Properties

Label 29.3.f.a.3.2
Level 29
Weight 3
Character 29.3
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 3.2
Character \(\chi\) = 29.3
Dual form 29.3.f.a.10.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-1.29187 - 0.811733i) q^{2}\) \(+(2.15095 - 0.752648i) q^{3}\) \(+(-0.725528 - 1.50658i) q^{4}\) \(+(3.36294 - 0.767569i) q^{5}\) \(+(-3.38968 - 0.773673i) q^{6}\) \(+(-0.255710 - 0.123143i) q^{7}\) \(+(-0.968958 + 8.59974i) q^{8}\) \(+(-2.97640 + 2.37360i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-1.29187 - 0.811733i) q^{2}\) \(+(2.15095 - 0.752648i) q^{3}\) \(+(-0.725528 - 1.50658i) q^{4}\) \(+(3.36294 - 0.767569i) q^{5}\) \(+(-3.38968 - 0.773673i) q^{6}\) \(+(-0.255710 - 0.123143i) q^{7}\) \(+(-0.968958 + 8.59974i) q^{8}\) \(+(-2.97640 + 2.37360i) q^{9}\) \(+(-4.96753 - 1.73821i) q^{10}\) \(+(1.62739 + 14.4435i) q^{11}\) \(+(-2.69449 - 2.69449i) q^{12}\) \(+(-4.30976 - 3.43692i) q^{13}\) \(+(0.230383 + 0.366653i) q^{14}\) \(+(6.65579 - 4.18211i) q^{15}\) \(+(4.06213 - 5.09375i) q^{16}\) \(+(5.25353 - 5.25353i) q^{17}\) \(+(5.77183 - 0.650330i) q^{18}\) \(+(9.56906 - 27.3468i) q^{19}\) \(+(-3.59631 - 4.50963i) q^{20}\) \(+(-0.642701 - 0.0724150i) q^{21}\) \(+(9.62189 - 19.9801i) q^{22}\) \(+(-6.05686 + 26.5368i) q^{23}\) \(+(4.38841 + 19.2269i) q^{24}\) \(+(-11.8040 + 5.68451i) q^{25}\) \(+(2.77777 + 7.93841i) q^{26}\) \(+(-15.5273 + 24.7115i) q^{27}\) \(+0.474590i q^{28}\) \(+(2.32625 - 28.9065i) q^{29}\) \(-11.9931 q^{30}\) \(+(-12.9513 - 8.13783i) q^{31}\) \(+(23.2916 - 8.15007i) q^{32}\) \(+(14.3713 + 29.8423i) q^{33}\) \(+(-11.0513 + 2.52239i) q^{34}\) \(+(-0.954457 - 0.217849i) q^{35}\) \(+(5.73547 + 2.76205i) q^{36}\) \(+(3.05571 - 27.1202i) q^{37}\) \(+(-34.5602 + 27.5609i) q^{38}\) \(+(-11.8568 - 4.14889i) q^{39}\) \(+(3.34235 + 29.6642i) q^{40}\) \(+(-45.8791 - 45.8791i) q^{41}\) \(+(0.771502 + 0.615252i) q^{42}\) \(+(35.9543 + 57.2209i) q^{43}\) \(+(20.5795 - 12.9310i) q^{44}\) \(+(-8.18755 + 10.2669i) q^{45}\) \(+(29.3655 - 29.3655i) q^{46}\) \(+(17.2732 - 1.94622i) q^{47}\) \(+(4.90362 - 14.0137i) q^{48}\) \(+(-30.5008 - 38.2468i) q^{49}\) \(+(19.8635 + 2.23808i) q^{50}\) \(+(7.34599 - 15.2541i) q^{51}\) \(+(-2.05112 + 8.98655i) q^{52}\) \(+(1.31097 + 5.74372i) q^{53}\) \(+(40.1183 - 19.3199i) q^{54}\) \(+(16.5592 + 47.3235i) q^{55}\) \(+(1.30677 - 2.07972i) q^{56}\) \(-66.0236i q^{57}\) \(+(-26.4696 + 35.4551i) q^{58}\) \(-43.1476 q^{59}\) \(+(-11.1296 - 6.99321i) q^{60}\) \(+(104.863 - 36.6931i) q^{61}\) \(+(10.1256 + 21.0260i) q^{62}\) \(+(1.05339 - 0.240429i) q^{63}\) \(+(-62.1125 - 14.1768i) q^{64}\) \(+(-17.1315 - 8.25011i) q^{65}\) \(+(5.65820 - 50.2179i) q^{66}\) \(+(-67.4283 + 53.7723i) q^{67}\) \(+(-11.7264 - 4.10325i) q^{68}\) \(+(6.94493 + 61.6380i) q^{69}\) \(+(1.05620 + 1.05620i) q^{70}\) \(+(45.1943 + 36.0413i) q^{71}\) \(+(-17.5283 - 27.8962i) q^{72}\) \(+(-42.0399 + 26.4154i) q^{73}\) \(+(-25.9619 + 32.5552i) q^{74}\) \(+(-21.1113 + 21.1113i) q^{75}\) \(+(-48.1426 + 5.42437i) q^{76}\) \(+(1.36248 - 3.89374i) q^{77}\) \(+(11.9497 + 14.9844i) q^{78}\) \(+(96.9173 + 10.9200i) q^{79}\) \(+(9.75090 - 20.2479i) q^{80}\) \(+(-7.17507 + 31.4360i) q^{81}\) \(+(22.0280 + 96.5112i) q^{82}\) \(+(-0.956785 + 0.460763i) q^{83}\) \(+(0.357199 + 1.02082i) q^{84}\) \(+(13.6349 - 21.6998i) q^{85}\) \(-103.107i q^{86}\) \(+(-16.7528 - 63.9272i) q^{87}\) \(-125.787 q^{88}\) \(+(73.6381 + 46.2699i) q^{89}\) \(+(18.9112 - 6.61730i) q^{90}\) \(+(0.678813 + 1.40957i) q^{91}\) \(+(44.3742 - 10.1281i) q^{92}\) \(+(-33.9824 - 7.75627i) q^{93}\) \(+(-23.8944 - 11.5070i) q^{94}\) \(+(11.1896 - 99.3106i) q^{95}\) \(+(43.9648 - 35.0607i) q^{96}\) \(+(54.6355 + 19.1178i) q^{97}\) \(+(8.35675 + 74.1682i) q^{98}\) \(+(-39.1268 - 39.1268i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29187 0.811733i −0.645933 0.405867i 0.168843 0.985643i \(-0.445997\pi\)
−0.814776 + 0.579776i \(0.803140\pi\)
\(3\) 2.15095 0.752648i 0.716982 0.250883i 0.0529606 0.998597i \(-0.483134\pi\)
0.664021 + 0.747714i \(0.268849\pi\)
\(4\) −0.725528 1.50658i −0.181382 0.376644i
\(5\) 3.36294 0.767569i 0.672588 0.153514i 0.127431 0.991847i \(-0.459327\pi\)
0.545158 + 0.838334i \(0.316470\pi\)
\(6\) −3.38968 0.773673i −0.564947 0.128945i
\(7\) −0.255710 0.123143i −0.0365299 0.0175919i 0.415530 0.909580i \(-0.363596\pi\)
−0.452060 + 0.891988i \(0.649311\pi\)
\(8\) −0.968958 + 8.59974i −0.121120 + 1.07497i
\(9\) −2.97640 + 2.37360i −0.330711 + 0.263733i
\(10\) −4.96753 1.73821i −0.496753 0.173821i
\(11\) 1.62739 + 14.4435i 0.147945 + 1.31305i 0.819923 + 0.572474i \(0.194016\pi\)
−0.671978 + 0.740571i \(0.734555\pi\)
\(12\) −2.69449 2.69449i −0.224541 0.224541i
\(13\) −4.30976 3.43692i −0.331520 0.264378i 0.443556 0.896247i \(-0.353717\pi\)
−0.775076 + 0.631869i \(0.782288\pi\)
\(14\) 0.230383 + 0.366653i 0.0164559 + 0.0261895i
\(15\) 6.65579 4.18211i 0.443719 0.278807i
\(16\) 4.06213 5.09375i 0.253883 0.318359i
\(17\) 5.25353 5.25353i 0.309031 0.309031i −0.535503 0.844534i \(-0.679878\pi\)
0.844534 + 0.535503i \(0.179878\pi\)
\(18\) 5.77183 0.650330i 0.320657 0.0361294i
\(19\) 9.56906 27.3468i 0.503635 1.43930i −0.358933 0.933363i \(-0.616859\pi\)
0.862568 0.505942i \(-0.168855\pi\)
\(20\) −3.59631 4.50963i −0.179816 0.225482i
\(21\) −0.642701 0.0724150i −0.0306048 0.00344833i
\(22\) 9.62189 19.9801i 0.437359 0.908185i
\(23\) −6.05686 + 26.5368i −0.263342 + 1.15378i 0.654258 + 0.756271i \(0.272981\pi\)
−0.917600 + 0.397505i \(0.869876\pi\)
\(24\) 4.38841 + 19.2269i 0.182850 + 0.801119i
\(25\) −11.8040 + 5.68451i −0.472160 + 0.227380i
\(26\) 2.77777 + 7.93841i 0.106837 + 0.305323i
\(27\) −15.5273 + 24.7115i −0.575084 + 0.915240i
\(28\) 0.474590i 0.0169496i
\(29\) 2.32625 28.9065i 0.0802155 0.996778i
\(30\) −11.9931 −0.399772
\(31\) −12.9513 8.13783i −0.417783 0.262511i 0.306695 0.951808i \(-0.400777\pi\)
−0.724479 + 0.689297i \(0.757920\pi\)
\(32\) 23.2916 8.15007i 0.727862 0.254690i
\(33\) 14.3713 + 29.8423i 0.435494 + 0.904313i
\(34\) −11.0513 + 2.52239i −0.325039 + 0.0741880i
\(35\) −0.954457 0.217849i −0.0272702 0.00622425i
