Properties

Label 29.3.f.a.2.4
Level 29
Weight 3
Character 29.2
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 2.4
Character \(\chi\) = 29.2
Dual form 29.3.f.a.15.4

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(2.58169 + 0.290886i) q^{2}\) \(+(-2.11401 - 1.32832i) q^{3}\) \(+(2.68078 + 0.611870i) q^{4}\) \(+(-2.49104 + 1.98654i) q^{5}\) \(+(-5.07133 - 4.04425i) q^{6}\) \(+(1.30161 + 5.70272i) q^{7}\) \(+(-3.06598 - 1.07283i) q^{8}\) \(+(-1.20034 - 2.49253i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(2.58169 + 0.290886i) q^{2}\) \(+(-2.11401 - 1.32832i) q^{3}\) \(+(2.68078 + 0.611870i) q^{4}\) \(+(-2.49104 + 1.98654i) q^{5}\) \(+(-5.07133 - 4.04425i) q^{6}\) \(+(1.30161 + 5.70272i) q^{7}\) \(+(-3.06598 - 1.07283i) q^{8}\) \(+(-1.20034 - 2.49253i) q^{9}\) \(+(-7.00893 + 4.40400i) q^{10}\) \(+(16.1070 - 5.63608i) q^{11}\) \(+(-4.85444 - 4.85444i) q^{12}\) \(+(2.84196 - 5.90140i) q^{13}\) \(+(1.70150 + 15.1013i) q^{14}\) \(+(7.90485 - 0.890663i) q^{15}\) \(+(-17.5130 - 8.43380i) q^{16}\) \(+(-14.7807 + 14.7807i) q^{17}\) \(+(-2.37386 - 6.78410i) q^{18}\) \(+(9.65814 + 15.3708i) q^{19}\) \(+(-7.89342 + 3.80127i) q^{20}\) \(+(4.82344 - 13.7846i) q^{21}\) \(+(43.2227 - 9.86529i) q^{22}\) \(+(18.5750 - 23.2923i) q^{23}\) \(+(5.05646 + 6.34060i) q^{24}\) \(+(-3.30408 + 14.4761i) q^{25}\) \(+(9.05369 - 14.4089i) q^{26}\) \(+(-3.28922 + 29.1927i) q^{27}\) \(+16.0841i q^{28}\) \(+(-19.9272 - 21.0691i) q^{29}\) \(+20.6669 q^{30}\) \(+(-13.3687 - 1.50629i) q^{31}\) \(+(-31.7582 - 19.9550i) q^{32}\) \(+(-41.5370 - 9.48054i) q^{33}\) \(+(-42.4586 + 33.8596i) q^{34}\) \(+(-14.5710 - 11.6200i) q^{35}\) \(+(-1.69274 - 7.41637i) q^{36}\) \(+(17.2522 + 6.03682i) q^{37}\) \(+(20.4631 + 42.4921i) q^{38}\) \(+(-13.8469 + 8.70059i) q^{39}\) \(+(9.76869 - 3.41821i) q^{40}\) \(+(-44.4102 - 44.4102i) q^{41}\) \(+(16.4624 - 34.1844i) q^{42}\) \(+(7.00239 + 62.1479i) q^{43}\) \(+(46.6278 - 5.25369i) q^{44}\) \(+(7.94160 + 3.82447i) q^{45}\) \(+(54.7302 - 54.7302i) q^{46}\) \(+(-16.6790 - 47.6658i) q^{47}\) \(+(25.8198 + 41.0920i) q^{48}\) \(+(13.3206 - 6.41487i) q^{49}\) \(+(-12.7410 + 36.4117i) q^{50}\) \(+(50.8801 - 11.6131i) q^{51}\) \(+(11.2296 - 14.0814i) q^{52}\) \(+(12.0961 + 15.1681i) q^{53}\) \(+(-16.9835 + 74.4095i) q^{54}\) \(+(-28.9269 + 46.0368i) q^{55}\) \(+(2.12736 - 18.8808i) q^{56}\) \(-45.3233i q^{57}\) \(+(-45.3170 - 60.1904i) q^{58}\) \(+47.9911 q^{59}\) \(+(21.7361 + 2.44907i) q^{60}\) \(+(41.0683 + 25.8049i) q^{61}\) \(+(-34.0756 - 7.77754i) q^{62}\) \(+(12.6518 - 10.0895i) q^{63}\) \(+(-15.3963 - 12.2781i) q^{64}\) \(+(4.64390 + 20.3463i) q^{65}\) \(+(-104.478 - 36.5583i) q^{66}\) \(+(-6.15092 - 12.7725i) q^{67}\) \(+(-48.6676 + 30.5799i) q^{68}\) \(+(-70.2075 + 24.5667i) q^{69}\) \(+(-34.2377 - 34.2377i) q^{70}\) \(+(-11.6321 + 24.1543i) q^{71}\) \(+(1.00615 + 8.92982i) q^{72}\) \(+(-12.2617 + 1.38156i) q^{73}\) \(+(42.7839 + 20.6036i) q^{74}\) \(+(26.2138 - 26.2138i) q^{75}\) \(+(16.4864 + 47.1153i) q^{76}\) \(+(53.1060 + 84.5178i) q^{77}\) \(+(-38.2793 + 18.4343i) q^{78}\) \(+(33.5205 - 95.7961i) q^{79}\) \(+(60.3795 - 13.7812i) q^{80}\) \(+(30.2068 - 37.8781i) q^{81}\) \(+(-101.735 - 127.571i) q^{82}\) \(+(-9.73978 + 42.6728i) q^{83}\) \(+(21.3649 - 34.0021i) q^{84}\) \(+(7.45688 - 