.16806 + 12.8081i 0.0131796 + 0.0273678i
\(469\) 689.210 157.308i 1.46953 0.335411i
\(470\) −237.623 54.2359i −0.505581 0.115396i
\(471\) −719.772 346.624i −1.52818 0.735932i
\(472\) −19.4021 + 172.198i −0.0411061 + 0.364827i
\(473\) −299.774 + 239.062i −0.633773 + 0.505417i
\(474\) −265.178 92.7896i −0.559446 0.195759i
\(475\) 17.2698 + 153.274i 0.0363576 + 0.322682i
\(476\) 193.814 + 193.814i 0.407173 + 0.407173i
\(477\) −29.3630 23.4162i −0.0615576 0.0490905i
\(478\) −332.781 529.619i −0.696196 1.10799i
\(479\) 9.59607 6.02961i 0.0200336 0.0125879i −0.521978 0.852959i \(-0.674806\pi\)
0.542012 + 0.840371i \(0.317663\pi\)
\(480\) −329.804 + 413.561i −0.687092 + 0.861586i
\(481\) 480.453 480.453i 0.998863 0.998863i
\(482\) −57.6403 + 6.49450i −0.119586 + 0.0134741i
\(483\) 309.057 883.235i 0.639870 1.82864i
\(484\) 53.2954 + 66.8303i 0.110114 + 0.138079i
\(485\) −215.304 24.2589i −0.443926 0.0500185i
\(486\) 36.8351 76.4889i 0.0757924 0.157385i
\(487\) −178.718 + 783.016i −0.366978 + 1.60784i 0.368055 + 0.929804i \(0.380024\pi\)
−0.735033 + 0.678031i \(0.762833\pi\)
\(488\) −7.07672 31.0051i −0.0145015 0.0635351i
\(489\) −167.525 + 80.6757i −0.342587 + 0.164981i
\(490\) 285.695 + 816.471i 0.583052 + 1.66627i
\(491\) 197.816 314.823i 0.402885 0.641187i −0.582242 0.813015i \(-0.697824\pi\)
0.985127 + 0.171828i \(0.0549673\pi\)
\(492\) 242.180i 0.492236i
\(493\) 297.631 268.526i 0.603714 0.544678i
\(494\) −380.118 −0.769469
\(495\) 28.8741 + 18.1428i 0.0583315 + 0.0366521i
\(496\) 731.498 255.962i 1.47479 0.516053i
\(497\) 141.172 + 293.147i 0.284048 + 0.589833i
\(498\) −513.921 + 117.299i −1.03197 + 0.235540i
\(499\) 468.476 + 106.927i 0.938830 + 0.214282i 0.664444 0.747338i \(-0.268668\pi\)
0.274386 + 0.961620i \(0.411526\pi\)
\(500\) −141.531 68.1577i −0.283062 0.136315i
\(501\) −64.0140 + 568.140i −0.127773 + 1.13401i
\(502\) 272.117 217.006i 0.542065 0.432282i
\(503\) −344.807 120.653i −0.685501 0.239867i −0.0350167 0.999387i \(-0.511148\pi\)
−0.650485 + 0.759519i \(0.725434\pi\)
\(504\) 3.83529 + 34.0392i 0.00760971 + 0.0675380i
\(505\) −265.753 265.753i −0.526244 0.526244i
\(506\) 480.771 + 383.402i 0.950140 + 0.757711i
\(507\) 60.7846 + 96.7381i 0.119891 + 0.190805i
\(508\) −214.436 + 134.739i −0.422119 + 0.265235i
\(509\) 525.388 658.816i 1.03220 1.29433i 0.0774230 0.996998i \(-0.475331\pi\)
0.954773 0.297335i \(-0.0960978\pi\)
\(510\) 444.847 444.847i 0.872249 0.872249i
\(511\) 529.474 59.6574i 1.03615 0.116746i
\(512\) 52.2135 149.217i 0.101979 0.291440i
\(513\) 219.988 + 275.856i 0.428826 + 0.537731i
\(514\) 211.231 + 23.8000i 0.410955 + 0.0463035i
\(515\) −307.289 + 638.092i −0.596677 + 1.23901i
\(516\) 57.9206 253.767i 0.112249 0.491796i
\(517\) −32.3101 141.560i −0.0624953 0.273810i