\(36\) 5.73547 + 2.76205i 0.159318 + 0.0767237i
\(37\) 3.05571 27.1202i 0.0825867 0.732977i −0.882368 0.470560i \(-0.844052\pi\)
0.964955 0.262417i \(-0.0845196\pi\)
\(38\) −34.5602 + 27.5609i −0.909480 + 0.725286i
\(39\) −11.8568 4.14889i −0.304022 0.106382i
\(40\) 3.34235 + 29.6642i 0.0835587 + 0.741604i
\(41\) −45.8791 45.8791i −1.11900 1.11900i −0.991888 0.127114i \(-0.959429\pi\)
−0.127114 0.991888i \(-0.540571\pi\)
\(42\) 0.771502 + 0.615252i 0.0183691 + 0.0146489i
\(43\) 35.9543 + 57.2209i 0.836146 + 1.33072i 0.941751 + 0.336311i \(0.109179\pi\)
−0.105605 + 0.994408i \(0.533678\pi\)
\(44\) 20.5795 12.9310i 0.467716 0.293885i
\(45\) −8.18755 + 10.2669i −0.181946 + 0.228153i
\(46\) 29.3655 29.3655i 0.638380 0.638380i
\(47\) 17.2732 1.94622i 0.367514 0.0414089i 0.0737238 0.997279i \(-0.476512\pi\)
0.293791 + 0.955870i \(0.405083\pi\)
\(48\) 4.90362 14.0137i 0.102159 0.291953i
\(49\) −30.5008 38.2468i −0.622465 0.780546i
\(50\) 19.8635 + 2.23808i 0.397270 + 0.0447616i
\(51\) 7.34599 15.2541i 0.144039 0.299100i
\(52\) −2.05112 + 8.98655i −0.0394447 + 0.172818i
\(53\) 1.31097 + 5.74372i 0.0247352 + 0.108372i 0.985789 0.167991i \(-0.0537279\pi\)
−0.961053 + 0.276363i \(0.910871\pi\)
\(54\) 40.1183 19.3199i 0.742931 0.357777i
\(55\) 16.5592 + 47.3235i 0.301077 + 0.860427i
\(56\) 1.30677 2.07972i 0.0233352 0.0371378i
\(57\) 66.0236i 1.15831i
\(58\) −26.4696 + 35.4551i −0.456372 + 0.611295i
\(59\) −43.1476 −0.731315 −0.365658 0.930749i \(-0.619156\pi\)
−0.365658 + 0.930749i \(0.619156\pi\)
\(60\) −11.1296 6.99321i −0.185494 0.116554i
\(61\) 104.863 36.6931i 1.71906 0.601526i 0.723055 0.690791i \(-0.242737\pi\)
0.996008 + 0.0892649i \(0.0284518\pi\)
\(62\) 10.1256 + 21.0260i 0.163316 + 0.339129i
\(63\) 1.05339 0.240429i 0.0167204 0.00381633i
\(64\) −62.1125 14.1768i −0.970507 0.221512i
\(65\) −17.1315 8.25011i −0.263562 0.126925i
\(66\) 5.65820 50.2179i 0.0857303 0.760878i
\(67\) −67.4283 + 53.7723i −1.00639 + 0.802571i −0.980385 0.197091i \(-0.936851\pi\)
−0.0260070 + 0.999662i \(0.508279\pi\)
\(68\) −11.7264 4.10325i −0.172447 0.0603419i
\(69\) 6.94493 + 61.6380i 0.100651 + 0.893304i
\(70\) 1.05620 + 1.05620i 0.0150885 + 0.0150885i
\(71\) 45.1943 + 36.0413i 0.636540 + 0.507623i 0.887760 0.460306i \(-0.152260\pi\)
−0.251220 + 0.967930i \(0.580832\pi\)
\(72\) −17.5283 27.8962i −0.243449 0.387447i
\(73\) −42.0399 + 26.4154i −0.575889 + 0.361855i −0.788268 0.615332i \(-0.789022\pi\)
0.212379 + 0.977187i \(0.431879\pi\)
\(74\) −25.9619 + 32.5552i −0.350836 + 0.439935i
\(75\) −21.1113 + 21.1113i −0.281485 + 0.281485i
\(76\) −48.1426 + 5.42437i −0.633456 + 0.0713733i
\(77\) 1.36248 3.89374i 0.0176945 0.0505681i
\(78\) 11.9497 + 14.9844i 0.153201 + 0.192108i
\(79\) 96.9173 + 10.9200i 1.22680 + 0.138227i 0.701488 0.712681i \(-0.252519\pi\)
0.525314 + 0.850909i \(0.323948\pi\)
\(80\) 9.75090 20.2479i 0.121886 0.253099i
\(81\) −7.17507 + 31.4360i −0.0885811 + 0.388099i
\(82\) 22.0280 + 96.5112i 0.268635 + 1.17697i
\(83\) −0.956785 + 0.460763i −0.0115275 + 0.00555137i −0.439639 0.898175i \(-0.644893\pi\)
0.428111 + 0.903726i \(0.359179\pi\)
\(84\) 0.357199 + 1.02082i 0.00425237 + 0.0121526i
\(85\) 13.6349 21.6998i 0.160410 0.255291i
\(86\) 103.107i 1.19892i
\(87\) −16.7528 63.9272i −0.192561 0.734796i
\(88\) −125.787 −1.42940
\(89\) 73.6381 + 46.2699i 0.827394 + 0.519886i 0.877904 0.478837i \(-0.158942\pi\)
−0.0505095 + 0.998724i \(0.516085\pi\)
\(90\) 18.9112 6.61730i 0.210124 0.0735256i
\(91\) 0.678813 + 1.40957i 0.00745949 + 0.0154898i
\(92\) 44.3742 10.1281i 0.482328 0.110088i
\(93\) −33.9824 7.75627i −0.365403 0.0834007i
\(94\) −23.8944 11.5070i −0.254196 0.122414i
\(95\) 11.1896 99.3106i 0.117785 1.04537i
\(96\) 43.9648 35.0607i 0.457966 0.365216i
\(97\) 54.6355 + 19.1178i 0.563252 + 0.197091i 0.596861 0.802345i \(-0.296414\pi\)
−0.0336088 + 0.999435i \(0.510700\pi\)
\(98\) 8.35675 + 74.1682i 0.0852729 + 0.756818i
\(99\) −39.1268 39.1268i −0.395220 0.395220i
\(100\) 17.1283 + 13.6594i 0.171283 + 0.136594i
\(101\) −43.1797 68.7201i −0.427522 0.680397i 0.561614 0.827399i \(-0.310181\pi\)
−0.989136 + 0.147002i \(0.953038\pi\)
\(102\) −21.8723 + 13.7433i −0.214434 + 0.134738i
\(103\) 117.601 147.466i 1.14175 1.43171i 0.256537 0.966534i \(-0.417419\pi\)
0.885217 0.465179i \(-0.154010\pi\)
\(104\) 33.7326 33.7326i 0.324352 0.324352i
\(105\) −2.21695 + 0.249790i −0.0211138 + 0.00237895i
\(106\) 2.96878 8.48427i 0.0280073 0.0800403i
\(107\) 17.2592 + 21.6423i 0.161300 + 0.202264i 0.855913 0.517119i \(-0.172996\pi\)
−0.694613 + 0.719384i \(0.744424\pi\)
\(108\) 48.4952 + 5.46409i 0.449029 + 0.0505935i
\(109\) −40.5822 + 84.2699i −0.372314 + 0.773118i −0.999986 0.00536026i \(-0.998294\pi\)
0.627672 + 0.778478i \(0.284008\pi\)
\(110\) 17.0218 74.5773i 0.154743 0.677975i
\(111\) −13.8393 60.6338i −0.124678 0.546251i
\(112\) −1.66599 + 0.802297i −0.0148749 + 0.00716336i
\(113\) 49.3986 + 141.173i 0.437156 + 1.24932i 0.926191 + 0.377055i \(0.123063\pi\)
−0.489035 + 0.872264i \(0.662651\pi\)
\(114\) −53.5935 + 85.2936i −0.470119 + 0.748189i
\(115\) 93.8909i 0.816443i
\(116\) −45.2377 + 17.4679i −0.389980 + 0.150585i
\(117\) 20.9854 0.179362
\(118\) 55.7409 + 35.0243i 0.472381 + 0.296816i
\(119\) −1.99031 + 0.696441i −0.0167253 + 0.00585245i
\(120\) 29.5159 + 61.2904i 0.245966 + 0.510753i
\(121\) −88.0000 + 20.0854i −0.727272 + 0.165995i
\(122\) −165.254 37.7181i −1.35454 0.309165i
\(123\) −133.214 64.1526i −1.08304 0.521566i
\(124\) −2.86373 + 25.4163i −0.0230946 + 0.204970i
\(125\) −102.755 + 81.9441i −0.822037 + 0.655553i
\(126\) −1.55600 0.544467i −0.0123492 0.00432117i
\(127\) −10.7711 95.5964i −0.0848120 0.752727i −0.962088 0.272740i \(-0.912070\pi\)
0.877276 0.479987i \(-0.159359\pi\)
\(128\) −1.06196 1.06196i −0.00829659 0.00829659i
\(129\) 120.403 + 96.0181i 0.933356 + 0.744327i
\(130\) 15.4348 + 24.5643i 0.118729 + 0.188956i
\(131\) −86.3851 + 54.2793i −0.659428 + 0.414346i −0.819752 0.572718i \(-0.805889\pi\)
0.160324 + 0.987064i \(0.448746\pi\)
\(132\) 34.5329 43.3029i 0.261613 0.328052i
\(133\) −5.81447 + 5.81447i −0.0437178 + 0.0437178i
\(134\) 130.757 14.7328i 0.975798 0.109946i