66.1816i) q^{85}\) \(+162.483i q^{86}\) \(+(14.1397 + 71.0101i) q^{87}\) \(-55.4303 q^{88}\) \(+(53.9337 + 6.07686i) q^{89}\) \(+(19.3902 + 12.1837i) q^{90}\) \(+(37.3532 + 8.52561i) q^{91}\) \(+(64.0472 - 51.0760i) q^{92}\) \(+(26.2608 + 20.9423i) q^{93}\) \(+(-29.1946 - 127.910i) q^{94}\) \(+(-54.5935 - 19.1031i) q^{95}\) \(+(40.6306 + 84.3702i) q^{96}\) \(+(-124.213 + 78.0480i) q^{97}\) \(+(36.2556 - 12.6864i) q^{98}\) \(+(-33.3820 - 33.3820i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58169 + 0.290886i 1.29084 + 0.145443i 0.730554 0.682854i \(-0.239262\pi\)
0.560289 + 0.828298i \(0.310690\pi\)
\(3\) −2.11401 1.32832i −0.704671 0.442774i 0.131447 0.991323i \(-0.458038\pi\)
−0.836119 + 0.548549i \(0.815180\pi\)
\(4\) 2.68078 + 0.611870i 0.670194 + 0.152967i
\(5\) −2.49104 + 1.98654i −0.498207 + 0.397307i −0.840100 0.542432i \(-0.817504\pi\)
0.341892 + 0.939739i \(0.388932\pi\)
\(6\) −5.07133 4.04425i −0.845222 0.674042i
\(7\) 1.30161 + 5.70272i 0.185944 + 0.814675i 0.978726 + 0.205170i \(0.0657746\pi\)
−0.792782 + 0.609505i \(0.791368\pi\)
\(8\) −3.06598 1.07283i −0.383247 0.134104i
\(9\) −1.20034 2.49253i −0.133371 0.276948i
\(10\) −7.00893 + 4.40400i −0.700893 + 0.440400i
\(11\) 16.1070 5.63608i 1.46427 0.512371i 0.523682 0.851914i \(-0.324558\pi\)
0.940591 + 0.339543i \(0.110272\pi\)
\(12\) −4.85444 4.85444i −0.404537 0.404537i
\(13\) 2.84196 5.90140i 0.218613 0.453954i −0.762603 0.646866i \(-0.776079\pi\)
0.981216 + 0.192913i \(0.0617934\pi\)
\(14\) 1.70150 + 15.1013i 0.121536 + 1.07866i
\(15\) 7.90485 0.890663i 0.526990 0.0593775i
\(16\) −17.5130 8.43380i −1.09456 0.527112i
\(17\) −14.7807 + 14.7807i −0.869452 + 0.869452i −0.992412 0.122959i \(-0.960762\pi\)
0.122959 + 0.992412i \(0.460762\pi\)
\(18\) −2.37386 6.78410i −0.131881 0.376894i
\(19\) 9.65814 + 15.3708i 0.508323 + 0.808992i 0.998020 0.0629012i \(-0.0200353\pi\)
−0.489697 + 0.871893i \(0.662892\pi\)
\(20\) −7.89342 + 3.80127i −0.394671 + 0.190063i
\(21\) 4.82344 13.7846i 0.229688 0.656409i
\(22\) 43.2227 9.86529i 1.96467 0.448422i
\(23\) 18.5750 23.2923i 0.807608 1.01271i −0.191902 0.981414i \(-0.561466\pi\)
0.999510 0.0312943i \(-0.00996291\pi\)
\(24\) 5.05646 + 6.34060i 0.210686 + 0.264191i
\(25\) −3.30408 + 14.4761i −0.132163 + 0.579045i
\(26\) 9.05369 14.4089i 0.348219 0.554187i
\(27\) −3.28922 + 29.1927i −0.121823 + 1.08121i
\(28\) 16.0841i 0.574434i
\(29\) −19.9272 21.0691i −0.687144 0.726521i
\(30\) 20.6669 0.688897
\(31\) −13.3687 1.50629i −0.431249 0.0485900i −0.106327 0.994331i \(-0.533909\pi\)
−0.324921 + 0.945741i \(0.605338\pi\)
\(32\) −31.7582 19.9550i −0.992443 0.623593i
\(33\) −41.5370 9.48054i −1.25870 0.287289i
\(34\) −42.4586 + 33.8596i −1.24878 + 0.995871i
\(35\) −14.5710 11.6200i −0.416315 0.332000i
\(36\) −1.69274 7.41637i −0.0470205 0.206010i
\(37\) 17.2522 + 6.03682i 0.466277 + 0.163157i 0.553184 0.833059i \(-0.313413\pi\)
−0.0869071 + 0.996216i \(0.527698\pi\)
\(38\) 20.4631 + 42.4921i 0.538503 + 1.11821i
\(39\) −13.8469 + 8.70059i −0.355049 + 0.223092i
\(40\) 9.76869 3.41821i 0.244217 0.0854553i
\(41\) −44.4102 44.4102i −1.08318 1.08318i −0.996211 0.0869640i \(-0.972283\pi\)
−0.0869640 0.996211i \(-0.527717\pi\)
\(42\) 16.4624 34.1844i 0.391961 0.813915i
\(43\) 7.00239 + 62.1479i 0.162846 + 1.44530i 0.763509 + 0.645797i \(0.223475\pi\)
