Properties

Label 29.3.f.a.3.3
Level 29
Weight 3
Character 29.3
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 3.3
Character \(\chi\) = 29.3
Dual form 29.3.f.a.10.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(1.44470 + 0.907767i) q^{2}\) \(+(1.22940 - 0.430186i) q^{3}\) \(+(-0.472410 - 0.980970i) q^{4}\) \(+(-8.15497 + 1.86132i) q^{5}\) \(+(2.16663 + 0.494518i) q^{6}\) \(+(7.53715 + 3.62970i) q^{7}\) \(+(0.972146 - 8.62804i) q^{8}\) \(+(-5.71012 + 4.55367i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(1.44470 + 0.907767i) q^{2}\) \(+(1.22940 - 0.430186i) q^{3}\) \(+(-0.472410 - 0.980970i) q^{4}\) \(+(-8.15497 + 1.86132i) q^{5}\) \(+(2.16663 + 0.494518i) q^{6}\) \(+(7.53715 + 3.62970i) q^{7}\) \(+(0.972146 - 8.62804i) q^{8}\) \(+(-5.71012 + 4.55367i) q^{9}\) \(+(-13.4711 - 4.71376i) q^{10}\) \(+(-1.08366 - 9.61773i) q^{11}\) \(+(-1.00278 - 1.00278i) q^{12}\) \(+(8.88076 + 7.08217i) q^{13}\) \(+(7.59401 + 12.0858i) q^{14}\) \(+(-9.22501 + 5.79646i) q^{15}\) \(+(6.52130 - 8.17745i) q^{16}\) \(+(11.2928 - 11.2928i) q^{17}\) \(+(-12.3831 + 1.39524i) q^{18}\) \(+(-5.31570 + 15.1914i) q^{19}\) \(+(5.67839 + 7.12047i) q^{20}\) \(+(10.8276 + 1.21998i) q^{21}\) \(+(7.16509 - 14.8785i) q^{22}\) \(+(-2.98784 + 13.0906i) q^{23}\) \(+(-2.51650 - 11.0255i) q^{24}\) \(+(40.5148 - 19.5109i) q^{25}\) \(+(6.40109 + 18.2933i) q^{26}\) \(+(-11.2978 + 17.9804i) q^{27}\) \(-9.10842i q^{28}\) \(+(-25.9185 - 13.0088i) q^{29}\) \(-18.5892 q^{30}\) \(+(1.32569 + 0.832985i) q^{31}\) \(+(-15.9370 + 5.57660i) q^{32}\) \(+(-5.46966 - 11.3579i) q^{33}\) \(+(26.5659 - 6.06349i) q^{34}\) \(+(-68.2212 - 15.5711i) q^{35}\) \(+(7.16453 + 3.45025i) q^{36}\) \(+(2.36887 - 21.0243i) q^{37}\) \(+(-21.4699 + 17.1216i) q^{38}\) \(+(13.9646 + 4.88644i) q^{39}\) \(+(8.13170 + 72.1709i) q^{40}\) \(+(-0.193896 - 0.193896i) q^{41}\) \(+(14.5352 + 11.5915i) q^{42}\) \(+(-38.8303 - 61.7981i) q^{43}\) \(+(-8.92277 + 5.60655i) q^{44}\) \(+(38.0900 - 47.7634i) q^{45}\) \(+(-16.1997 + 16.1997i) q^{46}\) \(+(42.6067 - 4.80062i) q^{47}\) \(+(4.49946 - 12.8587i) q^{48}\) \(+(13.0829 + 16.4054i) q^{49}\) \(+(76.2432 + 8.59054i) q^{50}\) \(+(9.02534 - 18.7413i) q^{51}\) \(+(2.75203 - 12.0574i) q^{52}\) \(+(17.1572 + 75.1706i) q^{53}\) \(+(-32.6439 + 15.7205i) q^{54}\) \(+(26.7389 + 76.4152i) q^{55}\) \(+(38.6444 - 61.5022i) q^{56}\) \(+20.9631i q^{57}\) \(+(-25.6356 - 42.3219i) q^{58}\) \(-23.4840 q^{59}\) \(+(10.0441 + 6.31115i) q^{60}\) \(+(56.8778 - 19.9024i) q^{61}\) \(+(1.15907 + 2.40683i) q^{62}\) \(+(-59.5664 + 13.5957i) q^{63}\) \(+(-68.8749 - 15.7203i) q^{64}\) \(+(-85.6045 - 41.2249i) q^{65}\) \(+(2.40826 - 21.3739i) q^{66}\) \(+(-48.7873 + 38.9066i) q^{67}\) \(+(-16.4127 - 5.74304i) q^{68}\) \(+(1.95813 + 17.3789i) q^{69}\) \(+(-84.4245 - 84.4245i) q^{70}\) \(+(79.7652 + 63.6106i) q^{71}\) \(+(33.7381 + 53.6939i) q^{72}\) \(+(-23.3031 + 14.6423i) q^{73}\) \(+(22.5075 - 28.2235i) q^{74}\) \(+(41.4156 - 41.4156i) q^{75}\) \(+(17.4135 - 1.96203i) q^{76}\) \(+(26.7418 - 76.4236i) q^{77}\) \(+(15.7390 + 19.7361i) q^{78}\) \(+(11.7798 + 1.32727i) q^{79}\) \(+(-37.9602 + 78.8251i) q^{80}\) \(+(8.47203 - 37.1184i) q^{81}\) \(+(-0.104110 - 0.456135i) q^{82}\) \(+(0.116523 - 0.0561147i) q^{83}\) \(+(-3.91831 - 11.1979i) q^{84}\) \(+(-71.0727 + 113.112i) q^{85}\) \(-124.529i q^{86}\) \(+(-37.4605 - 4.84326i) q^{87}\) \(-84.0356 q^{88}\) \(+(24.8431 + 15.6099i) q^{89}\) \(+(98.3867 - 34.4270i) q^{90}\) \(+(41.2294 + 85.6138i) q^{91}\) \(+(14.2529 - 3.25314i) q^{92}\) \(+(1.98814 + 0.453780i) q^{93}\) \(+(65.9118 + 31.7415i) q^{94}\) \(+(15.0734 - 133.780i) q^{95}\) \(+(-17.1940 + 13.7117i) q^{96}\) \(+(23.5730 + 8.24856i) q^{97}\) \(+(4.00858 + 35.5771i) q^{98}\) \(+(49.9837 + 49.9837i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.44470 + 0.907767i 0.722351 + 0.453883i 0.842378 0.538887i \(-0.181155\pi\)
−0.120027 + 0.992771i \(0.538298\pi\)
\(3\) 1.22940 0.430186i 0.409800 0.143395i −0.117503 0.993073i \(-0.537489\pi\)
0.527303 + 0.849677i \(0.323203\pi\)
\(4\) −0.472410 0.980970i −0.118103 0.245242i
\(5\) −8.15497 + 1.86132i −1.63099 + 0.372264i −0.937442 0.348142i \(-0.886813\pi\)
−0.693552 + 0.720406i \(0.743955\pi\)
\(6\) 2.16663 + 0.494518i 0.361104 + 0.0824197i
\(7\) 7.53715 + 3.62970i 1.07674 + 0.518528i 0.886272 0.463166i \(-0.153287\pi\)
0.190464 + 0.981694i \(0.439001\pi\)
\(8\) 0.972146 8.62804i 0.121518 1.07850i
\(9\) −5.71012 + 4.55367i −0.634458 + 0.505963i
\(10\) −13.4711 4.71376i −1.34711 0.471376i
\(11\) −1.08366 9.61773i −0.0985143 0.874339i −0.941640 0.336622i \(-0.890716\pi\)
0.843126 0.537717i \(-0.180713\pi\)
\(12\) −1.00278 1.00278i −0.0835650 0.0835650i
\(13\) 8.88076 + 7.08217i 0.683135 + 0.544782i 0.902409 0.430881i \(-0.141797\pi\)
−0.219274 + 0.975663i \(0.570369\pi\)
\(14\) 7.59401 + 12.0858i 0.542430 + 0.863272i
\(15\) −9.22501 + 5.79646i −0.615001 + 0.386430i
\(16\) 6.52130 8.17745i 0.407581 0.511091i
\(17\) 11.2928 11.2928i 0.664280 0.664280i −0.292106 0.956386i \(-0.594356\pi\)
0.956386 + 0.292106i \(0.0943559\pi\)
\(18\) −12.3831 + 1.39524i −0.687949 + 0.0775133i
\(19\) −5.31570 + 15.1914i −0.279774 + 0.799548i 0.715155 + 0.698966i \(0.246356\pi\)
−0.994929 + 0.100582i \(0.967930\pi\)
\(20\) 5.67839 + 7.12047i 0.283919 + 0.356024i
\(21\) 10.8276 + 1.21998i 0.515601 + 0.0580942i
\(22\) 7.16509 14.8785i 0.325686 0.676294i
\(23\) −2.98784 + 13.0906i −0.129906 + 0.569155i 0.867517 + 0.497408i \(0.165715\pi\)
−0.997423 + 0.0717472i \(0.977143\pi\)
\(24\) −2.51650 11.0255i −0.104854 0.459396i
\(25\) 40.5148 19.5109i 1.62059 0.780436i
\(26\) 6.40109 + 18.2933i 0.246196 + 0.703588i
\(27\) −11.2978 + 17.9804i −0.418437 + 0.665939i
\(28\) 9.10842i 0.325301i
\(29\) −25.9185 13.0088i −0.893743 0.448580i
\(30\) −18.5892 −0.619641
\(31\) 1.32569 + 0.832985i 0.0427641 + 0.0268705i 0.553244 0.833019i \(-0.313390\pi\)
−0.510480 + 0.859889i \(0.670532\pi\)
\(32\) −15.9370 + 5.57660i −0.498032 + 0.174269i
\(33\) −5.46966 11.3579i −0.165747 0.344178i
\(34\) 26.5659 6.06349i 0.781349 0.178338i
\(35\) −68.2212 15.5711i −1.94918 0.444887i