\(518\) −1345.01 + 647.722i −2.59654 + 1.25043i
\(519\) −25.0197 71.5022i −0.0482075 0.137769i
\(520\) 187.545 298.476i 0.360664 0.573993i
\(521\) 150.865i 0.289569i −0.989463 0.144784i \(-0.953751\pi\)
0.989463 0.144784i \(-0.0462489\pi\)
\(522\) −45.5947 + 2.77730i −0.0873461 + 0.00532050i
\(523\) −792.504 −1.51530 −0.757652 0.652659i \(-0.773653\pi\)
−0.757652 + 0.652659i \(0.773653\pi\)
\(524\) 127.329 + 80.0062i 0.242994 + 0.152684i
\(525\) 345.595 120.929i 0.658276 0.230341i
\(526\) −103.057 214.000i −0.195926 0.406845i
\(527\) −522.420 + 119.239i −0.991309 + 0.226260i
\(528\) −528.441 120.613i −1.00084 0.228434i
\(529\) −280.254 134.963i −0.529781 0.255129i
\(530\) 95.0750 843.814i 0.179387 1.59210i
\(531\) −17.2650 + 13.7684i −0.0325141 + 0.0259291i
\(532\) 254.557 + 89.0732i 0.478490 + 0.167431i
\(533\) 52.6167 + 466.986i 0.0987180 + 0.876146i
\(534\) −149.757 149.757i −0.280444 0.280444i
\(535\) −322.183 256.932i −0.602210 0.480247i
\(536\) 184.017 + 292.862i 0.343316 + 0.546384i
\(537\) 296.637 186.389i 0.552396 0.347093i
\(538\) −40.5948 + 50.9042i −0.0754550 + 0.0946176i
\(539\) −364.383 + 364.383i −0.676035 + 0.676035i
\(540\) 296.474 33.4046i 0.549026 0.0618603i
\(541\) −71.8125 + 205.228i −0.132740 + 0.379350i −0.990999 0.133867i \(-0.957261\pi\)
0.858259 + 0.513217i \(0.171546\pi\)
\(542\) −264.514 331.690i −0.488033 0.611973i
\(543\) 622.942 + 70.1888i 1.14722 + 0.129261i
\(544\) −169.426 + 351.817i −0.311445 + 0.646722i
\(545\) 15.6125 68.4030i 0.0286469 0.125510i
\(546\) 200.784 + 879.694i 0.367737 + 1.61116i
\(547\) −396.400 + 190.896i −0.724680 + 0.348987i −0.759589 0.650403i \(-0.774600\pi\)
0.0349094 + 0.999390i \(0.488886\pi\)
\(548\) −101.952 291.363i −0.186045 0.531685i
\(549\) 2.15617 3.43153i 0.00392745 0.00625051i
\(550\) 240.611i 0.437475i
\(551\) 149.210 365.108i 0.270799 0.662629i
\(552\) 457.825 0.829394
\(553\) −327.501 205.783i −0.592227 0.372121i
\(554\) 995.123 348.209i 1.79625 0.628535i
\(555\) 480.078 + 996.892i 0.865005 + 1.79620i
\(556\) 204.610 46.7009i 0.368004 0.0839945i
\(557\) 593.083 + 135.367i 1.06478 + 0.243029i 0.718803 0.695214i \(-0.244690\pi\)
0.345977 + 0.938243i \(0.387547\pi\)
\(558\) 55.0149 + 26.4938i 0.0985929 + 0.0474799i
\(559\) −56.5520 + 501.912i −0.101166 + 0.897876i
\(560\) −979.353 + 781.008i −1.74884 + 1.39466i
\(561\) 353.749 + 123.782i 0.630568 + 0.220645i
\(562\) 107.663 + 955.532i 0.191570 + 1.70023i
\(563\) 498.815 + 498.815i 0.885995 + 0.885995i 0.994136 0.108141i \(-0.0344897\pi\)
−0.108141 + 0.994136i \(0.534490\pi\)
\(564\) 77.0657 + 61.4579i 0.136641 + 0.108968i
\(565\) −137.805 219.316i −0.243903 0.388170i
\(566\) 332.495 208.920i 0.587447 0.369117i
\(567\) 560.002 702.220i 0.987657 1.23848i