−0.600663 + 0.799503i \(0.705096\pi\)
\(44\) 46.6278 5.25369i 1.05972 0.119402i
\(45\) 7.94160 + 3.82447i 0.176480 + 0.0849883i
\(46\) 54.7302 54.7302i 1.18979 1.18979i
\(47\) −16.6790 47.6658i −0.354872 1.01417i −0.973541 0.228515i \(-0.926613\pi\)
0.618668 0.785652i \(-0.287673\pi\)
\(48\) 25.8198 + 41.0920i 0.537913 + 0.856084i
\(49\) 13.3206 6.41487i 0.271849 0.130916i
\(50\) −12.7410 + 36.4117i −0.254820 + 0.728234i
\(51\) 50.8801 11.6131i 0.997649 0.227707i
\(52\) 11.2296 14.0814i 0.215953 0.270796i
\(53\) 12.0961 + 15.1681i 0.228229 + 0.286190i 0.882739 0.469863i \(-0.155697\pi\)
−0.654511 + 0.756053i \(0.727125\pi\)
\(54\) −16.9835 + 74.4095i −0.314509 + 1.37795i
\(55\) −28.9269 + 46.0368i −0.525943 + 0.837033i
\(56\) 2.12736 18.8808i 0.0379886 0.337158i
\(57\) 45.3233i 0.795146i
\(58\) −45.3170 60.1904i −0.781327 1.03777i
\(59\) 47.9911 0.813408 0.406704 0.913560i \(-0.366678\pi\)
0.406704 + 0.913560i \(0.366678\pi\)
\(60\) 21.7361 + 2.44907i 0.362268 + 0.0408178i
\(61\) 41.0683 + 25.8049i 0.673251 + 0.423031i 0.824805 0.565417i \(-0.191285\pi\)
−0.151554 + 0.988449i \(0.548428\pi\)
\(62\) −34.0756 7.77754i −0.549607 0.125444i
\(63\) 12.6518 10.0895i 0.200823 0.160151i
\(64\) −15.3963 12.2781i −0.240567 0.191846i
\(65\) 4.64390 + 20.3463i 0.0714446 + 0.313019i
\(66\) −104.478 36.5583i −1.58299 0.553914i
\(67\) −6.15092 12.7725i −0.0918048 0.190635i 0.850010 0.526766i \(-0.176596\pi\)
−0.941815 + 0.336132i \(0.890881\pi\)
\(68\) −48.6676 + 30.5799i −0.715700 + 0.449704i
\(69\) −70.2075 + 24.5667i −1.01750 + 0.356038i
\(70\) −34.2377 34.2377i −0.489110 0.489110i
\(71\) −11.6321 + 24.1543i −0.163832 + 0.340202i −0.966682 0.255980i \(-0.917602\pi\)
0.802850 + 0.596182i \(0.203316\pi\)
\(72\) 1.00615 + 8.92982i 0.0139743 + 0.124025i
\(73\) −12.2617 + 1.38156i −0.167968 + 0.0189255i −0.195548 0.980694i \(-0.562649\pi\)
0.0275798 + 0.999620i \(0.491220\pi\)
\(74\) 42.7839 + 20.6036i 0.578160 + 0.278427i
\(75\) 26.2138 26.2138i 0.349518 0.349518i
\(76\) 16.4864 + 47.1153i 0.216926 + 0.619938i
\(77\) 53.1060 + 84.5178i 0.689689 + 1.09763i
\(78\) −38.2793 + 18.4343i −0.490760 + 0.236337i
\(79\) 33.5205 95.7961i 0.424310 1.21261i −0.511247 0.859434i \(-0.670816\pi\)
0.935557 0.353175i \(-0.114898\pi\)
\(80\) 60.3795 13.7812i 0.754744 0.172265i
\(81\) 30.2068 37.8781i 0.372923 0.467631i
\(82\) −101.735 127.571i −1.24067 1.55575i
\(83\) −9.73978 + 42.6728i −0.117347 + 0.514130i 0.881753 + 0.471711i \(0.156363\pi\)
−0.999100 + 0.0424187i \(0.986494\pi\)
\(84\) 21.3649 34.0021i 0.254344 0.404787i
\(85\) 7.45688 66.1816i 0.0877280 0.778607i
\(86\) 162.483i 1.88934i
\(87\) 14.1397 + 71.0101i 0.162525 + 0.816209i
\(88\) −55.4303 −0.629890
\(89\) 53.9337 + 6.07686i 0.605996 + 0.0682794i 0.409631 0.912251i \(-0.365658\pi\)
0.196365 + 0.980531i \(0.437086\pi\)
\(90\) 19.3902 + 12.1837i 0.215447 + 0.135374i
\(91\) 37.3532 + 8.52561i 0.410474 + 0.0936881i
\(92\) 64.0472 51.0760i 0.696165 0.555173i
\(93\) 26.2608 + 20.9423i 0.282374 + 0.225186i
\(94\) −29.1946 127.910i −0.310581 1.36074i
\(95\) −54.5935 19.1031i −0.574669 0.201085i
\(96\) 40.6306 + 84.3702i 0.423235 + 0.878857i
\(97\) −124.213 + 78.0480i −1.28054 + 0.804619i −0.988417 0.151761i \(-0.951506\pi\)
−0.292126 + 0.956380i \(0.594363\pi\)