\(135\) −33.2495 + 95.0215i −0.246292 + 0.703863i
\(136\) 40.0885 + 50.2694i 0.294769 + 0.369628i
\(137\) −43.6939 4.92312i −0.318933 0.0359351i −0.0489532 0.998801i \(-0.515589\pi\)
−0.269980 + 0.962866i \(0.587017\pi\)
\(138\) 41.0617 85.2654i 0.297548 0.617865i
\(139\) 13.4998 59.1466i 0.0971211 0.425515i −0.902869 0.429915i \(-0.858543\pi\)
0.999990 + 0.00439991i \(0.00140054\pi\)
\(140\) 0.364281 + 1.59602i 0.00260200 + 0.0114001i
\(141\) 35.6888 17.1868i 0.253112 0.121892i
\(142\) −29.1291 83.2462i −0.205135 0.586241i
\(143\) 42.6274 67.8412i 0.298094 0.474414i
\(144\) 24.8029i 0.172242i
\(145\) −14.3647 98.9966i −0.0990672 0.682735i
\(146\) 75.7522 0.518851
\(147\) −94.3919 59.3103i −0.642121 0.403472i
\(148\) −43.0756 + 15.0728i −0.291051 + 0.101843i
\(149\) −42.6095 88.4796i −0.285970 0.593823i 0.707655 0.706558i \(-0.249753\pi\)
−0.993625 + 0.112735i \(0.964039\pi\)
\(150\) 44.4098 10.1362i 0.296065 0.0675750i
\(151\) 2.28538 + 0.521624i 0.0151350 + 0.00345446i 0.230082 0.973171i \(-0.426101\pi\)
−0.214947 + 0.976626i \(0.568958\pi\)
\(152\) 225.903 + 108.789i 1.48621 + 0.715719i
\(153\) −3.16683 + 28.1064i −0.0206982 + 0.183702i
\(154\) −4.92082 + 3.92422i −0.0319534 + 0.0254820i
\(155\) −49.8008 17.4260i −0.321295 0.112426i
\(156\) 2.35186 + 20.8734i 0.0150760 + 0.133804i
\(157\) 55.3939 + 55.3939i 0.352828 + 0.352828i 0.861161 0.508333i \(-0.169738\pi\)
−0.508333 + 0.861161i \(0.669738\pi\)
\(158\) −116.340 92.7781i −0.736330 0.587203i
\(159\) 7.14282 + 11.3677i 0.0449234 + 0.0714952i
\(160\) 72.0724 45.2861i 0.450453 0.283038i
\(161\) 4.81663 6.03986i 0.0299170 0.0375147i
\(162\) 34.7869 34.7869i 0.214734 0.214734i
\(163\) −59.0143 + 6.64931i −0.362051 + 0.0407933i −0.291116 0.956688i \(-0.594027\pi\)
−0.0709343 + 0.997481i \(0.522598\pi\)
\(164\) −35.8337 + 102.407i −0.218498 + 0.624432i
\(165\) 71.2359 + 89.3270i 0.431733 + 0.541376i
\(166\) 1.61005 + 0.181410i 0.00969913 + 0.00109283i
\(167\) 35.2685 73.2358i 0.211189 0.438538i −0.768285 0.640107i \(-0.778890\pi\)
0.979474 + 0.201569i \(0.0646042\pi\)
\(168\) 1.24550 5.45690i 0.00741370 0.0324815i
\(169\) −30.8444 135.138i −0.182511 0.799635i
\(170\) −35.2288 + 16.9653i −0.207228 + 0.0997959i
\(171\) 36.4290 + 104.108i 0.213035 + 0.608819i
\(172\) 60.1218 95.6833i 0.349545 0.556298i
\(173\) 34.1362i 0.197319i 0.995121 + 0.0986597i \(0.0314555\pi\)
−0.995121 + 0.0986597i \(0.968544\pi\)
\(174\) −30.2495 + 96.1842i −0.173847 + 0.552783i
\(175\) 3.71841 0.0212481
\(176\) 80.1822 + 50.3818i 0.455581 + 0.286260i
\(177\) −92.8081 + 32.4750i −0.524340 + 0.183474i
\(178\) −57.5717 119.549i −0.323437 0.671623i
\(179\) −71.0369 + 16.2137i −0.396854 + 0.0905793i −0.416290 0.909232i \(-0.636670\pi\)
0.0194363 + 0.999811i \(0.493813\pi\)
\(180\) 21.4081 + 4.88626i 0.118934 + 0.0271459i
\(181\) 113.506 + 54.6618i 0.627107 + 0.301999i 0.720314 0.693648i \(-0.243998\pi\)
−0.0932070 + 0.995647i \(0.529712\pi\)
\(182\) 0.267259 2.37199i 0.00146846 0.0130329i
\(183\) 197.937 157.850i 1.08162 0.862566i
\(184\) −222.341 77.8005i −1.20838 0.422829i
\(185\) −10.5404 93.5489i −0.0569753 0.505670i
\(186\) 37.6047 + 37.6047i 0.202176 + 0.202176i
\(187\) 84.4289 + 67.3298i 0.451491 + 0.360052i
\(188\) −15.4643 24.6113i −0.0822570 0.130911i
\(189\) 7.01352 4.40689i 0.0371086 0.0233169i
\(190\) −95.0691 + 119.213i −0.500364 + 0.627437i
\(191\) −107.857 + 107.857i −0.564698 + 0.564698i −0.930638 0.365940i \(-0.880747\pi\)
0.365940 + 0.930638i \(0.380747\pi\)
\(192\) −144.271 + 16.2554i −0.751410 + 0.0846635i
\(193\) 66.7211 190.678i 0.345705 0.987969i −0.631445 0.775420i \(-0.717538\pi\)
0.977151 0.212548i \(-0.0681763\pi\)
\(194\) −55.0632 69.0470i −0.283831 0.355913i
\(195\) −43.0584 4.85152i −0.220812 0.0248796i
\(196\) −35.4925 + 73.7008i −0.181084 + 0.376025i
\(197\) −76.3058 + 334.317i −0.387339 + 1.69704i 0.286431 + 0.958101i \(0.407531\pi\)
−0.673769 + 0.738942i \(0.735326\pi\)
\(198\) 18.7861 + 82.3071i 0.0948791 + 0.415693i
\(199\) 267.208 128.681i 1.34275 0.646636i 0.382032 0.924149i \(-0.375224\pi\)
0.960722 + 0.277513i \(0.0895101\pi\)
\(200\) −37.4477 107.020i −0.187239 0.535098i
\(201\) −104.563 + 166.411i −0.520214 + 0.827915i
\(202\) 123.828i 0.613008i
\(203\) −4.15449 + 7.10522i −0.0204655 + 0.0350011i
\(204\) −28.3112 −0.138780
\(205\) −189.504 119.073i −0.924410 0.580845i
\(206\) −271.628 + 95.0466i −1.31858 + 0.461391i
\(207\) −44.9602 93.3608i −0.217199 0.451018i
\(208\) −35.0136 + 7.99162i −0.168335 + 0.0384213i
\(209\) 410.556 + 93.7067i 1.96438 + 0.448357i
\(210\) 3.06676 + 1.47688i 0.0146036 + 0.00703274i
\(211\) −23.1896 + 205.814i −0.109903 + 0.975420i 0.810845 + 0.585262i \(0.199008\pi\)
−0.920748 + 0.390158i \(0.872420\pi\)
\(212\) 7.70221 6.14231i 0.0363312 0.0289731i
\(213\) 124.337 + 43.5074i 0.583741 + 0.204260i
\(214\) −4.72874 41.9688i −0.0220969 0.196116i
\(215\) 164.833 + 164.833i 0.766666 + 0.766666i
\(216\) −197.467 157.475i −0.914200 0.729050i
\(217\) 2.30965 + 3.67579i 0.0106435 + 0.0169391i
\(218\) 120.831 75.9234i 0.554273 0.348272i
\(219\) −70.5440 + 88.4594i −0.322119 + 0.403924i
\(220\) 59.2822 59.2822i 0.269465 0.269465i
\(221\) −40.6974 + 4.58549i −0.184151 + 0.0207488i
\(222\) −31.3400 + 89.5646i −0.141171 + 0.403444i
\(223\) −17.9820 22.5487i −0.0806367 0.101115i 0.739877 0.672742i \(-0.234884\pi\)
−0.820513 + 0.571627i \(0.806312\pi\)
\(224\) −6.95951 0.784148i −0.0310692 0.00350066i
\(225\) 21.6407 44.9373i 0.0961808 0.199722i
\(226\) 50.7785 222.475i 0.224684 0.984403i
\(227\) −34.9328 153.050i −0.153889 0.674231i −0.991733 0.128321i \(-0.959041\pi\)
0.837844 0.545910i \(-0.183816\pi\)
\(228\) −99.4695 + 47.9020i −0.436270 + 0.210096i
\(229\) −104.546 298.776i −0.456534 1.30470i −0.910437 0.413648i \(-0.864254\pi\)
0.453902 0.891051i \(-0.350031\pi\)
\(230\) 76.2143 121.294i 0.331367 0.527367i
\(231\) 9.40070i 0.0406957i
\(232\) 246.335 + 48.0144i 1.06179 + 0.206959i
\(233\) 421.117 1.80737 0.903684 0.428200i \(-0.140852\pi\)
0.903684 + 0.428200i \(0.140852\pi\)
\(234\) −27.1103 17.0346i −0.115856 0.0727972i
\(235\) 56.5948 19.8034i 0.240829 0.0842697i