\(568\) −112.565 + 112.565i −0.198177 + 0.198177i
\(569\) −315.227 + 35.5176i −0.554002 + 0.0624210i −0.384527 0.923114i \(-0.625636\pi\)
−0.169474 + 0.985535i \(0.554207\pi\)
\(570\) 204.443 584.263i 0.358671 1.02502i
\(571\) −321.408 403.033i −0.562886 0.705836i 0.416203 0.909272i \(-0.363361\pi\)
−0.979088 + 0.203436i \(0.934789\pi\)
\(572\) −190.277 21.4390i −0.332652 0.0374808i
\(573\) 17.5027 36.3447i 0.0305457 0.0634289i
\(574\) 229.754 1006.62i 0.400268 1.75369i
\(575\) −73.1428 320.460i −0.127205 0.557321i
\(576\) −6.59972 + 3.17826i −0.0114579 + 0.00551781i
\(577\) 325.366 + 929.842i 0.563892 + 1.61151i 0.773549 + 0.633736i \(0.218480\pi\)
−0.209657 + 0.977775i \(0.567235\pi\)
\(578\) −126.637 + 201.542i −0.219095 + 0.348688i
\(579\) 364.285i 0.629162i
\(580\) −194.282 271.085i −0.334970 0.467388i
\(581\) −725.732 −1.24911
\(582\) 229.756 + 144.365i 0.394770 + 0.248050i
\(583\) 477.480 167.077i 0.819005 0.286582i
\(584\) 113.110 + 234.875i 0.193681 + 0.402182i
\(585\) 43.7950 9.99593i 0.0748633 0.0170871i
\(586\) −1249.46 285.181i −2.13219 0.486658i
\(587\) 758.249 + 365.153i 1.29174 + 0.622067i 0.948379 0.317138i \(-0.102722\pi\)
0.343356 + 0.939205i \(0.388436\pi\)
\(588\) 39.1683 347.628i 0.0666127 0.591204i
\(589\) −412.216 + 328.731i −0.699858 + 0.558118i
\(590\) −471.270 164.905i −0.798763 0.279499i
\(591\) −66.1755 587.324i −0.111972 0.993780i
\(592\) −835.317 835.317i −1.41101 1.41101i
\(593\) −27.0486 21.5706i −0.0456132 0.0363753i 0.600418 0.799686i \(-0.295001\pi\)
−0.646031 + 0.763311i \(0.723572\pi\)
\(594\) 292.830 + 466.036i 0.492980 + 0.784573i
\(595\) 733.365 460.804i 1.23255 0.774460i
\(596\) −171.340 + 214.853i −0.287483 + 0.360492i
\(597\) −328.527 + 328.527i −0.550296 + 0.550296i
\(598\) 804.955 90.6966i 1.34608 0.151667i
\(599\) 3.54858 10.1412i 0.00592417 0.0169303i −0.940883 0.338731i \(-0.890002\pi\)
0.946807 + 0.321801i \(0.104288\pi\)
\(600\) 111.692 + 140.057i 0.186153 + 0.233428i
\(601\) 368.282 + 41.4954i 0.612783 + 0.0690440i 0.412901 0.910776i \(-0.364516\pi\)
0.199882 + 0.979820i \(0.435944\pi\)
\(602\) 481.493 999.830i 0.799822 1.66085i
\(603\) −9.80790 + 42.9712i −0.0162652 + 0.0712624i
\(604\) 121.669 + 533.067i 0.201439 + 0.882560i
\(605\) 243.359 117.195i 0.402246 0.193712i
\(606\) 155.456 + 444.268i 0.256528 + 0.733115i
\(607\) −219.680 + 349.619i −0.361912 + 0.575979i −0.977199 0.212324i \(-0.931897\pi\)
0.615288 + 0.788302i \(0.289040\pi\)
\(608\) 384.212i 0.631928i
\(609\) −923.774 152.456i −1.51687 0.250339i
\(610\) 91.6314 0.150215
\(611\) −161.955 101.763i −0.265066 0.166552i
\(612\) −16.1304 + 5.64428i −0.0263569 + 0.00922268i
\(613\) −443.542 921.025i −0.723560 1.50249i −0.859151 0.511722i \(-0.829008\pi\)
0.135591 0.990765i \(-0.456707\pi\)