\(98\) 36.2556 12.6864i 0.369955 0.129453i
\(99\) −33.3820 33.3820i −0.337192 0.337192i
\(100\) −17.7150 + 36.7856i −0.177150 + 0.367856i
\(101\) −15.1390 134.362i −0.149891 1.33032i −0.813205 0.581978i \(-0.802279\pi\)
0.663314 0.748342i \(-0.269150\pi\)
\(102\) 134.735 15.1809i 1.32093 0.148833i
\(103\) 42.8611 + 20.6408i 0.416127 + 0.200396i 0.630219 0.776417i \(-0.282965\pi\)
−0.214092 + 0.976813i \(0.568679\pi\)
\(104\) −15.0446 + 15.0446i −0.144660 + 0.144660i
\(105\) 15.3682 + 43.9199i 0.146364 + 0.418285i
\(106\) 26.8162 + 42.6778i 0.252983 + 0.402620i
\(107\) 119.175 57.3917i 1.11379 0.536371i 0.215818 0.976434i \(-0.430758\pi\)
0.897967 + 0.440063i \(0.145044\pi\)
\(108\) −26.6798 + 76.2465i −0.247035 + 0.705986i
\(109\) −42.9080 + 9.79348i −0.393652 + 0.0898485i −0.414765 0.909929i \(-0.636136\pi\)
0.0211130 + 0.999777i \(0.493279\pi\)
\(110\) −88.0715 + 110.438i −0.800650 + 1.00398i
\(111\) −28.4526 35.6785i −0.256330 0.321428i
\(112\) 25.3006 110.849i 0.225898 0.989724i
\(113\) −48.1620 + 76.6493i −0.426212 + 0.678313i −0.988938 0.148331i \(-0.952610\pi\)
0.562726 + 0.826644i \(0.309753\pi\)
\(114\) 13.1839 117.011i 0.115648 1.02641i
\(115\) 94.9218i 0.825407i
\(116\) −40.5287 68.6744i −0.349386 0.592021i
\(117\) −18.1207 −0.154878
\(118\) 123.898 + 13.9599i 1.04998 + 0.118305i
\(119\) −103.529 65.0515i −0.869991 0.546651i
\(120\) −25.1916 5.74983i −0.209930 0.0479152i
\(121\) 133.068 106.119i 1.09974 0.877012i
\(122\) 98.5191 + 78.5664i 0.807534 + 0.643987i
\(123\) 34.8927 + 152.875i 0.283680 + 1.24289i
\(124\) −34.9169 12.2179i −0.281588 0.0985317i
\(125\) −55.0873 114.390i −0.440698 0.915120i
\(126\) 35.5980 22.3677i 0.282524 0.177521i
\(127\) −198.494 + 69.4561i −1.56295 + 0.546898i −0.966702 0.255905i \(-0.917626\pi\)
−0.596244 + 0.802804i \(0.703341\pi\)
\(128\) 69.9093 + 69.9093i 0.546166 + 0.546166i
\(129\) 67.7494 140.683i 0.525189 1.09057i
\(130\) 6.07065 + 53.8785i 0.0466973 + 0.414450i
\(131\) −164.999 + 18.5909i −1.25953 + 0.141915i −0.716375 0.697715i \(-0.754200\pi\)
−0.543158 + 0.839631i \(0.682772\pi\)
\(132\) −105.550 50.8304i −0.799625 0.385079i
\(133\) −75.0845 + 75.0845i −0.564545 + 0.564545i
\(134\) −12.1644 34.7638i −0.0907791 0.259432i
\(135\) −49.7987 79.2542i −0.368879 0.587068i
\(136\) 61.1745 29.4601i 0.449813 0.216618i
\(137\) −56.9427 + 162.733i −0.415640 + 1.18783i 0.525788 + 0.850616i \(0.323771\pi\)
−0.941428 + 0.337215i \(0.890515\pi\)
\(138\) −188.400 + 43.0010i −1.36522 + 0.311602i
\(139\) 97.5376 122.308i 0.701709 0.879915i −0.295441 0.955361i \(-0.595467\pi\)
0.997150 + 0.0754457i \(0.0240379\pi\)
\(140\) −31.9517 40.0662i −0.228227 0.286187i
\(141\) −28.0560 + 122.921i −0.198979 + 0.871783i
\(142\) −37.0566 + 58.9752i −0.260962 + 0.415319i
\(143\) 12.5147 111.071i 0.0875156 0.776723i
\(144\) 53.7751i 0.373438i
\(145\) 91.4939 + 12.8979i 0.630992 + 0.0889512i
\(146\) −32.0577 −0.219573
\(147\) −36.6810 4.13295i −0.249530 0.0281153i
\(148\) 42.5557 + 26.7395i 0.287538 + 0.180672i
\(149\) 101.993 + 23.2793i 0.684519 + 0.156237i 0.550617 0.834758i \(-0.314392\pi\)
0.133901 + 0.990995i \(0.457249\pi\)
\(150\) 75.3012 60.0507i 0.502008 0.400338i
\(151\) −87.2999 69.6194i −0.578145 0.461055i 0.290234 0.956956i \(-0.406267\pi\)
−0.868379 + 0.495900i \(0.834838\pi\)