\(236\) 31.3048 + 65.0051i 0.132648 + 0.275445i
\(237\) 216.683 49.4564i 0.914273 0.208677i
\(238\) 3.13654 + 0.715895i 0.0131788 + 0.00300796i
\(239\) −187.354 90.2247i −0.783906 0.377509i −0.00127824 0.999999i \(-0.500407\pi\)
−0.782628 + 0.622490i \(0.786121\pi\)
\(240\) 5.73406 50.8912i 0.0238919 0.212047i
\(241\) 10.8085 8.61948i 0.0448485 0.0357655i −0.600809 0.799393i \(-0.705155\pi\)
0.645658 + 0.763627i \(0.276583\pi\)
\(242\) 129.988 + 45.4848i 0.537141 + 0.187954i
\(243\) −21.1819 187.994i −0.0871682 0.773639i
\(244\) −131.362 131.362i −0.538368 0.538368i
\(245\) −131.929 105.210i −0.538487 0.429429i
\(246\) 120.020 + 191.011i 0.487886 + 0.776467i
\(247\) −135.229 + 84.9700i −0.547486 + 0.344008i
\(248\) 82.5325 103.493i 0.332792 0.417309i
\(249\) −1.71120 + 1.71120i −0.00687229 + 0.00687229i
\(250\) 199.262 22.4514i 0.797048 0.0898057i
\(251\) −20.8320 + 59.5343i −0.0829959 + 0.237189i −0.977901 0.209067i \(-0.932957\pi\)
0.894905 + 0.446256i \(0.147243\pi\)
\(252\) −1.12649 1.41257i −0.00447018 0.00560543i
\(253\) −393.142 44.2964i −1.55392 0.175085i
\(254\) −63.6839 + 132.241i −0.250724 + 0.520634i
\(255\) 12.9956 56.9372i 0.0509629 0.223283i
\(256\) 57.2170 + 250.684i 0.223504 + 0.979234i
\(257\) −387.505 + 186.613i −1.50780 + 0.726120i −0.991478 0.130273i \(-0.958415\pi\)
−0.516325 + 0.856393i \(0.672700\pi\)
\(258\) −77.6033 221.778i −0.300788 0.859603i
\(259\) −4.12104 + 6.55859i −0.0159113 + 0.0253228i
\(260\) 31.7956i 0.122291i
\(261\) 61.6887 + 91.5590i 0.236355 + 0.350801i
\(262\) 155.658 0.594116
\(263\) 10.7365 + 6.74620i 0.0408232 + 0.0256509i 0.552289 0.833653i \(-0.313754\pi\)
−0.511466 + 0.859304i \(0.670897\pi\)
\(264\) −270.561 + 94.6735i −1.02485 + 0.358612i
\(265\) 8.81741 + 18.3095i 0.0332733 + 0.0690926i
\(266\) 12.2313 2.79172i 0.0459824 0.0104952i
\(267\) 193.216 + 44.1004i 0.723657 + 0.165170i
\(268\) 129.933 + 62.5725i 0.484825 + 0.233479i
\(269\) −28.0878 + 249.286i −0.104416 + 0.926714i 0.826862 + 0.562404i \(0.190124\pi\)
−0.931278 + 0.364310i \(0.881305\pi\)
\(270\) 120.086 95.7654i 0.444763 0.354687i
\(271\) 214.664 + 75.1142i 0.792119 + 0.277174i 0.695856 0.718182i \(-0.255025\pi\)
0.0962629 + 0.995356i \(0.469311\pi\)
\(272\) −5.41964 48.1007i −0.0199252 0.176841i
\(273\) 2.52100 + 2.52100i 0.00923444 + 0.00923444i
\(274\) 52.4503 + 41.8278i 0.191425 + 0.152656i
\(275\) −101.314 161.240i −0.368415 0.586328i
\(276\) 87.8235 55.1832i 0.318201 0.199939i
\(277\) −266.485 + 334.162i −0.962040 + 1.20636i 0.0164075 + 0.999865i \(0.494777\pi\)
−0.978448 + 0.206495i \(0.933794\pi\)
\(278\) −65.4513 + 65.4513i −0.235436 + 0.235436i
\(279\) 57.8641 6.51972i 0.207398 0.0233682i
\(280\) 2.79827 7.99700i 0.00999383 0.0285607i
\(281\) −259.886 325.887i −0.924862 1.15974i −0.986846 0.161663i \(-0.948314\pi\)
0.0619844 0.998077i \(-0.480257\pi\)
\(282\) −60.0563 6.76672i −0.212966 0.0239955i
\(283\) −202.446 + 420.383i −0.715356 + 1.48545i 0.152325 + 0.988330i \(0.451324\pi\)
−0.867681 + 0.497121i \(0.834390\pi\)
\(284\) 21.5091 94.2376i 0.0757363 0.331823i
\(285\) −50.6777 222.033i −0.177816 0.779065i
\(286\) −110.138 + 53.0396i −0.385097 + 0.185453i
\(287\) 6.08202 + 17.3814i 0.0211917 + 0.0605624i
\(288\) −49.9800 + 79.5427i −0.173542 + 0.276190i
\(289\) 233.801i 0.809000i
\(290\) −61.8015 + 139.551i −0.213109 + 0.481209i
\(291\) 131.907 0.453288
\(292\) 70.2980 + 44.1712i 0.240747 + 0.151271i
\(293\) 285.468 99.8897i 0.974295 0.340921i 0.204256 0.978917i \(-0.434522\pi\)
0.770039 + 0.637997i \(0.220237\pi\)
\(294\) 73.7974 + 153.242i 0.251012 + 0.521231i
\(295\) −145.103 + 33.1188i −0.491874 + 0.112267i
\(296\) 230.265 + 52.5566i 0.777924 + 0.177556i
\(297\) −382.189 184.053i −1.28683 0.619706i
\(298\) −16.7760 + 148.891i −0.0562954 + 0.499635i
\(299\) 117.309 93.5504i 0.392336 0.312878i
\(300\) 47.1227 + 16.4889i 0.157076 + 0.0549632i
\(301\) −2.14749 19.0595i −0.00713451 0.0633205i
\(302\) −2.52899 2.52899i −0.00837414 0.00837414i
\(303\) −144.599 115.314i −0.477225 0.380575i
\(304\) −100.427 159.829i −0.330352 0.525752i
\(305\) 324.483 203.886i 1.06388 0.668479i
\(306\) 26.9060 33.7390i 0.0879280 0.110258i
\(307\) −271.866 + 271.866i −0.885558 + 0.885558i −0.994093 0.108534i \(-0.965384\pi\)
0.108534 + 0.994093i \(0.465384\pi\)
\(308\) −6.85474 + 0.772343i −0.0222556 + 0.00250761i
\(309\) 141.962 405.704i 0.459424 1.31296i
\(310\) 50.1906 + 62.9370i 0.161905 + 0.203023i
\(311\) −124.784 14.0597i −0.401233 0.0452081i −0.0909576 0.995855i \(-0.528993\pi\)
−0.310276 + 0.950647i \(0.600421\pi\)
\(312\) 47.1682 97.9457i 0.151180 0.313928i
\(313\) 13.5770 59.4846i 0.0433769 0.190047i −0.948598 0.316485i \(-0.897497\pi\)
0.991975 + 0.126438i \(0.0403545\pi\)
\(314\) −26.5964 116.527i −0.0847020 0.371104i
\(315\) 3.35793 1.61709i 0.0106601 0.00513363i
\(316\) −53.8645 153.936i −0.170457 0.487139i
\(317\) 239.824 381.678i 0.756543 1.20403i −0.217143 0.976140i \(-0.569674\pi\)
0.973686 0.227892i \(-0.0731833\pi\)
\(318\) 20.4837i 0.0644140i
\(319\) 421.297 13.4431i 1.32068 0.0421413i
\(320\) −219.762 −0.686757
\(321\) 53.4125 + 33.5613i 0.166394 + 0.104552i
\(322\) −11.1252 + 3.89288i −0.0345503 + 0.0120897i
\(323\) −93.3958 193.938i −0.289151 0.600429i
\(324\) 52.5665 11.9980i 0.162242 0.0370307i
\(325\) 70.4096 + 16.0705i 0.216645 + 0.0494478i
\(326\) 81.6360 + 39.3138i 0.250417 + 0.120594i
\(327\) −23.8646 + 211.804i −0.0729804 + 0.647719i
\(328\) 439.003 350.093i 1.33842 1.06736i
\(329\) −4.65658 1.62941i −0.0141537 0.00495261i
\(330\) −19.5175 173.223i −0.0591441 0.524918i
\(331\) 295.773 + 295.773i 0.893575 + 0.893575i 0.994858 0.101283i \(-0.0322946\pi\)
−0.101283 + 0.994858i \(0.532295\pi\)
\(332\) 1.38835 + 1.10717i 0.00418178 + 0.00333486i
\(333\) 55.2773 + 87.9734i 0.165998 + 0.264184i
\(334\) −105.010 + 65.9822i −0.314402 + 0.197552i
\(335\) −185.483 + 232.589i −0.553682 + 0.694295i
\(336\) −2.97960 + 2.97960i −0.00886785 + 0.00886785i
\(337\) −90.2891 + 10.1731i −0.267920 + 0.0301873i −0.244902 0.969548i \(-0.578756\pi\)
−0.0230176 + 0.999735i \(0.507327\pi\)
\(338\) −69.8493 + 199.618i −0.206655 + 0.590586i