\(36\) 7.16453 + 3.45025i 0.199015 + 0.0958404i
\(37\) 2.36887 21.0243i 0.0640236 0.568225i −0.920219 0.391403i \(-0.871990\pi\)
0.984243 0.176822i \(-0.0565817\pi\)
\(38\) −21.4699 + 17.1216i −0.564997 + 0.450570i
\(39\) 13.9646 + 4.88644i 0.358068 + 0.125293i
\(40\) 8.13170 + 72.1709i 0.203293 + 1.80427i
\(41\) −0.193896 0.193896i −0.00472917 0.00472917i 0.704738 0.709467i \(-0.251064\pi\)
−0.709467 + 0.704738i \(0.751064\pi\)
\(42\) 14.5352 + 11.5915i 0.346077 + 0.275987i
\(43\) −38.8303 61.7981i −0.903031 1.43717i −0.899378 0.437172i \(-0.855980\pi\)
−0.00365282 0.999993i \(-0.501163\pi\)
\(44\) −8.92277 + 5.60655i −0.202790 + 0.127422i
\(45\) 38.0900 47.7634i 0.846445 1.06141i
\(46\) −16.1997 + 16.1997i −0.352168 + 0.352168i
\(47\) 42.6067 4.80062i 0.906525 0.102141i 0.353624 0.935388i \(-0.384949\pi\)
0.552901 + 0.833247i \(0.313521\pi\)
\(48\) 4.49946 12.8587i 0.0937388 0.267890i
\(49\) 13.0829 + 16.4054i 0.266997 + 0.334804i
\(50\) 76.2432 + 8.59054i 1.52486 + 0.171811i
\(51\) 9.02534 18.7413i 0.176967 0.367477i
\(52\) 2.75203 12.0574i 0.0529237 0.231874i
\(53\) 17.1572 + 75.1706i 0.323721 + 1.41831i 0.830875 + 0.556459i \(0.187840\pi\)
−0.507155 + 0.861855i \(0.669303\pi\)
\(54\) −32.6439 + 15.7205i −0.604517 + 0.291120i
\(55\) 26.7389 + 76.4152i 0.486161 + 1.38937i
\(56\) 38.6444 61.5022i 0.690078 1.09825i
\(57\) 20.9631i 0.367773i
\(58\) −25.6356 42.3219i −0.441993 0.729687i
\(59\) −23.4840 −0.398034 −0.199017 0.979996i \(-0.563775\pi\)
−0.199017 + 0.979996i \(0.563775\pi\)
\(60\) 10.0441 + 6.31115i 0.167402 + 0.105186i
\(61\) 56.8778 19.9024i 0.932423 0.326269i 0.179033 0.983843i \(-0.442703\pi\)
0.753390 + 0.657574i \(0.228417\pi\)
\(62\) 1.15907 + 2.40683i 0.0186947 + 0.0388199i
\(63\) −59.5664 + 13.5957i −0.945499 + 0.215804i
\(64\) −68.8749 15.7203i −1.07617 0.245629i
\(65\) −85.6045 41.2249i −1.31699 0.634230i
\(66\) 2.40826 21.3739i 0.0364888 0.323847i
\(67\) −48.7873 + 38.9066i −0.728169 + 0.580696i −0.915843 0.401536i \(-0.868477\pi\)
0.187674 + 0.982231i \(0.439905\pi\)
\(68\) −16.4127 5.74304i −0.241363 0.0844565i
\(69\) 1.95813 + 17.3789i 0.0283787 + 0.251868i
\(70\) −84.4245 84.4245i −1.20606 1.20606i
\(71\) 79.7652 + 63.6106i 1.12345 + 0.895924i 0.995396 0.0958430i \(-0.0305547\pi\)
0.128057 + 0.991767i \(0.459126\pi\)
\(72\) 33.7381 + 53.6939i 0.468585 + 0.745749i
\(73\) −23.3031 + 14.6423i −0.319220 + 0.200579i −0.682104 0.731255i \(-0.738935\pi\)
0.362884 + 0.931834i \(0.381792\pi\)
\(74\) 22.5075 28.2235i 0.304156 0.381399i
\(75\) 41.4156 41.4156i 0.552208 0.552208i
\(76\) 17.4135 1.96203i 0.229125 0.0258162i
\(77\) 26.7418 76.4236i 0.347296 0.992514i
\(78\) 15.7390 + 19.7361i 0.201782 + 0.253027i
\(79\) 11.7798 + 1.32727i 0.149112 + 0.0168009i 0.186205 0.982511i \(-0.440381\pi\)
−0.0370930 + 0.999312i \(0.511810\pi\)
\(80\) −37.9602 + 78.8251i −0.474502 + 0.985313i
\(81\) 8.47203 37.1184i 0.104593 0.458252i
\(82\) −0.104110 0.456135i −0.00126963 0.00556262i
\(83\) 0.116523 0.0561147i 0.00140390 0.000676081i −0.433182 0.901307i \(-0.642609\pi\)
0.434586 + 0.900631i \(0.356895\pi\)
\(84\) −3.91831 11.1979i −0.0466466 0.133308i
\(85\) −71.0727 + 113.112i −0.836150 + 1.33072i
\(86\) 124.529i 1.44801i
\(87\) −37.4605 4.84326i −0.430580 0.0556697i
\(88\) −84.0356 −0.954950
\(89\) 24.8431 + 15.6099i 0.279136 + 0.175392i 0.664322 0.747446i \(-0.268720\pi\)
−0.385187 + 0.922839i \(0.625863\pi\)
\(90\) 98.3867 34.4270i 1.09319 0.382522i
\(91\) 41.2294 + 85.6138i 0.453071 + 0.940811i
\(92\) 14.2529 3.25314i 0.154923 0.0353602i
\(93\) 1.98814 + 0.453780i 0.0213778 + 0.00487935i
\(94\) 65.9118 + 31.7415i 0.701190 + 0.337675i
\(95\) 15.0734 133.780i 0.158667 1.40821i
\(96\) −17.1940 + 13.7117i −0.179104 + 0.142831i
\(97\) 23.5730 + 8.24856i 0.243021 + 0.0850367i 0.449041 0.893511i \(-0.351766\pi\)
−0.206020 + 0.978548i \(0.566051\pi\)
\(98\) 4.00858 + 35.5771i 0.0409038 + 0.363032i
\(99\) 49.9837 + 49.9837i 0.504886 + 0.504886i
\(100\) −38.2792 30.5267i −0.382792 0.305267i
\(101\) 83.3997 + 132.730i 0.825740 + 1.31416i 0.946901 + 0.321524i \(0.104195\pi\)
−0.121162 + 0.992633i \(0.538662\pi\)
\(102\) 30.0517 18.8827i 0.294624 0.185125i
\(103\) −74.0720 + 92.8833i −0.719146 + 0.901780i −0.998289 0.0584693i \(-0.981378\pi\)
0.279144 + 0.960249i \(0.409949\pi\)
\(104\) 69.7386 69.7386i 0.670563 0.670563i
\(105\) −90.5696 + 10.2047i −0.862568 + 0.0971881i
\(106\) −43.4503 + 124.174i −0.409909 + 1.17145i
\(107\) −82.4205 103.352i −0.770285 0.965907i 0.229688 0.973264i \(-0.426229\pi\)
−0.999973 + 0.00735775i \(0.997658\pi\)
\(108\) 22.9754 + 2.58870i 0.212735 + 0.0239695i
\(109\) 90.6920 188.324i 0.832037 1.72774i 0.160144 0.987094i \(-0.448804\pi\)
0.671892 0.740649i \(-0.265482\pi\)
\(110\) −30.7375 + 134.670i −0.279432 + 1.22427i
\(111\) −6.13208 26.8664i −0.0552439 0.242039i
\(112\) 78.8337 37.9643i 0.703872 0.338967i
\(113\) −9.02228 25.7842i −0.0798432 0.228179i 0.897041 0.441947i \(-0.145712\pi\)
−0.976884 + 0.213768i \(0.931426\pi\)
\(114\) −19.0296 + 30.2854i −0.166926 + 0.265661i
\(115\) 112.314i 0.976647i
\(116\) −0.517082 + 31.5708i −0.00445760 + 0.272162i
\(117\) −82.9600 −0.709060
\(118\) −33.9274 21.3180i −0.287521 0.180661i
\(119\) 126.105 44.1259i 1.05970 0.370806i
\(120\) 41.0440 + 85.2287i 0.342033 + 0.710239i
\(121\) 26.6399 6.08039i 0.220165 0.0502511i
\(122\) 100.238 + 22.8787i 0.821625 + 0.187531i
\(123\) −0.321787 0.154965i −0.00261616 0.00125987i
\(124\) 0.190865 1.69397i 0.00153923 0.0136611i
\(125\) −130.587 + 104.139i −1.04469 + 0.833114i
\(126\) −98.3975 34.4308i −0.780932 0.273260i
\(127\) 3.73540 + 33.1526i 0.0294126 + 0.261044i 0.999809 + 0.0195276i \(0.00621621\pi\)
−0.970397 + 0.241516i \(0.922355\pi\)
\(128\) −37.4769 37.4769i −0.292788 0.292788i
\(129\) −74.3227 59.2704i −0.576145 0.459460i
\(130\) −86.2503 137.267i −0.663464 1.05590i
\(131\) −5.80196 + 3.64561i −0.0442898 + 0.0278291i −0.553995 0.832520i \(-0.686897\pi\)
0.509705 + 0.860349i \(0.329754\pi\)
\(132\) −8.55780 + 10.7311i −0.0648318 + 0.0812965i
\(133\) −95.2055 + 95.2055i −0.715831 + 0.715831i
\(134\) −105.801 + 11.9209i −0.789562 + 0.0889623i