\(614\) −881.976 + 201.305i −1.43644 + 0.327859i
\(615\) −746.084 170.289i −1.21315 0.276892i
\(616\) −415.698 200.190i −0.674834 0.324983i
\(617\) 12.9759 115.164i 0.0210306 0.186652i −0.978805 0.204795i \(-0.934347\pi\)
0.999835 + 0.0181438i \(0.00577566\pi\)
\(618\) 693.457 553.014i 1.12210 0.894844i
\(619\) 36.6784 + 12.8343i 0.0592543 + 0.0207340i 0.359743 0.933051i \(-0.382864\pi\)
−0.300489 + 0.953785i \(0.597150\pi\)
\(620\) 49.9170 + 443.025i 0.0805113 + 0.714557i
\(621\) −531.676 531.676i −0.856162 0.856162i
\(622\) −547.745 436.812i −0.880619 0.702270i
\(623\) −155.129 246.886i −0.249003 0.396286i
\(624\) −604.578 + 379.881i −0.968875 + 0.608784i
\(625\) −486.264 + 609.755i −0.778022 + 0.975609i
\(626\) 322.787 322.787i 0.515635 0.515635i
\(627\) 366.439 41.2878i 0.584432 0.0658497i
\(628\) −162.057 + 463.132i −0.258052 + 0.737471i
\(629\) 509.269 + 638.604i 0.809649 + 1.01527i
\(630\) −98.0758 11.0505i −0.155676 0.0175405i
\(631\) 116.281 241.460i 0.184280 0.382662i −0.788279 0.615318i \(-0.789027\pi\)
0.972559 + 0.232656i \(0.0747417\pi\)
\(632\) 42.1099 184.495i 0.0666295 0.291923i
\(633\) −38.6999 169.555i −0.0611373 0.267860i
\(634\) 1230.76 592.704i 1.94127 0.934864i
\(635\) 264.310 + 755.356i 0.416237 + 1.18954i
\(636\) −182.707 + 290.777i −0.287275 + 0.457196i
\(637\) 678.827i 1.06566i
\(638\) 295.065 539.906i 0.462484 0.846247i
\(639\) −20.2862 −0.0317469
\(640\) −717.014 450.530i −1.12033 0.703952i
\(641\) −937.367 + 327.999i −1.46235 + 0.511699i −0.940043 0.341057i \(-0.889215\pi\)
−0.522309 + 0.852756i \(0.674929\pi\)
\(642\) 223.921 + 464.977i 0.348787 + 0.724264i
\(643\) 311.987 71.2090i 0.485206 0.110745i 0.0270814 0.999633i \(-0.491379\pi\)
0.458124 + 0.888888i \(0.348522\pi\)
\(644\) −560.314 127.888i −0.870052 0.198584i
\(645\) −741.053 356.872i −1.14892 0.553291i
\(646\) 51.1623 454.078i 0.0791987 0.702908i
\(647\) −288.416 + 230.004i −0.445774 + 0.355493i −0.820504 0.571641i \(-0.806307\pi\)
0.374730 + 0.927134i \(0.377736\pi\)
\(648\) 414.782 + 145.139i 0.640096 + 0.223979i
\(649\) −33.3029 295.572i −0.0513142 0.455427i
\(650\) 224.123 + 224.123i 0.344805 + 0.344805i
\(651\) 978.512 + 780.337i 1.50309 + 1.19867i
\(652\) 60.7586 + 96.6968i 0.0931881 + 0.148308i
\(653\) −257.346 + 161.701i −0.394098 + 0.247628i −0.714474 0.699662i \(-0.753334\pi\)
0.320375 + 0.947291i \(0.396191\pi\)
\(654\) −54.7854 + 68.6988i −0.0837698 + 0.105044i
\(655\) 336.007 336.007i 0.512987 0.512987i
\(656\) 811.902 91.4794i 1.23766 0.139450i
\(657\) −10.9721 + 31.3566i −0.0167004 + 0.0477269i
\(658\) 262.018 + 328.560i 0.398204 + 0.499332i
\(659\) −331.819 37.3870i −0.503518 0.0567329i −0.143448 0.989658i \(-0.545819\pi\)
−0.360071 + 0.932925i \(0.617247\pi\)