\(339\) 212.507 + 266.476i 0.626865 + 0.786064i
\(340\) −42.5848 4.79815i −0.125249 0.0141122i
\(341\) 96.4620 200.305i 0.282880 0.587406i
\(342\) 37.4466 164.064i 0.109493 0.479720i
\(343\) 6.18411 + 27.0944i 0.0180295 + 0.0789923i
\(344\) −526.923 + 253.753i −1.53175 + 0.737654i
\(345\) 70.6668 + 201.954i 0.204831 + 0.585374i
\(346\) 27.7095 44.0994i 0.0800853 0.127455i
\(347\) 392.579i 1.13135i −0.824628 0.565676i \(-0.808615\pi\)
0.824628 0.565676i \(-0.191385\pi\)
\(348\) −84.1566 + 71.6204i −0.241829 + 0.205806i
\(349\) −487.106 −1.39572 −0.697860 0.716234i \(-0.745864\pi\)
−0.697860 + 0.716234i \(0.745864\pi\)
\(350\) −4.80368 3.01836i −0.0137248 0.00862387i
\(351\) 151.850 53.1346i 0.432621 0.151381i
\(352\) 155.620 + 323.148i 0.442103 + 0.918035i
\(353\) 98.6003 22.5049i 0.279321 0.0637532i −0.0805655 0.996749i \(-0.525673\pi\)
0.359886 + 0.932996i \(0.382815\pi\)
\(354\) 146.257 + 33.3821i 0.413154 + 0.0942998i
\(355\) 179.650 + 86.5149i 0.506056 + 0.243704i
\(356\) 16.2825 144.511i 0.0457374 0.405931i
\(357\) −3.75688 + 2.99601i −0.0105235 + 0.00839219i
\(358\) 104.931 + 36.7170i 0.293104 + 0.102562i
\(359\) 3.96158 + 35.1600i 0.0110350 + 0.0979386i 0.998022 0.0628592i \(-0.0200219\pi\)
−0.986987 + 0.160798i \(0.948593\pi\)
\(360\) −80.3590 80.3590i −0.223219 0.223219i
\(361\) −374.039 298.286i −1.03612 0.826277i
\(362\) −102.264 162.753i −0.282498 0.449593i
\(363\) −174.166 + 109.436i −0.479796 + 0.301476i
\(364\) 1.63113 2.04537i 0.00448111 0.00561914i
\(365\) −121.102 + 121.102i −0.331787 + 0.331787i
\(366\) −383.840 + 43.2484i −1.04874 + 0.118165i
\(367\) −76.1146 + 217.523i −0.207397 + 0.592706i −0.999852 0.0172247i \(-0.994517\pi\)
0.792455 + 0.609930i \(0.208803\pi\)
\(368\) 110.568 + 138.648i 0.300457 + 0.376761i
\(369\) 245.453 + 27.6559i 0.665184 + 0.0749482i
\(370\) −62.3199 + 129.409i −0.168432 + 0.349753i
\(371\) 0.372074 1.63016i 0.00100289 0.00439397i
\(372\) 12.9698 + 56.8245i 0.0348651 + 0.152754i
\(373\) 402.935 194.043i 1.08026 0.520224i 0.192857 0.981227i \(-0.438225\pi\)
0.887398 + 0.461003i \(0.152510\pi\)
\(374\) −54.4170 155.515i −0.145500 0.415815i
\(375\) −159.345 + 253.595i −0.424919 + 0.676254i
\(376\) 150.431i 0.400082i
\(377\) −109.375 + 116.585i −0.290119 + 0.309244i
\(378\) −12.6377 −0.0334332
\(379\) −215.124 135.171i −0.567609 0.356653i 0.217452 0.976071i \(-0.430226\pi\)
−0.785061 + 0.619419i \(0.787368\pi\)
\(380\) −157.737 + 55.1946i −0.415098 + 0.145249i
\(381\) −95.1185 197.516i −0.249655 0.518414i
\(382\) 226.888 51.7858i 0.593949 0.135565i
\(383\) −215.485 49.1830i −0.562624 0.128415i −0.0682557 0.997668i \(-0.521743\pi\)
−0.494368 + 0.869253i \(0.664601\pi\)
\(384\) −3.08351 1.48494i −0.00802998 0.00386703i
\(385\) 1.59322 14.1402i 0.00413824 0.0367279i
\(386\) −240.974 + 192.171i −0.624286 + 0.497851i
\(387\) −242.834 84.9712i −0.627477 0.219564i
\(388\) −10.8372 96.1830i −0.0279310 0.247894i
\(389\) 408.712 + 408.712i 1.05067 + 1.05067i 0.998646 + 0.0520279i \(0.0165685\pi\)
0.0520279 + 0.998646i \(0.483432\pi\)
\(390\) 51.6876 + 41.2195i 0.132532 + 0.105691i
\(391\) 107.592 + 171.232i 0.275172 + 0.437933i
\(392\) 358.466 225.239i 0.914455 0.574590i
\(393\) −144.956 + 181.769i −0.368846 + 0.462518i
\(394\) 369.953 369.953i 0.938968 0.938968i
\(395\) 334.309 37.6676i 0.846352 0.0953610i
\(396\) −30.5599 + 87.3351i −0.0771714 + 0.220543i
\(397\) −173.996 218.184i −0.438277 0.549582i 0.512811 0.858501i \(-0.328604\pi\)
−0.951088 + 0.308919i \(0.900033\pi\)
\(398\) −449.651 50.6635i −1.12978 0.127295i
\(399\) −8.13036 + 16.8829i −0.0203768 + 0.0423129i
\(400\) −18.9939 + 83.2179i −0.0474849 + 0.208045i
\(401\) −71.9206 315.105i −0.179353 0.785797i −0.981929 0.189248i \(-0.939395\pi\)
0.802576 0.596549i \(-0.203462\pi\)
\(402\) 270.163 130.103i 0.672046 0.323640i
\(403\) 27.8478 + 79.5846i 0.0691014 + 0.197480i
\(404\) −72.2040 + 114.912i −0.178723 + 0.284435i
\(405\) 111.225i 0.274629i
\(406\) 11.1346 5.80665i 0.0274251 0.0143021i
\(407\) 396.683 0.974650
\(408\) 124.063 + 77.9542i 0.304077 + 0.191064i
\(409\) 138.542 48.4780i 0.338734 0.118528i −0.155552 0.987828i \(-0.549715\pi\)
0.494285 + 0.869300i \(0.335430\pi\)
\(410\) 148.158 + 307.653i 0.361361 + 0.750374i
\(411\) −97.6885 + 22.2968i −0.237685 + 0.0542500i
\(412\) −307.492 70.1830i −0.746340 0.170347i
\(413\) 11.0333 + 5.31334i 0.0267149 + 0.0128652i
\(414\) −17.7015 + 157.105i −0.0427573 + 0.379481i
\(415\) −2.86394 + 2.28392i −0.00690107 + 0.00550342i
\(416\) −128.392 44.9264i −0.308635 0.107996i
\(417\) −15.4792 137.382i −0.0371204 0.329453i
\(418\) −454.318 454.318i −1.08689 1.08689i
\(419\) 554.089 + 441.871i 1.32241 + 1.05459i 0.993923 + 0.110076i \(0.0351093\pi\)
0.328485 + 0.944509i \(0.393462\pi\)
\(420\) 1.98479 + 3.15877i 0.00472568 + 0.00752088i
\(421\) −408.042 + 256.390i −0.969220 + 0.609001i −0.920887 0.389830i \(-0.872534\pi\)
−0.0483331 + 0.998831i \(0.515391\pi\)
\(422\) 197.024 247.060i 0.466880 0.585449i
\(423\) −46.7923 + 46.7923i −0.110620 + 0.110620i
\(424\) −50.6648 + 5.70855i −0.119492 + 0.0134636i
\(425\) −32.1490 + 91.8764i −0.0756446 + 0.216180i
\(426\) −125.310 157.134i −0.294155 0.368859i
\(427\) −31.3329 3.53037i −0.0733792 0.00826786i
\(428\) 20.0837 41.7043i 0.0469246 0.0974400i
\(429\) 40.6287 178.006i 0.0947057 0.414933i
\(430\) −79.1418 346.743i −0.184051 0.806379i
\(431\) 158.220 76.1946i 0.367099 0.176786i −0.241235 0.970467i \(-0.577552\pi\)
0.608334 + 0.793681i \(0.291838\pi\)
\(432\) 62.8004 + 179.473i 0.145371 + 0.415447i
\(433\) 2.79964 4.45560i 0.00646568 0.0102901i −0.843476 0.537167i \(-0.819494\pi\)
0.849941 + 0.526877i \(0.176637\pi\)
\(434\) 6.62344i 0.0152614i
\(435\) −105.407 202.125i −0.242316 0.464654i
\(436\) 156.402 0.358721
\(437\) 667.739 + 419.568i 1.52801 + 0.960110i
\(438\) 162.939 57.0148i 0.372006 0.130171i
\(439\) −232.675 483.154i −0.530010 1.10058i −0.978396 0.206738i \(-0.933715\pi\)
0.448386 0.893840i \(-0.351999\pi\)
\(440\) −423.015 + 96.5504i −0.961398 + 0.219433i
\(441\) 181.565 + 41.4410i 0.411712 + 0.0939705i
\(442\) 56.2977 + 27.1116i 0.127370 + 0.0613384i