\(135\) 58.6661 167.658i 0.434564 1.24191i
\(136\) −86.4562 108.413i −0.635707 0.797152i
\(137\) −66.1910 7.45794i −0.483146 0.0544375i −0.132968 0.991120i \(-0.542451\pi\)
−0.350179 + 0.936683i \(0.613879\pi\)
\(138\) −12.9470 + 26.8848i −0.0938191 + 0.194817i
\(139\) −26.8670 + 117.712i −0.193287 + 0.846848i 0.781534 + 0.623862i \(0.214437\pi\)
−0.974822 + 0.222985i \(0.928420\pi\)
\(140\) 16.9537 + 74.2789i 0.121098 + 0.530563i
\(141\) 50.3155 24.2307i 0.356848 0.171849i
\(142\) 57.4933 + 164.307i 0.404883 + 1.15709i
\(143\) 58.4906 93.0873i 0.409025 0.650960i
\(144\) 76.3900i 0.530486i
\(145\) 235.578 + 57.8439i 1.62468 + 0.398923i
\(146\) −46.9578 −0.321629
\(147\) 23.1414 + 14.5407i 0.157425 + 0.0989165i
\(148\) −21.7433 + 7.60832i −0.146914 + 0.0514076i
\(149\) −35.6122 73.9495i −0.239008 0.496306i 0.746617 0.665255i \(-0.231677\pi\)
−0.985625 + 0.168949i \(0.945963\pi\)
\(150\) 97.4289 22.2375i 0.649526 0.148250i
\(151\) −25.5032 5.82094i −0.168895 0.0385493i 0.137237 0.990538i \(-0.456178\pi\)
−0.306132 + 0.951989i \(0.599035\pi\)
\(152\) 125.904 + 60.6324i 0.828318 + 0.398897i
\(153\) −13.0595 + 115.907i −0.0853564 + 0.757559i
\(154\) 108.009 86.1340i 0.701355 0.559312i
\(155\) −12.3614 4.32544i −0.0797510 0.0279061i
\(156\) −1.80359 16.0073i −0.0115615 0.102611i
\(157\) −150.103 150.103i −0.956069 0.956069i 0.0430058 0.999075i \(-0.486307\pi\)
−0.999075 + 0.0430058i \(0.986307\pi\)
\(158\) 15.8135 + 12.6109i 0.100085 + 0.0798155i
\(159\) 53.4304 + 85.0340i 0.336040 + 0.534805i
\(160\) 119.586 75.1409i 0.747413 0.469630i
\(161\) −70.0345 + 87.8205i −0.434997 + 0.545469i
\(162\) 45.9344 45.9344i 0.283546 0.283546i
\(163\) 296.077 33.3599i 1.81642 0.204662i 0.862775 0.505587i \(-0.168724\pi\)
0.953648 + 0.300926i \(0.0972956\pi\)
\(164\) −0.0986077 + 0.281805i −0.000601267 + 0.00171832i
\(165\) 65.7455 + 82.4422i 0.398458 + 0.499650i
\(166\) 0.219281 + 0.0247070i 0.00132097 + 0.000148837i
\(167\) −11.8990 + 24.7085i −0.0712514 + 0.147955i −0.933552 0.358441i \(-0.883308\pi\)
0.862301 + 0.506396i \(0.169023\pi\)
\(168\) 21.0520 92.2350i 0.125310 0.549018i
\(169\) −8.89530 38.9729i −0.0526349 0.230609i
\(170\) −205.358 + 98.8951i −1.20799 + 0.581736i
\(171\) −38.8233 110.951i −0.227037 0.648834i
\(172\) −42.2782 + 67.2854i −0.245804 + 0.391194i
\(173\) 70.3363i 0.406568i 0.979120 + 0.203284i \(0.0651615\pi\)
−0.979120 + 0.203284i \(0.934838\pi\)
\(174\) −49.7227 41.0024i −0.285762 0.235646i
\(175\) 376.185 2.14963
\(176\) −85.7153 53.8585i −0.487019 0.306014i
\(177\) −28.8713 + 10.1025i −0.163114 + 0.0570762i
\(178\) 21.7207 + 45.1034i 0.122026 + 0.253390i
\(179\) −156.687 + 35.7629i −0.875349 + 0.199793i −0.636512 0.771267i \(-0.719623\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(180\) −64.8485 14.8013i −0.360270 0.0822292i
\(181\) −227.552 109.583i −1.25719 0.605432i −0.317761 0.948171i \(-0.602931\pi\)
−0.939431 + 0.342739i \(0.888645\pi\)
\(182\) −18.1531 + 161.113i −0.0997423 + 0.885237i
\(183\) 61.3639 48.9361i 0.335322 0.267410i
\(184\) 110.041 + 38.5051i 0.598050 + 0.209267i
\(185\) 19.8149 + 175.862i 0.107108 + 0.950606i
\(186\) 2.46034 + 2.46034i 0.0132277 + 0.0132277i
\(187\) −120.848 96.3732i −0.646247 0.515365i
\(188\) −24.8371 39.5280i −0.132112 0.210255i
\(189\) −150.416 + 94.5129i −0.795854 + 0.500068i
\(190\) 143.217 179.589i 0.753775 0.945204i
\(191\) −78.7301 + 78.7301i −0.412199 + 0.412199i −0.882504 0.470305i \(-0.844144\pi\)
0.470305 + 0.882504i \(0.344144\pi\)
\(192\) −91.4375 + 10.3025i −0.476237 + 0.0536590i
\(193\) 48.1790 137.688i 0.249632 0.713408i −0.749070 0.662490i \(-0.769500\pi\)
0.998703 0.0509180i \(-0.0162147\pi\)
\(194\) 26.5683 + 33.3155i 0.136950 + 0.171730i
\(195\) −122.977 13.8561i −0.630649 0.0710571i
\(196\) 9.91272 20.5840i 0.0505751 0.105020i
\(197\) 45.2414 198.216i 0.229652 1.00617i −0.720272 0.693691i \(-0.755983\pi\)
0.949924 0.312480i \(-0.101160\pi\)
\(198\) 26.8381 + 117.585i 0.135546 + 0.593865i
\(199\) −223.780 + 107.767i −1.12452 + 0.541542i −0.901287 0.433222i \(-0.857377\pi\)
−0.223237 + 0.974764i \(0.571662\pi\)
\(200\) −128.954 368.531i −0.644772 1.84265i
\(201\) −43.2421 + 68.8194i −0.215135 + 0.342385i
\(202\) 267.463i 1.32407i
\(203\) −148.134 192.126i −0.729723 0.946433i
\(204\) −22.6483 −0.111021
\(205\) 1.94212 + 1.22031i 0.00947375 + 0.00595275i
\(206\) −191.328 + 66.9487i −0.928779 + 0.324994i
\(207\) −42.5492 88.3543i −0.205552 0.426832i
\(208\) 115.828 26.4370i 0.556866 0.127101i
\(209\) 151.867 + 34.6627i 0.726638 + 0.165850i
\(210\) −140.110 67.4733i −0.667189 0.321301i
\(211\) −10.1040 + 89.6752i −0.0478861 + 0.425001i 0.946782 + 0.321875i \(0.104313\pi\)
−0.994668 + 0.103126i \(0.967115\pi\)
\(212\) 65.6349 52.3421i 0.309598 0.246897i
\(213\) 125.428 + 43.8890i 0.588862 + 0.206052i
\(214\) −25.2535 224.131i −0.118007 1.04734i
\(215\) 431.686 + 431.686i 2.00784 + 2.00784i
\(216\) 144.152 + 114.957i 0.667370 + 0.532210i
\(217\) 6.96842 + 11.0902i 0.0321125 + 0.0511068i
\(218\) 301.977 189.745i 1.38522 0.870389i
\(219\) −22.3499 + 28.0259i −0.102054 + 0.127972i
\(220\) 62.3293 62.3293i 0.283315 0.283315i
\(221\) 180.266 20.3110i 0.815681 0.0919052i
\(222\) 15.5294 44.3804i 0.0699522 0.199912i
\(223\) 108.671 + 136.270i 0.487316 + 0.611075i 0.963316 0.268371i \(-0.0864852\pi\)
−0.476000 + 0.879445i \(0.657914\pi\)
\(224\) −140.361 15.8149i −0.626611 0.0706022i
\(225\) −142.498 + 295.901i −0.633325 + 1.31511i
\(226\) 10.3715 45.4406i 0.0458917 0.201065i
\(227\) −78.3123 343.109i −0.344988 1.51149i −0.788394 0.615171i \(-0.789087\pi\)
0.443405 0.896321i \(-0.353770\pi\)
\(228\) 20.5641 9.90316i 0.0901936 0.0434349i
\(229\) 72.4465 + 207.040i 0.316360 + 0.904106i 0.986772 + 0.162116i \(0.0518319\pi\)
−0.670411 + 0.741990i \(0.733882\pi\)
\(230\) 101.955 162.261i 0.443284 0.705482i
\(231\) 105.459i 0.456533i
\(232\) −137.437 + 210.980i −0.592402 + 0.909395i
\(233\) 20.3820 0.0874763 0.0437381 0.999043i \(-0.486073\pi\)
0.0437381 + 0.999043i \(0.486073\pi\)
\(234\) −119.853 75.3083i −0.512190 0.321830i
\(235\) −338.521 + 118.454i −1.44051 + 0.504058i