\(152\) −13.1213 57.4883i −0.0863245 0.378212i
\(153\) 54.5832 + 19.0995i 0.356753 + 0.124833i
\(154\) 112.518 + 233.646i 0.730637 + 1.51718i
\(155\) 36.2942 22.8052i 0.234156 0.147130i
\(156\) −42.4441 + 14.8518i −0.272078 + 0.0952041i
\(157\) 154.052 + 154.052i 0.981223 + 0.981223i 0.999827 0.0186037i \(-0.00592209\pi\)
−0.0186037 + 0.999827i \(0.505922\pi\)
\(158\) 114.405 237.565i 0.724083 1.50357i
\(159\) −5.42329 48.1331i −0.0341088 0.302724i
\(160\) 118.752 13.3801i 0.742201 0.0836259i
\(161\) 157.007 + 75.6105i 0.975198 + 0.469631i
\(162\) 89.0027 89.0027i 0.549399 0.549399i
\(163\) −18.9751 54.2278i −0.116412 0.332686i 0.870904 0.491453i \(-0.163534\pi\)
−0.987316 + 0.158767i \(0.949248\pi\)
\(164\) −91.8805 146.227i −0.560247 0.891628i
\(165\) 122.304 58.8983i 0.741234 0.356959i
\(166\) −37.5580 + 107.335i −0.226253 + 0.646594i
\(167\) 131.159 29.9362i 0.785384 0.179259i 0.189020 0.981973i \(-0.439469\pi\)
0.596364 + 0.802714i \(0.296612\pi\)
\(168\) −29.5771 + 37.0885i −0.176054 + 0.220765i
\(169\) 78.6200 + 98.5864i 0.465207 + 0.583352i
\(170\) 38.5026 168.691i 0.226486 0.992300i
\(171\) 26.7193 42.5235i 0.156253 0.248675i
\(172\) −19.2546 + 170.889i −0.111945 + 0.993542i
\(173\) 21.1826i 0.122443i −0.998124 0.0612213i \(-0.980500\pi\)
0.998124 0.0612213i \(-0.0194995\pi\)
\(174\) 15.8484 + 187.439i 0.0910830 + 1.07724i
\(175\) −86.8540 −0.496308
\(176\) −329.615 37.1387i −1.87281 0.211015i
\(177\) −101.454 63.7477i −0.573186 0.360156i
\(178\) 137.472 + 31.3771i 0.772315 + 0.176276i
\(179\) −71.5446 + 57.0549i −0.399690 + 0.318742i −0.802622 0.596487i \(-0.796563\pi\)
0.402932 + 0.915230i \(0.367991\pi\)
\(180\) 18.9496 + 15.1118i 0.105275 + 0.0839543i
\(181\) −43.7618 191.733i −0.241778 1.05930i −0.939398 0.342829i \(-0.888615\pi\)
0.697620 0.716468i \(-0.254242\pi\)
\(182\) 93.9541 + 32.8760i 0.516232 + 0.180637i
\(183\) −52.5417 109.104i −0.287113 0.596196i
\(184\) −81.9393 + 51.4858i −0.445322 + 0.279814i
\(185\) −54.9684 + 19.2343i −0.297126 + 0.103969i
\(186\) 61.7053 + 61.7053i 0.331749 + 0.331749i
\(187\) −154.767 + 321.378i −0.827633 + 1.71860i
\(188\) −15.5474 137.987i −0.0826988 0.733973i
\(189\) −170.759 + 19.2399i −0.903487 + 0.101799i
\(190\) −135.387 65.1987i −0.712561 0.343151i
\(191\) −173.129 + 173.129i −0.906436 + 0.906436i −0.995983 0.0895465i \(-0.971458\pi\)
0.0895465 + 0.995983i \(0.471458\pi\)
\(192\) 16.2386 + 46.4074i 0.0845762 + 0.241705i
\(193\) −107.871 171.676i −0.558917 0.889511i 0.441051 0.897482i \(-0.354606\pi\)
−0.999968 + 0.00797056i \(0.997463\pi\)
\(194\) −343.381 + 165.364i −1.77001 + 0.852390i
\(195\) 17.2091 49.1809i 0.0882520 0.252210i
\(196\) 39.6346 9.04635i 0.202218 0.0461548i
\(197\) 39.4510 49.4700i 0.200259 0.251117i −0.671554 0.740956i \(-0.734373\pi\)
0.871813 + 0.489839i \(0.162944\pi\)
\(198\) −76.4715 95.8922i −0.386220 0.484304i
\(199\) −10.0083 + 43.8490i −0.0502928 + 0.220347i −0.993829 0.110922i \(-0.964620\pi\)
0.943536 + 0.331269i \(0.107477\pi\)
\(200\) 25.6607 40.8388i 0.128304 0.204194i
\(201\) −3.96290 + 35.1717i −0.0197159 + 0.174984i
\(202\) 351.285i 1.73903i
\(203\) 94.2140 141.063i 0.464108 0.694891i
\(204\) 143.504 0.703450
\(205\) 198.850 + 22.4050i 0.970000 + 0.109293i
\(206\) 104.650 + 65.7557i 0.508008 + 0.319203i