\(443\) 49.1601 436.308i 0.110971 0.984894i −0.807625 0.589696i \(-0.799247\pi\)
0.918596 0.395198i \(-0.129324\pi\)
\(444\) −81.3086 + 64.8415i −0.183128 + 0.146039i
\(445\) 283.156 + 99.0805i 0.636305 + 0.222653i
\(446\) 4.92679 + 43.7265i 0.0110466 + 0.0980414i
\(447\) −158.245 158.245i −0.354015 0.354015i
\(448\) 14.1370 + 11.2739i 0.0315558 + 0.0251649i
\(449\) 27.2504 + 43.3687i 0.0606912 + 0.0965896i 0.875691 0.482871i \(-0.160406\pi\)
−0.815000 + 0.579461i \(0.803263\pi\)
\(450\) −64.4340 + 40.4866i −0.143187 + 0.0899701i
\(451\) 587.991 737.318i 1.30375 1.63485i
\(452\) 176.848 176.848i 0.391256 0.391256i
\(453\) 5.30833 0.598106i 0.0117182 0.00132032i
\(454\) −79.1076 + 226.077i −0.174246 + 0.497966i
\(455\) 3.36475 + 4.21927i 0.00739506 + 0.00927311i
\(456\) 567.786 + 63.9741i 1.24514 + 0.140294i
\(457\) 141.198 293.202i 0.308968 0.641579i −0.687442 0.726240i \(-0.741266\pi\)
0.996410 + 0.0846606i \(0.0269806\pi\)
\(458\) −107.467 + 470.843i −0.234644 + 1.02804i
\(459\) 48.2496 + 211.395i 0.105119 + 0.460556i
\(460\) 141.454 68.1205i 0.307508 0.148088i
\(461\) −3.04533 8.70305i −0.00660592 0.0188786i 0.940533 0.339702i \(-0.110326\pi\)
−0.947139 + 0.320823i \(0.896040\pi\)
\(462\) −7.63086 + 12.1444i −0.0165170 + 0.0262867i
\(463\) 107.108i 0.231334i −0.993288 0.115667i \(-0.963099\pi\)
0.993288 0.115667i \(-0.0369005\pi\)
\(464\) −137.793 129.271i −0.296968 0.278602i
\(465\) −120.234 −0.258569
\(466\) −544.026 341.834i −1.16744 0.733550i
\(467\) −666.211 + 233.117i −1.42658 + 0.499180i −0.929595 0.368582i \(-0.879843\pi\)
−0.496980 + 0.867762i \(0.665558\pi\)
\(468\) −15.2255 31.6161i −0.0325331 0.0675558i
\(469\) 23.8638 5.44675i 0.0508822 0.0116135i
\(470\) −89.1880 20.3566i −0.189762 0.0433119i
\(471\) 160.841 + 77.4572i 0.341489 + 0.164453i
\(472\) 41.8082 371.058i 0.0885768 0.786140i
\(473\) −767.959 + 612.427i −1.62359 + 1.29477i
\(474\) −320.070 111.997i −0.675254 0.236282i
\(475\) 42.4999 + 377.197i 0.0894735 + 0.794099i
\(476\) 2.49327 + 2.49327i 0.00523796 + 0.00523796i
\(477\) −17.5353 13.9839i −0.0367615 0.0293163i
\(478\) 168.797 + 268.639i 0.353132 + 0.562007i
\(479\) −268.422 + 168.661i −0.560380 + 0.352110i −0.782249 0.622966i \(-0.785927\pi\)
0.221868 + 0.975077i \(0.428784\pi\)
\(480\) 120.939 151.653i 0.251957 0.315944i
\(481\) −106.379 + 106.379i −0.221162 + 0.221162i
\(482\) −20.9598 + 2.36160i −0.0434851 + 0.00489959i
\(483\) 5.81442 16.6166i 0.0120381 0.0344030i
\(484\) 94.1067 + 118.006i 0.194435 + 0.243814i
\(485\) 198.410 + 22.3555i 0.409093 + 0.0460937i
\(486\) −125.237 + 260.057i −0.257689 + 0.535097i
\(487\) −60.5532 + 265.301i −0.124339 + 0.544765i 0.873935 + 0.486042i \(0.161560\pi\)
−0.998274 + 0.0587228i \(0.981297\pi\)
\(488\) 213.943 + 937.347i 0.438409 + 1.92079i
\(489\) −121.932 + 58.7193i −0.249349 + 0.120080i
\(490\) 85.0325 + 243.009i 0.173536 + 0.495936i
\(491\) −21.2173 + 33.7671i −0.0432123 + 0.0687720i −0.867632 0.497207i \(-0.834359\pi\)
0.824420 + 0.565979i \(0.191502\pi\)
\(492\) 247.242i 0.502524i
\(493\) −139.640 164.082i −0.283246 0.332824i
\(494\) 243.671 0.493260
\(495\) −161.614 101.549i −0.326492 0.205149i
\(496\) −94.0619 + 32.9137i −0.189641 + 0.0663582i
\(497\) −7.11838 14.7815i −0.0143227 0.0297414i
\(498\) 3.59968 0.821603i 0.00722827 0.00164981i
\(499\) −733.757 167.475i −1.47046 0.335622i −0.589094 0.808064i \(-0.700515\pi\)
−0.881362 + 0.472442i \(0.843372\pi\)
\(500\) 198.006 + 95.3549i 0.396013 + 0.190710i
\(501\) 20.7398 184.071i 0.0413969 0.367407i
\(502\) 75.2381 60.0004i 0.149877 0.119523i
\(503\) −475.580 166.413i −0.945487 0.330840i −0.186875 0.982384i \(-0.559836\pi\)
−0.758611 + 0.651544i \(0.774122\pi\)
\(504\) 1.04694 + 9.29182i 0.00207725 + 0.0184361i
\(505\) −197.958 197.958i −0.391997 0.391997i
\(506\) 471.929 + 376.351i 0.932667 + 0.743777i
\(507\) −168.056 267.460i −0.331472 0.527534i
\(508\) −136.208 + 85.5854i −0.268127 + 0.168475i
\(509\) −156.669 + 196.457i −0.307798 + 0.385967i −0.911539 0.411214i \(-0.865105\pi\)
0.603741 + 0.797181i \(0.293676\pi\)
\(510\) −63.0063 + 63.0063i −0.123542 + 0.123542i
\(511\) 14.0029 1.57775i 0.0274029 0.00308757i
\(512\) 127.588 364.624i 0.249195 0.712157i
\(513\) 527.199 + 661.086i 1.02768 + 1.28867i
\(514\) 652.085 + 73.4723i 1.26865 + 0.142942i
\(515\) 282.293 586.188i 0.548142 1.13823i
\(516\) 57.3028 251.060i 0.111052 0.486550i
\(517\) 56.2205 + 246.318i 0.108744 + 0.476437i
\(518\) 10.6477 5.12764i 0.0205553 0.00989892i
\(519\) 25.6926 + 73.4252i 0.0495040 + 0.141474i
\(520\) 87.5486 139.333i 0.168363 0.267948i
\(521\) 240.735i 0.462063i −0.972946 0.231031i \(-0.925790\pi\)
0.972946 0.231031i \(-0.0742100\pi\)
\(522\) −5.37205 168.357i −0.0102913 0.322522i
\(523\) −250.645 −0.479245 −0.239623 0.970866i \(-0.577024\pi\)
−0.239623 + 0.970866i \(0.577024\pi\)
\(524\) 144.451 + 90.7644i 0.275669 + 0.173215i
\(525\) 7.99809 2.79865i 0.0152345 0.00533077i
\(526\) −8.39402 17.4304i −0.0159582 0.0331376i
\(527\) −110.792 + 25.2876i −0.210232 + 0.0479841i
\(528\) 210.387 + 48.0195i 0.398461 + 0.0909461i
\(529\) −190.906 91.9355i −0.360881 0.173791i
\(530\) 3.47155 30.8109i 0.00655009 0.0581337i
\(531\) 128.424 102.415i 0.241854 0.192872i
\(532\) 12.9785 + 4.54138i 0.0243957 + 0.00853642i
\(533\) 40.0451 + 355.410i 0.0751315 + 0.666811i
\(534\) −213.812 213.812i −0.400397 0.400397i
\(535\) 74.6535 + 59.5342i 0.139539 + 0.111279i
\(536\) −397.092 631.969i −0.740844 1.17905i
\(537\) −140.593 + 88.3405i −0.261812 + 0.164508i
\(538\) 238.639 299.244i 0.443568 0.556216i
\(539\) 502.780 502.780i 0.932802 0.932802i
\(540\) 167.281 18.8480i 0.309779 0.0349037i
\(541\) 288.943 825.753i 0.534091 1.52635i −0.288367 0.957520i \(-0.593112\pi\)
0.822458 0.568826i \(-0.192602\pi\)
\(542\) −216.345 271.287i −0.399160 0.500530i
\(543\) 285.287 + 32.1441i 0.525391 + 0.0591973i
\(544\) 79.5463 165.180i 0.146225 0.303639i
\(545\) −71.7927 + 314.544i −0.131730 + 0.577145i
\(546\) −1.21041 5.30317i −0.00221688 0.00971277i
\(547\) 885.756 426.558i 1.61930 0.779813i 0.619313 0.785144i \(-0.287411\pi\)
0.999986 + 0.00533110i \(0.00169695\pi\)