\(236\) 11.0941 + 23.0371i 0.0470089 + 0.0976149i
\(237\) 15.0531 3.43577i 0.0635152 0.0144969i
\(238\) 222.240 + 50.7247i 0.933780 + 0.213129i
\(239\) 247.461 + 119.171i 1.03540 + 0.498623i 0.872805 0.488070i \(-0.162299\pi\)
0.162597 + 0.986693i \(0.448013\pi\)
\(240\) −12.7588 + 113.237i −0.0531617 + 0.471823i
\(241\) 174.583 139.225i 0.724409 0.577697i −0.190341 0.981718i \(-0.560959\pi\)
0.914750 + 0.404021i \(0.132388\pi\)
\(242\) 44.0063 + 15.3985i 0.181844 + 0.0636301i
\(243\) −26.9506 239.193i −0.110908 0.984333i
\(244\) −46.3933 46.3933i −0.190137 0.190137i
\(245\) −137.226 109.434i −0.560106 0.446670i
\(246\) −0.324215 0.515985i −0.00131795 0.00209750i
\(247\) −154.796 + 97.2645i −0.626703 + 0.393783i
\(248\) 8.47579 10.6283i 0.0341766 0.0428561i
\(249\) 0.119114 0.119114i 0.000478370 0.000478370i
\(250\) −283.193 + 31.9082i −1.13277 + 0.127633i
\(251\) −93.9755 + 268.567i −0.374404 + 1.06999i 0.590421 + 0.807095i \(0.298962\pi\)
−0.964826 + 0.262891i \(0.915324\pi\)
\(252\) 41.4767 + 52.0102i 0.164590 + 0.206389i
\(253\) 129.139 + 14.5505i 0.510432 + 0.0575118i
\(254\) −24.6983 + 51.2865i −0.0972373 + 0.201915i
\(255\) −38.7178 + 169.634i −0.151835 + 0.665231i
\(256\) 42.7584 + 187.337i 0.167025 + 0.731784i
\(257\) 258.752 124.608i 1.00682 0.484857i 0.143569 0.989640i \(-0.454142\pi\)
0.863246 + 0.504784i \(0.168428\pi\)
\(258\) −53.5705 153.096i −0.207638 0.593394i
\(259\) 94.1666 149.865i 0.363577 0.578630i
\(260\) 103.450i 0.397886i
\(261\) 207.236 43.7425i 0.794007 0.167596i
\(262\) −11.6915 −0.0446239
\(263\) 179.053 + 112.507i 0.680810 + 0.427782i 0.827549 0.561394i \(-0.189735\pi\)
−0.146738 + 0.989175i \(0.546878\pi\)
\(264\) −103.313 + 36.1509i −0.391338 + 0.136935i
\(265\) −279.833 581.079i −1.05597 2.19275i
\(266\) −223.968 + 51.1192i −0.841985 + 0.192178i
\(267\) 37.2572 + 8.50372i 0.139540 + 0.0318491i
\(268\) 61.2138 + 29.4790i 0.228410 + 0.109996i
\(269\) 0.714016 6.33707i 0.00265434 0.0235579i −0.992315 0.123736i \(-0.960513\pi\)
0.994970 + 0.100178i \(0.0319411\pi\)
\(270\) 236.949 188.961i 0.877591 0.699855i
\(271\) −249.689 87.3701i −0.921363 0.322399i −0.172412 0.985025i \(-0.555156\pi\)
−0.748950 + 0.662626i \(0.769442\pi\)
\(272\) −18.7025 165.989i −0.0687593 0.610255i
\(273\) 87.5173 + 87.5173i 0.320576 + 0.320576i
\(274\) −88.8563 70.8605i −0.324293 0.258615i
\(275\) −231.555 368.517i −0.842017 1.34006i
\(276\) 16.1231 10.1308i 0.0584170 0.0367058i
\(277\) −227.456 + 285.220i −0.821140 + 1.02968i 0.177819 + 0.984063i \(0.443096\pi\)
−0.998959 + 0.0456136i \(0.985476\pi\)
\(278\) −145.670 + 145.670i −0.523992 + 0.523992i
\(279\) −11.3630 + 1.28030i −0.0407275 + 0.00458889i
\(280\) −200.669 + 573.478i −0.716674 + 2.04814i
\(281\) −34.9750 43.8573i −0.124466 0.156076i 0.715694 0.698414i \(-0.246111\pi\)
−0.840160 + 0.542338i \(0.817539\pi\)
\(282\) 94.6868 + 10.6686i 0.335769 + 0.0378320i
\(283\) 22.9297 47.6140i 0.0810237 0.168247i −0.856521 0.516112i \(-0.827379\pi\)
0.937545 + 0.347865i \(0.113093\pi\)
\(284\) 24.7182 108.298i 0.0870359 0.381329i
\(285\) −39.0189 170.953i −0.136909 0.599836i
\(286\) 169.003 81.3876i 0.590920 0.284572i
\(287\) −0.757639 2.16521i −0.00263986 0.00754428i
\(288\) 65.6082 104.415i 0.227806 0.362552i
\(289\) 33.9469i 0.117463i
\(290\) 287.832 + 297.418i 0.992524 + 1.02558i
\(291\) 32.5291 0.111784
\(292\) 25.3723 + 15.9424i 0.0868913 + 0.0545974i
\(293\) −26.3205 + 9.20996i −0.0898312 + 0.0314333i −0.374821 0.927097i \(-0.622296\pi\)
0.284989 + 0.958531i \(0.408010\pi\)
\(294\) 20.2329 + 42.0141i 0.0688194 + 0.142905i
\(295\) 191.511 43.7112i 0.649191 0.148174i
\(296\) −179.096 40.8775i −0.605054 0.138100i
\(297\) 185.173 + 89.1747i 0.623478 + 0.300251i
\(298\) 15.6799 139.163i 0.0526170 0.466989i
\(299\) −119.244 + 95.0937i −0.398809 + 0.318039i
\(300\) −60.1926 21.0623i −0.200642 0.0702077i
\(301\) −68.3613 606.724i −0.227114 2.01569i
\(302\) −31.5605 31.5605i −0.104505 0.104505i
\(303\) 159.630 + 127.301i 0.526832 + 0.420134i
\(304\) 89.5617 + 142.537i 0.294611 + 0.468870i
\(305\) −426.792 + 268.171i −1.39932 + 0.879250i
\(306\) −124.083 + 155.595i −0.405501 + 0.508482i
\(307\) −317.297 + 317.297i −1.03354 + 1.03354i −0.0341225 + 0.999418i \(0.510864\pi\)
−0.999418 + 0.0341225i \(0.989136\pi\)
\(308\) −87.6023 + 9.87041i −0.284423 + 0.0320468i
\(309\) −51.1070 + 146.056i −0.165395 + 0.472672i
\(310\) −13.9321 17.4702i −0.0449421 0.0563556i
\(311\) −452.122 50.9419i −1.45377 0.163800i −0.650540 0.759472i \(-0.725457\pi\)
−0.803228 + 0.595671i \(0.796886\pi\)
\(312\) 55.7361 115.737i 0.178641 0.370952i
\(313\) 75.0822 328.956i 0.239879 1.05098i −0.701246 0.712920i \(-0.747372\pi\)
0.941125 0.338059i \(-0.109770\pi\)
\(314\) −80.5956 353.112i −0.256674 1.12456i
\(315\) 460.457 221.744i 1.46177 0.703950i
\(316\) −4.26290 12.1827i −0.0134902 0.0385528i
\(317\) 33.4800 53.2832i 0.105615 0.168086i −0.789735 0.613448i \(-0.789782\pi\)
0.895351 + 0.445362i \(0.146925\pi\)
\(318\) 171.351i 0.538840i
\(319\) −97.0285 + 263.375i −0.304165 + 0.825625i
\(320\) 590.933 1.84667
\(321\) −145.788 91.6049i −0.454169 0.285373i
\(322\) −180.900 + 63.2995i −0.561800 + 0.196582i
\(323\) 111.524 + 231.582i 0.345276 + 0.716972i
\(324\) −40.4143 + 9.22430i −0.124736 + 0.0284701i
\(325\) 497.982 + 113.661i 1.53225 + 0.349726i
\(326\) 458.026 + 220.574i 1.40499 + 0.676607i
\(327\) 30.4825 270.540i 0.0932187 0.827339i
\(328\) −1.86144 + 1.48445i −0.00567511 + 0.00452575i
\(329\) 338.558 + 118.466i 1.02905 + 0.360080i
\(330\) 20.1444 + 178.786i 0.0610435 + 0.541776i
\(331\) 286.146 + 286.146i 0.864490 + 0.864490i 0.991856 0.127366i \(-0.0406523\pi\)
−0.127366 + 0.991856i \(0.540652\pi\)
\(332\) −0.110094 0.0877968i −0.000331607 0.000264448i
\(333\) 82.2113 + 130.839i 0.246881 + 0.392909i
\(334\) −39.6200 + 24.8949i −0.118623 + 0.0745357i
\(335\) 325.442 408.091i 0.971468 1.21818i
\(336\) 80.5864 80.5864i 0.239841 0.239841i
\(337\) −264.583 + 29.8114i −0.785114 + 0.0884611i −0.495414 0.868657i \(-0.664984\pi\)
−0.289699 + 0.957118i \(0.593555\pi\)
\(338\) 22.5272 64.3790i 0.0666485 0.190471i