\(207\) −80.3531 18.3401i −0.388179 0.0885994i
\(208\) −99.5424 + 79.3824i −0.478569 + 0.381646i
\(209\) 242.195 + 193.144i 1.15883 + 0.924134i
\(210\) 26.9003 + 117.858i 0.128096 + 0.561227i
\(211\) 267.044 + 93.4429i 1.26561 + 0.442857i 0.877865 0.478908i \(-0.158967\pi\)
0.387748 + 0.921765i \(0.373253\pi\)
\(212\) 23.1461 + 48.0634i 0.109180 + 0.226714i
\(213\) 56.6752 35.6114i 0.266081 0.167189i
\(214\) 324.367 113.501i 1.51573 0.530378i
\(215\) −140.902 140.902i −0.655359 0.655359i
\(216\) 41.4036 85.9754i 0.191683 0.398034i
\(217\) −8.81087 78.1986i −0.0406031 0.360362i
\(218\) −113.624 + 12.8023i −0.521210 + 0.0587263i
\(219\) 27.7565 + 13.3668i 0.126742 + 0.0610358i
\(220\) −105.715 + 105.715i −0.480523 + 0.480523i
\(221\) 45.2205 + 129.233i 0.204618 + 0.584764i
\(222\) −63.0774 100.387i −0.284133 0.452194i
\(223\) −9.38970 + 4.52184i −0.0421063 + 0.0202773i −0.454818 0.890584i \(-0.650296\pi\)
0.412712 + 0.910862i \(0.364582\pi\)
\(224\) 72.4610 207.082i 0.323487 0.924472i
\(225\) 40.0482 9.14075i 0.177992 0.0406255i
\(226\) −146.635 + 183.875i −0.648829 + 0.813605i
\(227\) 41.9912 + 52.6552i 0.184983 + 0.231961i 0.865673 0.500611i \(-0.166891\pi\)
−0.680690 + 0.732572i \(0.738320\pi\)
\(228\) 27.7320 121.502i 0.121631 0.532902i
\(229\) −137.469 + 218.781i −0.600303 + 0.955376i 0.398959 + 0.916969i \(0.369371\pi\)
−0.999262 + 0.0384078i \(0.987771\pi\)
\(230\) −27.6114 + 245.058i −0.120050 + 1.06547i
\(231\) 249.214i 1.07885i
\(232\) 38.4927 + 85.9760i 0.165917 + 0.370586i
\(233\) 139.905 0.600452 0.300226 0.953868i \(-0.402938\pi\)
0.300226 + 0.953868i \(0.402938\pi\)
\(234\) −46.7821 5.27107i −0.199923 0.0225260i
\(235\) 136.238 + 85.6040i 0.579736 + 0.364272i
\(236\) 128.653 + 29.3643i 0.545141 + 0.124425i
\(237\) −198.111 + 157.988i −0.835911 + 0.666617i
\(238\) −248.356 198.058i −1.04351 0.832175i
\(239\) 22.0091 + 96.4282i 0.0920883 + 0.403465i 0.999872 0.0159726i \(-0.00508444\pi\)
−0.907784 + 0.419438i \(0.862227\pi\)
\(240\) −145.949 51.0698i −0.608121 0.212791i
\(241\) −158.413 328.947i −0.657314 1.36493i −0.916865 0.399197i \(-0.869289\pi\)
0.259552 0.965729i \(-0.416425\pi\)
\(242\) 374.409 235.257i 1.54715 0.972136i
\(243\) 135.388 47.3741i 0.557150 0.194955i
\(244\) 94.3057 + 94.3057i 0.386499 + 0.386499i
\(245\) −20.4388 + 42.4415i −0.0834235 + 0.173231i
\(246\) 45.6128 + 404.825i 0.185418 + 1.64563i
\(247\) 118.158 13.3132i 0.478371 0.0538994i
\(248\) 39.3722 + 18.9606i 0.158759 + 0.0764542i
\(249\) 77.2733 77.2733i 0.310334 0.310334i
\(250\) −108.944 311.343i −0.435775 1.24537i
\(251\) 117.710 + 187.335i 0.468965 + 0.746353i 0.994536 0.104396i \(-0.0332911\pi\)
−0.525571 + 0.850750i \(0.676148\pi\)
\(252\) 40.0902 19.3064i 0.159088 0.0766129i
\(253\) 167.910 479.859i 0.663676 1.89668i
\(254\) −532.653 + 121.575i −2.09706 + 0.478640i
\(255\) −103.675 + 130.004i −0.406567 + 0.509819i
\(256\) 209.261 + 262.405i 0.817425 + 1.02502i
\(257\) −29.0472 + 127.264i −0.113024 + 0.495191i 0.886452 + 0.462821i \(0.153163\pi\)
−0.999476 + 0.0323701i \(0.989694\pi\)
\(258\) 215.830 343.492i 0.836552 1.33136i
\(259\) −11.9706 + 106.242i −0.0462187 + 0.410202i
\(260\) 57.3852i 0.220712i
\(261\) −28.5961 + 74.9592i −0.109564 + 0.287200i
\(262\) −431.383 −1.64650
\(263\) 53.5898 + 6.03812i 0.203763 + 0.0229586i 0.213256 0.976996i \(-0.431593\pi\)