\(548\) 24.2841 + 69.3999i 0.0443140 + 0.126642i
\(549\) −225.019 + 358.115i −0.409870 + 0.652305i
\(550\) 290.541i 0.528256i
\(551\) −768.241 340.224i −1.39427 0.617466i
\(552\) −536.800 −0.972464
\(553\) −23.4380 14.7271i −0.0423833 0.0266312i
\(554\) 615.513 215.377i 1.11103 0.388768i
\(555\) −93.0813 193.285i −0.167714 0.348262i
\(556\) −98.9034 + 22.5741i −0.177884 + 0.0406008i
\(557\) −697.102 159.109i −1.25153 0.285653i −0.455130 0.890425i \(-0.650407\pi\)
−0.796399 + 0.604771i \(0.793264\pi\)
\(558\) −80.0450 38.5476i −0.143450 0.0690818i
\(559\) 41.7093 370.180i 0.0746141 0.662219i
\(560\) −4.98680 + 3.97684i −0.00890499 + 0.00710150i
\(561\) 232.277 + 81.2774i 0.414042 + 0.144880i
\(562\) 71.2048 + 631.960i 0.126699 + 1.12448i
\(563\) 509.988 + 509.988i 0.905840 + 0.905840i 0.995933 0.0900931i \(-0.0287165\pi\)
−0.0900931 + 0.995933i \(0.528716\pi\)
\(564\) −51.7865 41.2984i −0.0918201 0.0732241i
\(565\) 274.485 + 436.840i 0.485814 + 0.773168i
\(566\) 602.771 378.746i 1.06497 0.669163i
\(567\) 5.70587 7.15494i 0.0100633 0.0126189i
\(568\) −353.737 + 353.737i −0.622776 + 0.622776i
\(569\) 19.5814 2.20630i 0.0344137 0.00387750i −0.0947408 0.995502i \(-0.530202\pi\)
0.129155 + 0.991624i \(0.458774\pi\)
\(570\) −114.763 + 327.974i −0.201339 + 0.575393i
\(571\) 153.514 + 192.500i 0.268851 + 0.337128i 0.897869 0.440262i \(-0.145115\pi\)
−0.629019 + 0.777390i \(0.716543\pi\)
\(572\) −133.135 15.0007i −0.232754 0.0262251i
\(573\) −150.816 + 313.174i −0.263205 + 0.546551i
\(574\) 6.25192 27.3914i 0.0108918 0.0477203i
\(575\) −79.3537 347.671i −0.138007 0.604646i
\(576\) 218.521 105.234i 0.379377 0.182699i
\(577\) 305.351 + 872.644i 0.529205 + 1.51238i 0.829484 + 0.558530i \(0.188635\pi\)
−0.300279 + 0.953852i \(0.597080\pi\)
\(578\) 189.784 302.039i 0.328346 0.522559i
\(579\) 460.355i 0.795087i
\(580\) −138.724 + 93.4664i −0.239179 + 0.161149i
\(581\) 0.301399 0.000518759
\(582\) −170.406 107.073i −0.292794 0.183975i
\(583\) −80.8260 + 28.2822i −0.138638 + 0.0485116i
\(584\) −186.431 387.128i −0.319231 0.662890i
\(585\) 70.5727 16.1078i 0.120637 0.0275346i
\(586\) −449.871 102.680i −0.767697 0.175222i
\(587\) −507.435 244.368i −0.864456 0.416300i −0.0515328 0.998671i \(-0.516411\pi\)
−0.812923 + 0.582371i \(0.802125\pi\)
\(588\) −20.8715 + 185.240i −0.0354958 + 0.315034i
\(589\) −346.475 + 276.305i −0.588243 + 0.469108i
\(590\) 214.337 + 74.9998i 0.363283 + 0.127118i
\(591\) 87.4939 + 776.530i 0.148044 + 1.31393i
\(592\) −125.731 125.731i −0.212383 0.212383i
\(593\) 40.7023 + 32.4590i 0.0686380 + 0.0547370i 0.657208 0.753709i \(-0.271737\pi\)
−0.588570 + 0.808446i \(0.700309\pi\)
\(594\) 344.336 + 548.007i 0.579690 + 0.922571i
\(595\) −6.15874 + 3.86979i −0.0103508 + 0.00650386i
\(596\) −102.387 + 128.389i −0.171790 + 0.215418i
\(597\) 477.899 477.899i 0.800500 0.800500i
\(598\) −227.485 + 25.6314i −0.380409 + 0.0428618i
\(599\) −211.707 + 605.024i −0.353434 + 1.01006i 0.620693 + 0.784054i \(0.286851\pi\)
−0.974127 + 0.226002i \(0.927434\pi\)
\(600\) −161.096 202.008i −0.268493 0.336680i
\(601\) 333.408 + 37.5661i 0.554756 + 0.0625060i 0.384892 0.922962i \(-0.374239\pi\)
0.169864 + 0.985468i \(0.445667\pi\)
\(602\) −12.6969 + 26.3655i −0.0210913 + 0.0437964i
\(603\) 73.0597 320.095i 0.121160 0.530838i
\(604\) −0.872245 3.82156i −0.00144411 0.00632708i
\(605\) −280.522 + 135.092i −0.463672 + 0.223293i
\(606\) 93.1986 + 266.346i 0.153793 + 0.439515i
\(607\) −54.8088 + 87.2277i −0.0902945 + 0.143703i −0.888817 0.458262i \(-0.848472\pi\)
0.798523 + 0.601965i \(0.205615\pi\)
\(608\) 714.938i 1.17589i
\(609\) −3.58835 + 18.4098i −0.00589220 + 0.0302296i
\(610\) −584.690 −0.958508
\(611\) −81.1322 50.9787i −0.132786 0.0834349i
\(612\) 44.6420 15.6209i 0.0729444 0.0255243i
\(613\) 356.350 + 739.969i 0.581322 + 1.20713i 0.959582 + 0.281428i \(0.0908080\pi\)
−0.378261 + 0.925699i \(0.623478\pi\)
\(614\) 571.898 130.532i 0.931430 0.212593i
\(615\) −497.233 113.490i −0.808509 0.184537i
\(616\) 32.1650 + 15.4899i 0.0522159 + 0.0251459i
\(617\) 12.5149 111.073i 0.0202835 0.180021i −0.979486 0.201515i \(-0.935414\pi\)
0.999769 + 0.0214938i \(0.00684223\pi\)
\(618\) −512.719 + 408.880i −0.829643 + 0.661618i
\(619\) −86.4870 30.2631i −0.139721 0.0488903i 0.259513 0.965740i \(-0.416438\pi\)
−0.399233 + 0.916849i \(0.630724\pi\)
\(620\) 9.87823 + 87.6717i 0.0159326 + 0.141406i
\(621\) −561.718 561.718i −0.904539 0.904539i
\(622\) 149.791 + 119.454i 0.240821 + 0.192049i
\(623\) −13.1321 20.8997i −0.0210789 0.0335468i
\(624\) −69.2974 + 43.5425i −0.111054 + 0.0697796i
\(625\) −78.4444 + 98.3662i −0.125511 + 0.157386i
\(626\) −65.8253 + 65.8253i −0.105152 + 0.105152i
\(627\) 953.611 107.446i 1.52091 0.171366i
\(628\) 43.2653 123.645i 0.0688937 0.196887i
\(629\) −126.423 158.530i −0.200991 0.252035i
\(630\) −5.65064 0.636675i −0.00896928 0.00101059i
\(631\) 106.650 221.460i 0.169017 0.350967i −0.799206 0.601058i \(-0.794746\pi\)
0.968222 + 0.250091i \(0.0804605\pi\)
\(632\) −187.818 + 822.883i −0.297180 + 1.30203i
\(633\) 105.026 + 460.147i 0.165917 + 0.726931i
\(634\) −619.641 + 298.404i −0.977352 + 0.470668i
\(635\) −109.600 313.217i −0.172598 0.493256i
\(636\) 11.9440 19.0088i 0.0187799 0.0298881i
\(637\) 269.663i 0.423333i
\(638\) −555.172 324.614i −0.870175 0.508800i
\(639\) −220.064 −0.344388
\(640\) −4.38645 2.75619i −0.00685383 0.00430655i
\(641\) 916.494 320.695i 1.42979 0.500305i 0.499237 0.866466i \(-0.333614\pi\)
0.930551 + 0.366161i \(0.119328\pi\)
\(642\) −41.7590 86.7134i −0.0650451 0.135068i
\(643\) 48.0847 10.9750i 0.0747817 0.0170684i −0.184966 0.982745i \(-0.559218\pi\)
0.259748 + 0.965676i \(0.416360\pi\)
\(644\) −12.5941 2.87452i −0.0195561 0.00446355i
\(645\) 478.609 + 230.486i 0.742029 + 0.357342i
\(646\) −36.7714 + 326.355i −0.0569216 + 0.505193i
\(647\) −71.4194 + 56.9551i −0.110386 + 0.0880295i −0.677127 0.735866i \(-0.736775\pi\)
0.566742 + 0.823896i \(0.308204\pi\)
\(648\) −263.390 92.1640i −0.406465 0.142228i
\(649\) −70.2180 623.202i −0.108194 0.960250i
\(650\) −77.9148 77.9148i −0.119869 0.119869i
\(651\) 7.73450 + 6.16806i 0.0118810 + 0.00947475i