\(339\) −22.1840 27.8178i −0.0654395 0.0820585i
\(340\) 144.535 + 16.2851i 0.425102 + 0.0478974i
\(341\) 6.57483 13.6528i 0.0192810 0.0400375i
\(342\) 44.6292 195.533i 0.130495 0.571735i
\(343\) −52.1537 228.500i −0.152052 0.666182i
\(344\) −570.945 + 274.953i −1.65972 + 0.799281i
\(345\) −48.3161 138.079i −0.140047 0.400230i
\(346\) −63.8490 + 101.615i −0.184535 + 0.293685i
\(347\) 77.2491i 0.222620i 0.993786 + 0.111310i \(0.0355046\pi\)
−0.993786 + 0.111310i \(0.964495\pi\)
\(348\) 12.9456 + 39.0356i 0.0372000 + 0.112171i
\(349\) 16.2689 0.0466157 0.0233079 0.999728i \(-0.492580\pi\)
0.0233079 + 0.999728i \(0.492580\pi\)
\(350\) 543.475 + 341.488i 1.55279 + 0.975680i
\(351\) −227.673 + 79.6662i −0.648641 + 0.226969i
\(352\) 70.9045 + 147.235i 0.201433 + 0.418280i
\(353\) 64.7164 14.7711i 0.183332 0.0418444i −0.129869 0.991531i \(-0.541456\pi\)
0.313201 + 0.949687i \(0.398599\pi\)
\(354\) −50.8811 11.6133i −0.143732 0.0328059i
\(355\) −768.882 370.274i −2.16587 1.04303i
\(356\) 3.57676 31.7446i 0.0100471 0.0891702i
\(357\) 136.051 108.497i 0.381094 0.303912i
\(358\) −258.831 90.5689i −0.722992 0.252986i
\(359\) −1.89890 16.8532i −0.00528941 0.0469449i 0.990790 0.135406i \(-0.0432338\pi\)
−0.996080 + 0.0884608i \(0.971805\pi\)
\(360\) −375.075 375.075i −1.04188 1.04188i
\(361\) 79.7189 + 63.5737i 0.220828 + 0.176105i
\(362\) −229.269 364.879i −0.633339 1.00795i
\(363\) 30.1354 18.9353i 0.0830177 0.0521635i
\(364\) 64.5073 80.8896i 0.177218 0.222224i
\(365\) 162.782 162.782i 0.445978 0.445978i
\(366\) 133.075 14.9940i 0.363593 0.0409671i
\(367\) −9.38650 + 26.8251i −0.0255763 + 0.0730929i −0.955964 0.293485i \(-0.905185\pi\)
0.930387 + 0.366578i \(0.119471\pi\)
\(368\) 87.5628 + 109.800i 0.237942 + 0.298370i
\(369\) 1.99011 + 0.224231i 0.00539325 + 0.000607673i
\(370\) −131.015 + 272.056i −0.354095 + 0.735286i
\(371\) −143.530 + 628.847i −0.386874 + 1.69501i
\(372\) −0.494073 2.16468i −0.00132815 0.00581902i
\(373\) −208.198 + 100.263i −0.558171 + 0.268801i −0.691628 0.722254i \(-0.743106\pi\)
0.133457 + 0.991055i \(0.457392\pi\)
\(374\) −87.1053 248.933i −0.232902 0.665595i
\(375\) −115.744 + 184.205i −0.308650 + 0.491214i
\(376\) 372.279i 0.990104i
\(377\) −138.046 299.088i −0.366169 0.793336i
\(378\) −303.103 −0.801859
\(379\) −135.794 85.3248i −0.358295 0.225131i 0.340840 0.940121i \(-0.389288\pi\)
−0.699135 + 0.714990i \(0.746431\pi\)
\(380\) −138.355 + 48.4124i −0.364091 + 0.127401i
\(381\) 18.8541 + 39.1509i 0.0494858 + 0.102758i
\(382\) −185.210 + 42.2730i −0.484843 + 0.110662i
\(383\) −244.516 55.8092i −0.638424 0.145716i −0.108957 0.994047i \(-0.534751\pi\)
−0.529467 + 0.848330i \(0.677608\pi\)
\(384\) −62.1961 29.9520i −0.161969 0.0780001i
\(385\) −75.8297 + 673.007i −0.196960 + 1.74807i
\(386\) 194.593 155.183i 0.504126 0.402027i
\(387\) 503.134 + 176.054i 1.30009 + 0.454920i
\(388\) −3.04455 27.0211i −0.00784678 0.0696421i
\(389\) 231.524 + 231.524i 0.595179 + 0.595179i 0.939026 0.343847i \(-0.111730\pi\)
−0.343847 + 0.939026i \(0.611730\pi\)
\(390\) −165.086 131.652i −0.423298 0.337569i
\(391\) 114.088 + 181.570i 0.291784 + 0.464372i
\(392\) 154.265 96.9310i 0.393533 0.247273i
\(393\) −5.56464 + 6.97784i −0.0141594 + 0.0177553i
\(394\) 245.294 245.294i 0.622574 0.622574i
\(395\) −98.5347 + 11.1022i −0.249455 + 0.0281068i
\(396\) 25.4197 72.6454i 0.0641912 0.183448i
\(397\) 174.313 + 218.581i 0.439075 + 0.550583i 0.951299 0.308269i \(-0.0997496\pi\)
−0.512224 + 0.858852i \(0.671178\pi\)
\(398\) −421.123 47.4492i −1.05810 0.119219i
\(399\) −76.0896 + 158.002i −0.190701 + 0.395994i
\(400\) 104.660 458.544i 0.261649 1.14636i
\(401\) 11.6128 + 50.8791i 0.0289597 + 0.126881i 0.987341 0.158609i \(-0.0507009\pi\)
−0.958382 + 0.285490i \(0.907844\pi\)
\(402\) −124.944 + 60.1698i −0.310806 + 0.149676i
\(403\) 5.87377 + 16.7863i 0.0145751 + 0.0416533i
\(404\) 90.8051 144.516i 0.224765 0.357712i
\(405\) 318.469i 0.786342i
\(406\) −39.6037 412.036i −0.0975459 1.01487i
\(407\) −204.773 −0.503129
\(408\) −152.927 96.0903i −0.374821 0.235515i
\(409\) 718.514 251.419i 1.75676 0.614716i 0.757485 0.652852i \(-0.226428\pi\)
0.999273 + 0.0381358i \(0.0121419\pi\)
\(410\) 1.69802 + 3.52598i 0.00414152 + 0.00859996i
\(411\) −84.5836 + 19.3056i −0.205799 + 0.0469724i
\(412\) 126.108 + 28.7834i 0.306088 + 0.0698625i
\(413\) −177.003 85.2399i −0.428577 0.206392i
\(414\) 18.7342 166.270i 0.0452516 0.401619i
\(415\) −0.845798 + 0.674501i −0.00203807 + 0.00162530i
\(416\) −181.027 63.3441i −0.435161 0.152270i
\(417\) 17.6077 + 156.273i 0.0422247 + 0.374755i
\(418\) 187.937 + 187.937i 0.449611 + 0.449611i
\(419\) 277.644 + 221.413i 0.662634 + 0.528433i 0.896055 0.443943i \(-0.146421\pi\)
−0.233421 + 0.972376i \(0.574992\pi\)
\(420\) 52.7966 + 84.0252i 0.125706 + 0.200060i
\(421\) 549.468 345.254i 1.30515 0.820080i 0.313568 0.949566i \(-0.398476\pi\)
0.991581 + 0.129486i \(0.0413327\pi\)
\(422\) −96.0014 + 120.382i −0.227492 + 0.285265i
\(423\) −221.429 + 221.429i −0.523472 + 0.523472i
\(424\) 665.254 74.9561i 1.56900 0.176783i
\(425\) 237.192 677.856i 0.558099 1.59496i
\(426\) 141.365 + 177.266i 0.331842 + 0.416117i
\(427\) 500.936 + 56.4420i 1.17315 + 0.132183i
\(428\) −62.4489 + 129.677i −0.145909 + 0.302983i
\(429\) 31.8636 139.603i 0.0742741 0.325416i
\(430\) 231.788 + 1015.53i 0.539041 + 2.36169i
\(431\) −267.983 + 129.054i −0.621771 + 0.299429i −0.718121 0.695918i \(-0.754998\pi\)
0.0963498 + 0.995348i \(0.469283\pi\)
\(432\) 73.3571 + 209.642i 0.169808 + 0.485283i
\(433\) −188.276 + 299.639i −0.434817 + 0.692007i −0.990211 0.139580i \(-0.955425\pi\)
0.555394 + 0.831587i \(0.312568\pi\)
\(434\) 22.3477i 0.0514924i
\(435\) 314.504 30.2292i 0.722997 0.0694924i
\(436\) −227.584 −0.521981
\(437\) −182.982 114.975i −0.418722 0.263101i
\(438\) −57.7299 + 20.2006i −0.131803 + 0.0461200i
\(439\) −287.672 597.356i −0.655289 1.36072i −0.918283 0.395923i \(-0.870425\pi\)
0.262995 0.964797i \(-0.415290\pi\)
\(440\) 685.308 156.417i 1.55752 0.355493i
\(441\) −149.409 34.1017i −0.338797 0.0773282i
\(442\) 278.868 + 134.296i 0.630922 + 0.303836i