−0.00949275 + 0.999955i \(0.503022\pi\)
\(264\) 117.180 + 73.6294i 0.443865 + 0.278899i
\(265\) −60.2638 13.7548i −0.227411 0.0519050i
\(266\) −215.686 + 172.004i −0.810849 + 0.646630i
\(267\) −105.944 84.4879i −0.396796 0.316434i
\(268\) −8.67412 38.0038i −0.0323661 0.141805i
\(269\) 23.6596 + 8.27885i 0.0879538 + 0.0307764i 0.373897 0.927470i \(-0.378021\pi\)
−0.285943 + 0.958246i \(0.592307\pi\)
\(270\) −105.511 219.095i −0.390780 0.811464i
\(271\) 261.030 164.016i 0.963211 0.605226i 0.0440174 0.999031i \(-0.485984\pi\)
0.919194 + 0.393805i \(0.128841\pi\)
\(272\) 383.511 134.196i 1.40997 0.493369i
\(273\) −67.6403 67.6403i −0.247767 0.247767i
\(274\) −194.345 + 403.561i −0.709288 + 1.47285i
\(275\) 28.3698 + 251.789i 0.103163 + 0.915596i
\(276\) −203.242 + 22.8999i −0.736384 + 0.0829706i
\(277\) −448.792 216.127i −1.62019 0.780241i −0.620195 0.784448i \(-0.712947\pi\)
−0.999991 + 0.00420714i \(0.998661\pi\)
\(278\) 287.389 287.389i 1.03377 1.03377i
\(279\) 12.2925 + 35.1300i 0.0440592 + 0.125914i
\(280\) 32.2081 + 51.2590i 0.115029 + 0.183068i
\(281\) −360.665 + 173.687i −1.28350 + 0.618103i −0.946288 0.323325i \(-0.895199\pi\)
−0.337216 + 0.941427i \(0.609485\pi\)
\(282\) −108.188 + 309.183i −0.383645 + 1.09639i
\(283\) 72.2136 16.4823i 0.255172 0.0582413i −0.0930214 0.995664i \(-0.529652\pi\)
0.348193 + 0.937423i \(0.386795\pi\)
\(284\) −45.9624 + 57.6350i −0.161839 + 0.202940i
\(285\) 90.0364 + 112.902i 0.315917 + 0.396148i
\(286\) 64.6182 283.111i 0.225938 0.989898i
\(287\) 195.454 311.064i 0.681026 1.08385i
\(288\) −11.6178 + 103.111i −0.0403397 + 0.358024i
\(289\) 147.938i 0.511895i
\(290\) 232.457 + 59.9127i 0.801575 + 0.206596i
\(291\) 366.260 1.25863
\(292\) −33.7161 3.79890i −0.115466 0.0130099i
\(293\) −381.722 239.852i −1.30281 0.818608i −0.311508 0.950243i \(-0.600834\pi\)
−0.991298 + 0.131636i \(0.957977\pi\)
\(294\) −93.4965 21.3400i −0.318015 0.0725849i
\(295\) −119.548 + 95.3360i −0.405246 + 0.323173i
\(296\) −46.4185 37.0176i −0.156819 0.125059i
\(297\) 111.553 + 488.745i 0.375599 + 1.64561i
\(298\) 256.543 + 89.7683i 0.860882 + 0.301236i
\(299\) −84.6676 175.814i −0.283169 0.588007i
\(300\) 86.3129 54.2340i 0.287710 0.180780i
\(301\) −345.298 + 120.825i −1.14717 + 0.401412i
\(302\) −205.130 205.130i −0.679237 0.679237i
\(303\) −146.472 + 304.153i −0.483407 + 1.00381i
\(304\) −39.5081 350.644i −0.129961 1.15343i
\(305\) −153.565 + 17.3026i −0.503492 + 0.0567299i
\(306\) 135.361 + 65.1864i 0.442356 + 0.213027i
\(307\) −14.8497 + 14.8497i −0.0483703 + 0.0483703i −0.730878 0.682508i \(-0.760889\pi\)
0.682508 + 0.730878i \(0.260889\pi\)
\(308\) 90.6515 + 259.067i 0.294323 + 0.841127i
\(309\) −63.1912 100.568i −0.204502 0.325464i
\(310\) 100.334 48.3183i 0.323658 0.155866i
\(311\) 51.0039 145.761i 0.164000 0.468684i −0.832330 0.554280i \(-0.812994\pi\)
0.996330 + 0.0855959i \(0.0272794\pi\)
\(312\) 51.7886 11.8204i 0.165989 0.0378860i
\(313\) 106.381 133.398i 0.339876 0.426191i −0.582292 0.812979i \(-0.697844\pi\)
0.922169 + 0.386788i \(0.126416\pi\)
\(314\) 352.902 + 442.526i 1.12389 + 1.40932i
\(315\) −11.4730 + 50.2667i −0.0364224 + 0.159577i
\(316\) 148.476 236.298i 0.469860 0.747777i
\(317\) −4.18683 + 37.1591i −0.0132077 + 0.117221i −0.998586 0.0531589i \(-0.983071\pi\)