\(660\) 135.292 280.936i 0.204987 0.425660i
\(661\) −231.074 + 1012.40i −0.349583 + 1.53162i 0.428548 + 0.903519i \(0.359025\pi\)
−0.778131 + 0.628103i \(0.783832\pi\)
\(662\) −230.321 1009.10i −0.347917 1.52433i
\(663\) 444.807 214.208i 0.670901 0.323089i
\(664\) −117.273 335.148i −0.176616 0.504741i
\(665\) 453.399 721.581i 0.681803 1.08508i
\(666\) 93.0768i 0.139755i
\(667\) −228.859 + 808.772i −0.343117 + 1.21255i
\(668\) 351.152 0.525677
\(669\) −353.531 222.138i −0.528447 0.332045i
\(670\) −940.638 + 329.143i −1.40394 + 0.491259i
\(671\) 23.6847 + 49.1819i 0.0352977 + 0.0732964i
\(672\) 889.171 202.947i 1.32317 0.302005i
\(673\) 145.913 + 33.3038i 0.216810 + 0.0494856i 0.329546 0.944139i \(-0.393104\pi\)
−0.112736 + 0.993625i \(0.535961\pi\)
\(674\) 780.319 + 375.782i 1.15774 + 0.557540i
\(675\) 32.9408 292.358i 0.0488012 0.433122i
\(676\) 54.8617 43.7508i 0.0811564 0.0647201i
\(677\) 458.596 + 160.470i 0.677395 + 0.237031i 0.646980 0.762507i \(-0.276032\pi\)
0.0304143 + 0.999537i \(0.490317\pi\)
\(678\) 36.3196 + 322.346i 0.0535688 + 0.475436i
\(679\) 264.157 + 264.157i 0.389039 + 0.389039i
\(680\) 331.309 + 264.210i 0.487219 + 0.388544i
\(681\) 279.968 + 445.567i 0.411114 + 0.654284i
\(682\) −696.405 + 437.580i −1.02112 + 0.641613i
\(683\) 431.703 541.338i 0.632069 0.792589i −0.357918 0.933753i \(-0.616513\pi\)
0.989986 + 0.141164i \(0.0450846\pi\)
\(684\) −11.8899 + 11.8899i −0.0173828 + 0.0173828i
\(685\) −969.292 + 109.213i −1.41502 + 0.159435i
\(686\) 83.7369 239.306i 0.122065 0.348843i
\(687\) −302.803 379.703i −0.440761 0.552697i
\(688\) 872.626 + 98.3213i 1.26835 + 0.142909i
\(689\) 289.132 600.389i 0.419640 0.871391i
\(690\) −293.531 + 1286.04i −0.425407 + 1.86383i
\(691\) 126.440 + 553.969i 0.182981 + 0.801691i 0.980201 + 0.198003i \(0.0634456\pi\)
−0.797221 + 0.603688i \(0.793697\pi\)
\(692\) −41.9191 + 20.1872i −0.0605767 + 0.0291722i
\(693\) −19.4193 55.4971i −0.0280221 0.0800824i
\(694\) −10.3921 + 16.5390i −0.0149742 + 0.0238314i
\(695\) 663.180i 0.954216i
\(696\) −78.8703 451.241i −0.113319 0.648335i
\(697\) −564.931 −0.810518
\(698\) 1308.60 + 822.245i 1.87478 + 1.17800i
\(699\) −867.933 + 303.703i −1.24168 + 0.434482i
\(700\) −97.5716 202.610i −0.139388 0.289442i
\(701\) 669.767 152.870i 0.955445 0.218074i 0.283747 0.958899i \(-0.408422\pi\)
0.671698 + 0.740825i \(0.265565\pi\)
\(702\) 706.865 + 161.337i 1.00693 + 0.229825i
\(703\) 724.090 + 348.704i 1.03000 + 0.496022i
\(704\) 11.0470 98.0452i 0.0156918 0.139269i
\(705\) 243.522 194.202i 0.345421 0.275464i
\(706\) −1096.88 383.814i −1.55365 0.543646i
\(707\) 72.5537 + 643.932i 0.102622 + 0.910795i
\(708\) 142.780 + 142.780i 0.201667 + 0.201667i
\(709\) 361.110 + 287.976i 0.509324 + 0.406172i 0.844149 0.536108i \(-0.180106\pi\)