\(443\) −42.8152 + 379.995i −0.0966483 + 0.857777i 0.848068 + 0.529888i \(0.177766\pi\)
−0.944716 + 0.327889i \(0.893663\pi\)
\(444\) −23.4583 + 18.7073i −0.0528339 + 0.0421336i
\(445\) −231.649 81.0577i −0.520561 0.182152i
\(446\) 33.2968 + 295.517i 0.0746565 + 0.662595i
\(447\) −75.5937 75.5937i −0.169113 0.169113i
\(448\) −462.061 368.481i −1.03139 0.822503i
\(449\) −154.314 245.590i −0.343685 0.546971i 0.629499 0.777001i \(-0.283260\pi\)
−0.973183 + 0.230031i \(0.926117\pi\)
\(450\) −474.476 + 298.133i −1.05439 + 0.662518i
\(451\) −1.65472 + 2.07496i −0.00366901 + 0.00460079i
\(452\) −21.0313 + 21.0313i −0.0465294 + 0.0465294i
\(453\) −33.8577 + 3.81485i −0.0747411 + 0.00842130i
\(454\) 198.325 566.779i 0.436839 1.24841i
\(455\) −495.579 621.437i −1.08919 1.36580i
\(456\) 180.870 + 20.3792i 0.396645 + 0.0446911i
\(457\) 74.1101 153.891i 0.162166 0.336742i −0.804013 0.594611i \(-0.797306\pi\)
0.966180 + 0.257869i \(0.0830203\pi\)
\(458\) −83.2806 + 364.876i −0.181835 + 0.796673i
\(459\) 75.4644 + 330.631i 0.164411 + 0.720330i
\(460\) −110.177 + 53.0585i −0.239515 + 0.115345i
\(461\) 223.278 + 638.091i 0.484334 + 1.38415i 0.884001 + 0.467486i \(0.154840\pi\)
−0.399667 + 0.916660i \(0.630874\pi\)
\(462\) 95.7322 152.357i 0.207213 0.329777i
\(463\) 298.561i 0.644841i −0.946597 0.322420i \(-0.895504\pi\)
0.946597 0.322420i \(-0.104496\pi\)
\(464\) −275.401 + 127.113i −0.593538 + 0.273951i
\(465\) −17.0578 −0.0366835
\(466\) 29.4459 + 18.5021i 0.0631886 + 0.0397040i
\(467\) 601.371 210.429i 1.28773 0.450597i 0.402361 0.915481i \(-0.368190\pi\)
0.885372 + 0.464884i \(0.153904\pi\)
\(468\) 39.1911 + 81.3812i 0.0837418 + 0.173892i
\(469\) −508.937 + 116.161i −1.08515 + 0.247679i
\(470\) −596.590 136.168i −1.26934 0.289719i
\(471\) −249.109 119.964i −0.528893 0.254701i
\(472\) −22.8299 + 202.621i −0.0483684 + 0.429282i
\(473\) −552.279 + 440.427i −1.16761 + 0.931136i
\(474\) 24.8661 + 8.70104i 0.0524602 + 0.0183566i
\(475\) 81.0334 + 719.191i 0.170597 + 1.51409i
\(476\) −102.859 102.859i −0.216091 0.216091i
\(477\) −440.272 351.105i −0.923001 0.736069i
\(478\) 249.328 + 396.803i 0.521607 + 0.830132i
\(479\) 640.189 402.257i 1.33651 0.839785i 0.341532 0.939870i \(-0.389054\pi\)
0.994979 + 0.100085i \(0.0319114\pi\)
\(480\) 114.695 143.822i 0.238947 0.299630i
\(481\) 169.935 169.935i 0.353296 0.353296i
\(482\) 378.604 42.6584i 0.785485 0.0885029i
\(483\) −48.3213 + 138.094i −0.100044 + 0.285910i
\(484\) −18.5496 23.2605i −0.0383257 0.0480589i
\(485\) −207.591 23.3898i −0.428022 0.0482265i
\(486\) 178.196 370.028i 0.366658 0.761373i
\(487\) 37.7010 165.179i 0.0774148 0.339176i −0.921357 0.388717i \(-0.872918\pi\)
0.998772 + 0.0495403i \(0.0157756\pi\)
\(488\) −116.425 510.092i −0.238576 1.04527i
\(489\) 349.646 168.381i 0.715023 0.344337i
\(490\) −98.9102 282.669i −0.201857 0.576875i
\(491\) 419.070 666.946i 0.853503 1.35834i −0.0788859 0.996884i \(-0.525136\pi\)
0.932388 0.361458i \(-0.117721\pi\)
\(492\) 0.388870i 0.000790387i
\(493\) −439.598 + 145.786i −0.891679 + 0.295713i
\(494\) −311.927 −0.631431
\(495\) −500.652 314.580i −1.01142 0.635516i
\(496\) 15.4569 5.40860i 0.0311631 0.0109044i
\(497\) 370.314 + 768.966i 0.745099 + 1.54722i
\(498\) 0.280212 0.0639566i 0.000562675 0.000128427i
\(499\) 450.785 + 102.889i 0.903376 + 0.206190i 0.648886 0.760886i \(-0.275235\pi\)
0.254490 + 0.967075i \(0.418092\pi\)
\(500\) 163.848 + 78.9050i 0.327696 + 0.157810i
\(501\) −3.99937 + 35.4954i −0.00798277 + 0.0708491i
\(502\) −379.562 + 302.691i −0.756100 + 0.602970i
\(503\) −142.888 49.9987i −0.284072 0.0994010i 0.184482 0.982836i \(-0.440939\pi\)
−0.468554 + 0.883435i \(0.655225\pi\)
\(504\) 59.3965 + 527.158i 0.117850 + 1.04595i
\(505\) −927.175 927.175i −1.83599 1.83599i
\(506\) 173.359 + 138.249i 0.342607 + 0.273220i
\(507\) −27.7015 44.0866i −0.0546380 0.0869558i
\(508\) 30.7570 19.3259i 0.0605454 0.0380432i
\(509\) −505.672 + 634.093i −0.993462 + 1.24576i −0.0242055 + 0.999707i \(0.507706\pi\)
−0.969256 + 0.246054i \(0.920866\pi\)
\(510\) −209.924 + 209.924i −0.411615 + 0.411615i
\(511\) −228.786 + 25.7780i −0.447722 + 0.0504461i
\(512\) −178.304 + 509.565i −0.348251 + 0.995243i
\(513\) −213.091 267.208i −0.415382 0.520873i
\(514\) 486.934 + 54.8643i 0.947343 + 0.106740i
\(515\) 431.169 895.333i 0.837222 1.73851i
\(516\) −23.0316 + 100.908i −0.0446350 + 0.195559i
\(517\) −92.3421 404.577i −0.178611 0.782548i
\(518\) 272.085 131.029i 0.525261 0.252952i
\(519\) 30.2577 + 86.4715i 0.0583000 + 0.166612i
\(520\) −438.910 + 698.522i −0.844058 + 1.34331i
\(521\) 17.4200i 0.0334356i 0.999860 + 0.0167178i \(0.00532169\pi\)
−0.999860 + 0.0167178i \(0.994678\pi\)
\(522\) 339.102 + 124.927i 0.649621 + 0.239323i
\(523\) 347.118 0.663706 0.331853 0.943331i \(-0.392326\pi\)
0.331853 + 0.943331i \(0.392326\pi\)
\(524\) 6.31714 + 3.96932i 0.0120556 + 0.00757504i
\(525\) 462.482 161.829i 0.880917 0.308246i
\(526\) 156.549 + 325.077i 0.297621 + 0.618017i
\(527\) 24.3774 5.56398i 0.0462569 0.0105578i
\(528\) −128.548 29.3402i −0.243461 0.0555685i
\(529\) 314.177 + 151.300i 0.593907 + 0.286011i
\(530\) 123.209 1093.51i 0.232470 2.06323i
\(531\) 134.097 106.938i 0.252536 0.201391i
\(532\) 138.370 + 48.4177i 0.260093 + 0.0910106i
\(533\) −0.348739 3.09515i −0.000654295 0.00580703i
\(534\) 46.1062 + 46.1062i 0.0863412 + 0.0863412i
\(535\) 864.507 + 689.422i 1.61590 + 1.28864i
\(536\) 288.259 + 458.762i 0.537797 + 0.855899i
\(537\) −177.247 + 111.372i −0.330069 + 0.207396i
\(538\) 6.78412 8.50702i 0.0126099 0.0158123i
\(539\) 143.605 143.605i 0.266429 0.266429i
\(540\) −192.182 + 21.6537i −0.355892 + 0.0400994i
\(541\) 221.641 633.412i 0.409687 1.17082i −0.535570 0.844491i \(-0.679903\pi\)
0.945257 0.326327i \(-0.105811\pi\)
\(542\) −281.415 352.883i −0.519216 0.651076i
\(543\) −326.893 36.8320i −0.602013 0.0678306i
\(544\) −116.998 + 242.948i −0.215069 + 0.446596i
\(545\) −389.060 + 1704.58i −0.713871 + 3.12767i
\(546\) 46.9912 + 205.882i 0.0860644 + 0.377073i
\(547\) 149.344 71.9205i 0.273025 0.131482i −0.292362 0.956308i \(-0.594441\pi\)
0.565387 + 0.824826i \(0.308727\pi\)