\(652\) 52.8342 + 84.0852i 0.0810341 + 0.128965i
\(653\) 207.926 130.649i 0.318416 0.200074i −0.363334 0.931659i \(-0.618362\pi\)
0.681751 + 0.731585i \(0.261219\pi\)
\(654\) 202.758 254.251i 0.310028 0.388762i
\(655\) −248.845 + 248.845i −0.379916 + 0.379916i
\(656\) −420.063 + 47.3298i −0.640340 + 0.0721490i
\(657\) 62.4279 178.409i 0.0950196 0.271551i
\(658\) 4.69303 + 5.88488i 0.00713227 + 0.00894359i
\(659\) −259.653 29.2559i −0.394011 0.0443943i −0.0872632 0.996185i \(-0.527812\pi\)
−0.306747 + 0.951791i \(0.599241\pi\)
\(660\) 82.8942 172.132i 0.125597 0.260805i
\(661\) 217.845 954.443i 0.329569 1.44394i −0.490383 0.871507i \(-0.663143\pi\)
0.819953 0.572431i \(-0.194000\pi\)
\(662\) −142.010 622.188i −0.214517 0.939862i
\(663\) −84.0865 + 40.4939i −0.126827 + 0.0610768i
\(664\) −3.03536 8.67457i −0.00457133 0.0130641i
\(665\) −15.0907 + 24.0167i −0.0226928 + 0.0361154i
\(666\) 158.520i 0.238018i
\(667\) 752.999 + 236.814i 1.12893 + 0.355044i
\(668\) −135.924 −0.203478
\(669\) −55.6495 34.9669i −0.0831831 0.0522674i
\(670\) 428.420 149.911i 0.639432 0.223747i
\(671\) 700.629 + 1454.87i 1.04416 + 2.16821i
\(672\) −15.5597 + 3.55140i −0.0231543 + 0.00528482i
\(673\) 593.737 + 135.517i 0.882225 + 0.201362i 0.639554 0.768747i \(-0.279119\pi\)
0.242671 + 0.970109i \(0.421976\pi\)
\(674\) 124.899 + 60.1483i 0.185310 + 0.0892408i
\(675\) 42.8112 379.960i 0.0634239 0.562903i
\(676\) −181.217 + 144.516i −0.268073 + 0.213781i
\(677\) 559.076 + 195.629i 0.825814 + 0.288965i 0.709907 0.704295i \(-0.248737\pi\)
0.115907 + 0.993260i \(0.463023\pi\)
\(678\) −58.2238 516.750i −0.0858758 0.762168i
\(679\) −11.6166 11.6166i −0.0171084 0.0171084i
\(680\) 173.401 + 138.282i 0.255001 + 0.203357i
\(681\) −190.332 302.911i −0.279488 0.444803i
\(682\) −287.210 + 180.466i −0.421130 + 0.264613i
\(683\) 217.747 273.046i 0.318809 0.399774i −0.596443 0.802656i \(-0.703420\pi\)
0.915252 + 0.402881i \(0.131991\pi\)
\(684\) 130.416 130.416i 0.190667 0.190667i
\(685\) −150.719 + 16.9819i −0.220027 + 0.0247911i
\(686\) 14.0043 40.0221i 0.0204145 0.0583413i
\(687\) −449.747 563.965i −0.654653 0.820909i
\(688\) 437.520 + 49.2967i 0.635930 + 0.0716521i
\(689\) 14.0907 29.2597i 0.0204510 0.0424670i
\(690\) 72.6408 318.260i 0.105277 0.461247i
\(691\) 181.564 + 795.482i 0.262755 + 1.15120i 0.918249 + 0.396004i \(0.129603\pi\)
−0.655494 + 0.755200i \(0.727540\pi\)
\(692\) 51.4288 24.7668i 0.0743191 0.0357902i
\(693\) 5.18690 + 14.8233i 0.00748471 + 0.0213901i
\(694\) −318.669 + 507.159i −0.459178 + 0.730777i
\(695\) 209.269i 0.301106i
\(696\) 565.991 82.1272i 0.813205 0.117999i
\(697\) −482.054 −0.691613
\(698\) 629.276 + 395.400i 0.901541 + 0.566476i
\(699\) 905.799 316.953i 1.29585 0.453437i
\(700\) −2.69781 5.60206i −0.00385402 0.00800295i
\(701\) −924.382 + 210.984i −1.31866 + 0.300976i −0.823249 0.567681i \(-0.807841\pi\)
−0.495414 + 0.868657i \(0.664984\pi\)
\(702\) −239.301 54.6189i −0.340885 0.0778047i
\(703\) −712.409 343.078i −1.01338 0.488020i
\(704\) 103.681 920.193i 0.147274 1.30709i
\(705\) 106.827 85.1920i 0.151528 0.120840i
\(706\) −145.646 50.9638i −0.206298 0.0721867i
\(707\) 2.57905 + 22.8897i 0.00364788 + 0.0323758i
\(708\) 116.261 + 116.261i 0.164210 + 0.164210i
\(709\) −268.833 214.387i −0.379172 0.302380i 0.415295 0.909687i \(-0.363678\pi\)
−0.794467 + 0.607307i \(0.792250\pi\)
\(710\) −161.857 257.593i −0.227967 0.362808i
\(711\) −314.384 + 197.541i −0.442172 + 0.277835i
\(712\) −469.261 + 588.435i −0.659075 + 0.826454i
\(713\) 294.397 294.397i 0.412898 0.412898i
\(714\) 7.28535 0.820862i 0.0102036 0.00114967i
\(715\) 91.2808 260.865i 0.127665 0.364847i
\(716\) 75.9664 + 95.2589i 0.106098 + 0.133043i
\(717\) −470.895 53.0571i −0.656757 0.0739987i
\(718\) 23.4227 48.6377i 0.0326221 0.0677405i
\(719\) −258.798 + 1133.87i −0.359942 + 1.57701i 0.393391 + 0.919371i \(0.371302\pi\)
−0.753334 + 0.657639i \(0.771555\pi\)
\(720\) 19.0379 + 83.4107i 0.0264416 + 0.115848i
\(721\) −48.2311 + 23.2269i −0.0668947 + 0.0322148i
\(722\) 241.079 + 688.965i 0.333905 + 0.954246i
\(723\) 16.7610 26.6750i 0.0231826 0.0368949i
\(724\) 210.665i 0.290973i
\(725\) 136.861 + 354.437i 0.188773 + 0.488878i
\(726\) 313.831 0.432275
\(727\) 606.627 + 381.169i 0.834425 + 0.524304i 0.880175 0.474649i \(-0.157425\pi\)
−0.0457500 + 0.998953i \(0.514568\pi\)
\(728\) −12.7797 + 4.47180i −0.0175545 + 0.00614259i
\(729\) −312.968 649.884i −0.429311 0.891474i
\(730\) 254.750 58.1451i 0.348973 0.0796508i
\(731\) 489.499 + 111.725i 0.669629 + 0.152838i
\(732\) −381.421 183.683i −0.521067 0.250933i
\(733\) −5.44223 + 48.3011i −0.00742460 + 0.0658951i −0.996878 0.0789554i \(-0.974842\pi\)
0.989454 + 0.144850i \(0.0462701\pi\)
\(734\) 274.900 219.226i 0.374524 0.298673i
\(735\) −362.959 127.005i −0.493822 0.172796i
\(736\) 75.2034 + 667.449i 0.102179 + 0.906860i
\(737\) −886.392 886.392i −1.20270 1.20270i
\(738\) −294.643 234.970i −0.399245 0.318387i
\(739\) 266.443 + 424.041i 0.360545 + 0.573804i 0.976909 0.213658i \(-0.0685378\pi\)
−0.616364 + 0.787462i \(0.711395\pi\)
\(740\) −133.291 + 83.7524i −0.180123 + 0.113179i
\(741\) −226.918 + 284.546i −0.306232 + 0.384002i
\(742\) −1.80393 + 1.80393i −0.00243117 + 0.00243117i
\(743\) −353.124 + 39.7875i −0.475267 + 0.0535498i −0.346350 0.938106i \(-0.612579\pi\)
−0.128918 + 0.991655i \(0.541150\pi\)
\(744\) 99.6295 284.725i 0.133911 0.382694i
\(745\) −211.208 264.846i −0.283500 0.355498i
\(746\) −678.050 76.3979i −0.908914 0.102410i
\(747\) 1.75411 3.64244i 0.00234820 0.00487609i
\(748\) 40.1818 176.048i 0.0537190 0.235358i
\(749\) −1.74823 7.65949i −0.00233408 0.0102263i
\(750\) 411.704 198.266i 0.548938 0.264355i
\(751\) −225.087 643.260i −0.299716 0.856539i −0.990989 0.133945i \(-0.957235\pi\)
0.691273 0.722594i \(-0.257050\pi\)
\(752\) 60.2523 95.8910i 0.0801228 0.127515i
\(753\) 143.734i 0.190882i
\(754\) 235.934 61.8290i 0.312909 0.0820013i
\(755\) 8.08599 0.0107099
\(756\) −11.7278 7.36908i −0.0155130 0.00974746i
\(757\) −546.623 + 191.272i −0.722091 + 0.252671i −0.666207 0.745767i \(-0.732083\pi\)
−0.0558840 + 0.998437i \(0.517798\pi\)