−0.334826 + 0.942280i \(0.608677\pi\)
\(710\) −244.027 388.367i −0.343700 0.546996i
\(711\) 20.4192 12.8302i 0.0287190 0.0180454i
\(712\) 88.9460 111.535i 0.124924 0.156650i
\(713\) 794.492 794.492i 1.11429 1.11429i
\(714\) −1077.88 + 121.448i −1.50964 + 0.170096i
\(715\) −199.840 + 571.111i −0.279497 + 0.798757i
\(716\) −134.157 168.227i −0.187370 0.234954i
\(717\) 794.312 + 89.4974i 1.10783 + 0.124822i
\(718\) −91.1854 + 189.349i −0.126999 + 0.263717i
\(719\) −115.701 + 506.920i −0.160920 + 0.705035i 0.828504 + 0.559983i \(0.189192\pi\)
−0.989424 + 0.145052i \(0.953665\pi\)
\(720\) −17.3789 76.1421i −0.0241374 0.105753i
\(721\) 1100.19 529.825i 1.52593 0.734848i
\(722\) 141.304 + 403.824i 0.195712 + 0.559313i
\(723\) 39.4378 62.7648i 0.0545474 0.0868117i
\(724\) 385.024i 0.531801i
\(725\) −303.250 + 127.297i −0.418276 + 0.175582i
\(726\) −338.276 −0.465944
\(727\) −1047.82 658.389i −1.44129 0.905624i −0.999966 0.00827820i \(-0.997365\pi\)
−0.441327 0.897346i \(-0.645492\pi\)
\(728\) −573.683 + 200.740i −0.788026 + 0.275742i
\(729\) −290.364 602.947i −0.398304 0.827088i
\(730\) −732.288 + 167.140i −1.00313 + 0.228959i
\(731\) −591.959 135.111i −0.809794 0.184830i
\(732\) −33.3877 16.0787i −0.0456116 0.0219654i
\(733\) 11.3513 100.746i 0.0154861 0.137443i −0.983590 0.180418i \(-0.942255\pi\)
0.999076 + 0.0429750i \(0.0136836\pi\)
\(734\) −983.484 + 784.303i −1.33990 + 1.06853i
\(735\) −1043.40 365.100i −1.41959 0.496735i
\(736\) −91.6736 813.626i −0.124557 1.10547i
\(737\) −419.797 419.797i −0.569603 0.569603i
\(738\) 50.3305 + 40.1373i 0.0681986 + 0.0543865i
\(739\) −408.803 650.606i −0.553184 0.880387i 0.446714 0.894677i \(-0.352594\pi\)
−0.999898 + 0.0142895i \(0.995451\pi\)
\(740\) 575.415 361.557i 0.777588 0.488591i
\(741\) 302.870 379.787i 0.408732 0.512533i
\(742\) −1035.28 + 1035.28i −1.39525 + 1.39525i
\(743\) −576.403 + 64.9450i −0.775778 + 0.0874091i −0.490971 0.871176i \(-0.663358\pi\)
−0.284807 + 0.958585i \(0.591929\pi\)
\(744\) −202.244 + 577.981i −0.271834 + 0.776856i
\(745\) 541.421 + 678.920i 0.726739 + 0.911302i
\(746\) −398.032 44.8475i −0.533555 0.0601172i
\(747\) 19.6325 40.7673i 0.0262818 0.0545747i
\(748\) 51.2210 224.414i 0.0684773 0.300019i
\(749\) 158.105 + 692.703i 0.211088 + 0.924837i
\(750\) 560.095 269.727i 0.746793 0.359636i
\(751\) −322.426 921.441i −0.429329 1.22695i −0.931995 0.362471i \(-0.881933\pi\)
0.502666 0.864481i \(-0.332353\pi\)
\(752\) −176.926 + 281.575i −0.235273 + 0.374435i
\(753\) 444.786i 0.590685i
\(754\) −228.063 777.754i −0.302471 1.03150i
\(755\) 1727.77 2.28844
\(756\) −435.566 273.684i −0.576145 0.362016i
\(757\) 804.590 281.538i 1.06287 0.371913i 0.258478 0.966017i \(-0.416779\pi\)
0.804388 + 0.594104i \(0.202493\pi\)
\(758\) −480.104