\(548\) 23.9533 + 68.4546i 0.0437104 + 0.124917i
\(549\) −234.150 + 372.648i −0.426503 + 0.678776i
\(550\) 742.595i 1.35017i
\(551\) 335.398 324.588i 0.608707 0.589089i
\(552\) 151.849 0.275089
\(553\) 83.9688 + 52.7611i 0.151842 + 0.0954088i
\(554\) −587.520 + 205.582i −1.06050 + 0.371087i
\(555\) 100.014 + 207.681i 0.180205 + 0.374200i
\(556\) 128.164 29.2526i 0.230511 0.0526126i
\(557\) −170.373 38.8865i −0.305876 0.0698142i 0.0668279 0.997765i \(-0.478712\pi\)
−0.372704 + 0.927950i \(0.621569\pi\)
\(558\) −17.5783 8.46528i −0.0315024 0.0151707i
\(559\) 92.8218 823.817i 0.166050 1.47373i
\(560\) −572.222 + 456.332i −1.02183 + 0.814879i
\(561\) −190.029 66.4941i −0.338733 0.118528i
\(562\) −10.7163 95.1098i −0.0190682 0.169235i
\(563\) −304.717 304.717i −0.541238 0.541238i 0.382654 0.923892i \(-0.375010\pi\)
−0.923892 + 0.382654i \(0.875010\pi\)
\(564\) −47.5391 37.9112i −0.0842892 0.0672184i
\(565\) 121.569 + 193.476i 0.215166 + 0.342435i
\(566\) 76.3491 47.9733i 0.134892 0.0847585i
\(567\) 198.584 249.016i 0.350236 0.439182i
\(568\) 626.378 626.378i 1.10278 1.10278i
\(569\) −505.078 + 56.9087i −0.887660 + 0.100015i −0.544006 0.839081i \(-0.683093\pi\)
−0.343654 + 0.939097i \(0.611665\pi\)
\(570\) 98.8148 282.397i 0.173359 0.495432i
\(571\) 368.997 + 462.708i 0.646229 + 0.810346i 0.991767 0.128059i \(-0.0408747\pi\)
−0.345537 + 0.938405i \(0.612303\pi\)
\(572\) −118.947 13.4022i −0.207950 0.0234303i
\(573\) −62.9222 + 130.659i −0.109812 + 0.228027i
\(574\) 0.870941 3.81584i 0.00151732 0.00664780i
\(575\) 134.357 + 588.657i 0.233665 + 1.02375i
\(576\) 464.869 223.869i 0.807064 0.388662i
\(577\) 72.7651 + 207.951i 0.126109 + 0.360400i 0.989577 0.144004i \(-0.0459979\pi\)
−0.863468 + 0.504404i \(0.831712\pi\)
\(578\) −30.8159 + 49.0432i −0.0533147 + 0.0848498i
\(579\) 189.999i 0.328151i
\(580\) −54.5465 258.421i −0.0940457 0.445554i
\(581\) 1.08193 0.00186219
\(582\) 46.9949 + 29.5289i 0.0807472 + 0.0507369i
\(583\) 704.378 246.473i 1.20820 0.422766i
\(584\) 103.680 + 215.294i 0.177535 + 0.368655i
\(585\) 676.536 154.415i 1.15647 0.263957i
\(586\) −46.3858 10.5873i −0.0791567 0.0180670i
\(587\) −6.27948 3.02404i −0.0106976 0.00515168i 0.428527 0.903529i \(-0.359033\pi\)
−0.439225 + 0.898377i \(0.644747\pi\)
\(588\) 3.33177 29.5702i 0.00566627 0.0502895i
\(589\) −19.7012 + 15.7112i −0.0334485 + 0.0266743i
\(590\) 316.357 + 110.698i 0.536198 + 0.187624i
\(591\) −29.6497 263.149i −0.0501688 0.445260i
\(592\) −156.477 156.477i −0.264320 0.264320i
\(593\) 203.228 + 162.069i 0.342711 + 0.273303i 0.779686 0.626171i \(-0.215379\pi\)
−0.436975 + 0.899474i \(0.643950\pi\)
\(594\) 186.570 + 296.925i 0.314091 + 0.499873i
\(595\) −946.246 + 594.566i −1.59033 + 0.999271i
\(596\) −55.7187 + 69.8690i −0.0934877 + 0.117230i
\(597\) −228.756 + 228.756i −0.383175 + 0.383175i
\(598\) −258.595 + 29.1366i −0.432433 + 0.0487234i
\(599\) −139.976 + 400.030i −0.233683 + 0.667829i 0.766004 + 0.642836i \(0.222242\pi\)
−0.999688 + 0.0249934i \(0.992044\pi\)
\(600\) −317.073 397.597i −0.528455 0.662662i
\(601\) 276.392 + 31.1419i 0.459886 + 0.0518167i 0.338869 0.940834i \(-0.389956\pi\)
0.121017 + 0.992650i \(0.461384\pi\)
\(602\) 452.002 938.591i 0.750834 1.55912i
\(603\) 101.414 444.323i 0.168182 0.736853i
\(604\) 6.33781 + 27.7677i 0.0104931 + 0.0459731i
\(605\) −205.930 + 99.1707i −0.340380 + 0.163919i
\(606\) 115.059 + 328.819i 0.189866 + 0.542605i
\(607\) −550.914 + 876.775i −0.907602 + 1.44444i −0.0118280 + 0.999930i \(0.503765\pi\)
−0.895774 + 0.444510i \(0.853378\pi\)
\(608\) 271.749i 0.446956i
\(609\) −264.765 172.475i −0.434754 0.283209i
\(610\) −860.025 −1.40988
\(611\) 412.378 + 259.115i 0.674924 + 0.424083i
\(612\) 119.870 41.9444i 0.195866 0.0685366i
\(613\) 35.6576 + 74.0438i 0.0581690 + 0.120789i 0.928027 0.372513i \(-0.121504\pi\)
−0.869858 + 0.493302i \(0.835790\pi\)
\(614\) −746.431 + 170.368i −1.21569 + 0.277472i
\(615\) 2.91260 + 0.664783i 0.00473594 + 0.00108095i
\(616\) −633.388 305.024i −1.02823 0.495168i
\(617\) 118.841 1054.75i 0.192612 1.70947i −0.410535 0.911845i \(-0.634658\pi\)
0.603147 0.797630i \(-0.293913\pi\)
\(618\) −206.419 + 164.614i −0.334011 + 0.266365i
\(619\) −983.102 344.002i −1.58821 0.555739i −0.615575 0.788078i \(-0.711076\pi\)
−0.972635 + 0.232339i \(0.925362\pi\)
\(620\) 1.59652 + 14.1695i 0.00257504 + 0.0228541i
\(621\) −201.617 201.617i −0.324665 0.324665i
\(622\) −606.938 484.017i −0.975785 0.778163i
\(623\) 130.586 + 207.827i 0.209609 + 0.333591i
\(624\) 131.026 82.3293i 0.209978 0.131938i
\(625\) 170.165 213.380i 0.272264 0.341409i
\(626\) 407.087 407.087i 0.650299 0.650299i
\(627\) 201.617 22.7168i 0.321558 0.0362309i
\(628\) −76.3362 + 218.156i −0.121555 + 0.347383i
\(629\) −210.672 264.174i −0.334931 0.419991i
\(630\) 866.515 + 97.6328i 1.37542 + 0.154973i
\(631\) −404.134 + 839.193i −0.640466 + 1.32994i 0.287680 + 0.957727i \(0.407116\pi\)
−0.928146 + 0.372215i \(0.878598\pi\)
\(632\) 22.9034 100.347i 0.0362396 0.158776i
\(633\) 26.1552 + 114.593i 0.0413194 + 0.181032i
\(634\) 96.7374 46.5863i 0.152583 0.0734799i
\(635\) −92.1696 263.406i −0.145149 0.414812i
\(636\) 58.1747 92.5845i 0.0914697 0.145573i
\(637\) 238.347i 0.374172i
\(638\) −379.260 + 292.419i −0.594451 + 0.458336i
\(639\) −745.130 −1.16609
\(640\) 375.379 + 235.866i 0.586530 + 0.368541i
\(641\) −109.871 + 38.4457i −0.171406 + 0.0599777i −0.414618 0.909996i \(-0.636085\pi\)
0.243212 + 0.969973i \(0.421799\pi\)
\(642\) −127.465 264.684i −0.198543 0.412280i
\(643\) −887.185 + 202.494i −1.37976 + 0.314921i −0.847111 0.531416i \(-0.821660\pi\)
−0.532648 + 0.846337i \(0.678803\pi\)
\(644\) 119.234 + 27.2145i 0.185146 + 0.0422585i
\(645\) 716.420 + 345.010i 1.11073 + 0.534899i
\(646\) −49.1034 + 435.805i −0.0760115 + 0.674621i
\(647\) −184.679 + 147.277i −0.285439 + 0.227630i −0.755733 0.654880i \(-0.772719\pi\)
0.470294 + 0.882510i \(0.344148\pi\)
\(648\) −312.023 109.182i −0.481517 0.168490i
\(649\) 25.4486 + 225.863i 0.0392121 + 0.348017i
\(650\) 616.257 + 616.257i 0.948088 + 0.948088i
\(651\) 13.3378 + 10.6366i 0.0204882 + 0.0163388i
\(652\) −172.595 274.683i −0.264716 0.421293i
\(653\) 182.035 114.380i 0.278767 0.175161i −0.385391 0.922753i \(-0.625933\pi\)
0.664157 + 0.747593i \(0.268790\pi\)
\(654\) 289.625 363.179i 0.442852 0.555319i
\(655\) 40.5292 40.5292i 0.0618766 0.0618766i
\(656\) −2.85003 + 0.321121i −0.00434456 + 0.000489514i
\(657\) 66.3872 189.724i 0.101046 0.288773i
\(658\) 381.575 + 478.480i 0.579902 + 0.727174i
\(659\) 729.824 + 82.2314i 1.10747 + 0.124782i 0.646706 0.762739i \(-0.276146\pi\)
0.460766 + 0.887522i \(0.347575\pi\)
\(660\) 49.8145 103.441i 0.0754765 0.156729i
\(661\) 74.4513 326.192i 0.112634 0.493483i −0.886871 0.462018i \(-0.847126\pi\)
0.999505 0.0314652i \(-0.0100173\pi\)
\(662\) 153.642 + 673.150i 0.232088 + 1.01684i
\(663\) 212.881 102.518i 0.321087 0.154628i
\(664\) −0.370882 1.05992i −0.000558557 0.00159626i
\(665\) 599.190 953.606i 0.901038 1.43399i
\(666\) 263.651i 0.395873i
\(667\) 247.733 300.420i 0.371414 0.450405i
\(668\) 29.8595 0.0446998
\(669\) 192.222 + 120.781i 0.287327 + 0.180540i
\(670\) 840.618 294.145i 1.25465 0.439022i
\(671\) −253.052 525.468i −0.377127 0.783112i
\(672\) −179.363 + 40.9385i −0.266909 + 0.0609203i
\(673\) −487.763 111.329i −0.724760 0.165422i −0.155802 0.987788i \(-0.549796\pi\)
−0.568958 + 0.822367i \(0.692653\pi\)
\(674\) −409.306 197.111i −0.607279 0.292450i
\(675\) −106.915 + 948.901i −0.158393 + 1.40578i
\(676\) −34.0290 + 27.1372i −0.0503387 + 0.0401438i
\(677\) 846.992 + 296.375i 1.25110 + 0.437777i 0.872878 0.487939i \(-0.162251\pi\)
0.378218 + 0.925716i \(0.376537\pi\)
\(678\) −6.79715 60.3264i −0.0100253 0.0889770i
\(679\) 147.734 + 147.734i 0.217575 + 0.217575i
\(680\) 906.838 + 723.179i 1.33359 + 1.06350i
\(681\) −243.878 388.129i −0.358117 0.569940i
\(682\) 21.8922 13.7558i 0.0321000 0.0201698i
\(683\) 636.584 798.251i 0.932041 1.16874i −0.0533743 0.998575i \(-0.516998\pi\)
0.985415 0.170168i \(-0.0544309\pi\)
\(684\) −90.4987 + 90.4987i −0.132308 + 0.132308i
\(685\) 553.668 62.3833i 0.808274 0.0910706i
\(686\) 132.078 377.458i 0.192534 0.550231i
\(687\) 178.132 + 223.370i 0.259289 + 0.325138i
\(688\) −758.575 85.4709i −1.10258 0.124231i
\(689\) −380.002 + 789.082i −0.551527 + 1.14526i
\(690\) 55.5415 243.343i 0.0804950 0.352672i
\(691\) −8.72945 38.2462i −0.0126331 0.0553491i 0.968219 0.250106i \(-0.0804654\pi\)
−0.980852 + 0.194757i \(0.937608\pi\)
\(692\) 68.9978 33.2276i 0.0997078 0.0480167i
\(693\) 195.309 + 558.161i 0.281831 + 0.805427i
\(694\) −70.1242 + 111.602i −0.101044 + 0.160810i
\(695\) 1009.94i 1.45316i
\(696\) −78.2049 + 318.502i −0.112363 + 0.457618i
\(697\) −4.37925 −0.00628299
\(698\) 23.5037 + 14.7684i 0.0336729 + 0.0211581i
\(699\) 25.0576 8.76803i 0.0358478 0.0125437i
\(700\) −177.713 369.026i −0.253876 0.527180i
\(701\) 730.823 166.806i 1.04254 0.237954i 0.333229 0.942846i \(-0.391862\pi\)
0.709314 + 0.704892i \(0.249005\pi\)
\(702\) −401.238 91.5799i −0.571564 0.130456i
\(703\) 306.797 + 147.746i 0.436411 + 0.210165i
\(704\) −76.5563 + 679.456i −0.108745 + 0.965136i
\(705\) −365.221 + 291.254i −0.518043 + 0.413126i
\(706\) 106.905 + 37.4075i 0.151423 + 0.0529852i
\(707\) 146.826 + 1303.12i 0.207675 + 1.84317i
\(708\) 23.5493 + 23.5493i 0.0332617 + 0.0332617i
\(709\) 226.904 + 180.950i 0.320034 + 0.255218i 0.770308 0.637672i \(-0.220102\pi\)
−0.450275 + 0.892890i \(0.648674\pi\)
\(710\) −774.683 1232.90i −1.09110 1.73648i
\(711\) −73.3082 + 46.0626i −0.103106 + 0.0647856i
\(712\) 158.834 199.172i 0.223082 0.279736i
\(713\) −14.8652 + 14.8652i −0.0208488 + 0.0208488i
\(714\) 295.042 33.2433i 0.413225 0.0465592i
\(715\) −303.724 + 867.994i −0.424789 + 1.21398i
\(716\) 109.103 + 136.811i 0.152379 + 0.191077i
\(717\) 355.494 + 40.0546i 0.495808 + 0.0558641i
\(718\) 12.5554 26.0716i 0.0174867 0.0363115i
\(719\) 176.737 774.336i 0.245810 1.07696i −0.689820 0.723981i \(-0.742311\pi\)
0.935630 0.352982i \(-0.114832\pi\)
\(720\) −142.186 622.958i −0.197481 0.865220i
\(721\) −895.430 + 431.216i −1.24193 + 0.598081i
\(722\) 57.4600 + 164.211i 0.0795845 + 0.227440i
\(723\) 154.739 246.266i 0.214024 0.340617i
\(724\) 274.989i 0.379820i
\(725\) −1303.90 21.3559i −1.79848 0.0294564i
\(726\) 60.7256 0.0836441
\(727\) −1129.81 709.908i −1.55407 0.976489i −0.988402 0.151859i \(-0.951474\pi\)
−0.565672 0.824631i \(-0.691383\pi\)
\(728\) 778.760 272.500i 1.06973 0.374313i
\(729\) 12.6428 + 26.2530i 0.0173426 + 0.0360123i
\(730\) 382.939 87.4034i 0.524575 0.119731i
\(731\) −1136.37 259.370i −1.55455 0.354815i
\(732\) −76.9937 37.0782i −0.105183 0.0506533i
\(733\) 55.6770 494.147i 0.0759577 0.674143i −0.896819 0.442398i \(-0.854128\pi\)
0.972777 0.231745i \(-0.0744435\pi\)
\(734\) −37.9116 + 30.2335i −0.0516507 + 0.0411901i
\(735\) −215.783 75.5056i −0.293582 0.102729i
\(736\) −25.3837 225.286i −0.0344887 0.306096i
\(737\) 427.062 + 427.062i 0.579460 + 0.579460i
\(738\) 2.67156 + 2.13050i 0.00362001 + 0.00288686i
\(739\) 224.344 + 357.042i 0.303578 + 0.483142i 0.963322 0.268349i \(-0.0864781\pi\)
−0.659744 + 0.751491i \(0.729335\pi\)
\(740\) 163.155 102.517i 0.220479 0.138536i
\(741\) −148.464 + 186.168i −0.200356 + 0.251239i
\(742\) −778.205 + 778.205i −1.04879 + 1.04879i
\(743\) 69.6091 7.84306i 0.0936865 0.0105559i −0.0649967 0.997885i \(-0.520704\pi\)
0.158683 + 0.987330i \(0.449275\pi\)
\(744\) 5.84799 16.7126i 0.00786020 0.0224632i
\(745\) 428.060 + 536.771i 0.574577 + 0.720497i
\(746\) −391.799 44.1452i −0.525200 0.0591758i
\(747\) −0.409835 + 0.851030i −0.000548641 + 0.00113926i
\(748\) −37.4493 + 164.076i −0.0500659 + 0.219353i
\(749\) −246.079 1078.14i −0.328543 1.43944i
\(750\) −334.431 + 161.053i −0.445908 + 0.214738i
\(751\) 254.301 + 726.750i 0.338616 + 0.967710i 0.979740 + 0.200273i \(0.0641828\pi\)
−0.641124 + 0.767438i \(0.721531\pi\)
\(752\) 238.594 379.720i 0.317279 0.504947i
\(753\) 370.603i 0.492168i
\(754\) 72.0670 557.406i 0.0955796 0.739265i
\(755\) 218.812 0.289818
\(756\) 163.773 + 102.905i 0.216630 + 0.136118i
\(757\) −1308.76 + 457.955i −1.72888 + 0.604960i −0.997066 0.0765471i \(-0.975610\pi\)
−0.731811 + 0.681507i \(0.761325\pi\)
\(758\) −118.726 246.538i