0.985378 + 0.170380i \(0.0544996\pi\)
\(318\) 125.842i 0.395730i
\(319\) −439.714 227.049i −1.37841 0.711753i
\(320\) 62.7436 0.196074
\(321\) −328.172 36.9761i −1.02234 0.115190i
\(322\) 383.348 + 240.874i 1.19052 + 0.748055i
\(323\) −369.946 84.4377i −1.14534 0.261417i
\(324\) 104.154 83.0602i 0.321463 0.256359i
\(325\) 76.0393 + 60.6393i 0.233967 + 0.186582i
\(326\) −33.2137 145.519i −0.101883 0.446377i
\(327\) 103.717 + 36.2922i 0.317178 + 0.110985i
\(328\) 88.5161 + 183.805i 0.269866 + 0.560383i
\(329\) 250.116 157.158i 0.760230 0.477684i
\(330\) 332.882 116.480i 1.00873 0.352971i
\(331\) 195.213 + 195.213i 0.589768 + 0.589768i 0.937569 0.347800i \(-0.113071\pi\)
−0.347800 + 0.937569i \(0.613071\pi\)
\(332\) −52.2204 + 108.437i −0.157290 + 0.326616i
\(333\) −5.66159 50.2480i −0.0170018 0.150895i
\(334\) 347.320 39.1335i 1.03988 0.117166i
\(335\) 40.6952 + 19.5978i 0.121478 + 0.0585009i
\(336\) −200.729 + 200.729i −0.597408 + 0.597408i
\(337\) 86.0626 + 245.953i 0.255379 + 0.729830i 0.998179 + 0.0603174i \(0.0192113\pi\)
−0.742801 + 0.669513i \(0.766503\pi\)
\(338\) 174.295 + 277.389i 0.515665 + 0.820676i
\(339\) 203.630 98.0631i 0.600679 0.289272i
\(340\) 60.4848 172.855i 0.177896 0.508398i
\(341\) −223.819 + 51.0853i −0.656362 + 0.149810i
\(342\) 81.3503 102.010i 0.237866 0.298275i
\(343\) 232.625 + 291.702i 0.678207 + 0.850444i
\(344\) 45.2051 198.057i 0.131410 0.575746i
\(345\) 126.087 200.666i 0.365469 0.581641i
\(346\) 6.16172 54.6867i 0.0178084 0.158054i
\(347\) 75.7571i 0.218320i −0.994024 0.109160i \(-0.965184\pi\)
0.994024 0.109160i \(-0.0348161\pi\)
\(348\) −5.54353 + 199.014i −0.0159297 + 0.571879i
\(349\) −88.0863 −0.252396 −0.126198 0.992005i \(-0.540277\pi\)
−0.126198 + 0.992005i \(0.540277\pi\)
\(350\) −224.230 25.2646i −0.640656 0.0721846i
\(351\) 162.930 + 102.376i 0.464187 + 0.291668i
\(352\) −623.997 142.423i −1.77272 0.404611i
\(353\) 333.963 266.327i 0.946071 0.754467i −0.0233860 0.999727i \(-0.507445\pi\)
0.969457 + 0.245260i \(0.0788733\pi\)
\(354\) −243.379 194.088i −0.687510 0.548271i
\(355\) −19.0074 83.2769i −0.0535420 0.234583i
\(356\) 140.866 + 49.2911i 0.395691 + 0.138458i
\(357\) 132.452 + 275.040i 0.371014 + 0.770419i
\(358\) −201.302 + 126.486i −0.562296 + 0.353314i
\(359\) 396.769 138.835i 1.10521 0.386728i 0.284845 0.958574i \(-0.408058\pi\)
0.820361 + 0.571845i \(0.193772\pi\)
\(360\) −20.2458 20.2458i −0.0562382 0.0562382i
\(361\) 13.6489 28.3422i 0.0378086 0.0785103i
\(362\) −57.2067 507.723i −0.158030 1.40255i
\(363\) −422.268 + 47.5782i −1.16327 + 0.131069i
\(364\) 94.9189 + 45.7105i 0.260766 + 0.125578i
\(365\) 27.7998 27.7998i 0.0761638 0.0761638i
\(366\) −103.909 296.956i −0.283905 0.811354i
\(367\) −133.333 212.198i −0.363305 0.578196i 0.614189 0.789159i \(-0.289483\pi\)
−0.977494 + 0.210962i \(0.932340\pi\)
\(368\) −521.746 + 251.259i −1.41779 + 0.682770i
\(369\) −57.3865 + 164.001i −0.155519 + 0.444448i
\(370\) −147.506 + 33.6673i −0.398665 + 0.0909927i
\(371\) −70.7548 + 88.7237i −0.190714 + 0.239148i
\(372\) 57.5854 + 72.2097i 0.154799 + 0.194112i
\(373\) 109.293 478.845i 0.293012 1.28377i −0.587299 0.809370i \(-0.699809\pi\)
0.880311 0.474397i \(-0.157334\pi\)
\(374\) −493.045 + 784.677i −1.31830 + 2.09807i
\(375\) −35.4915 + 314.996i −0.0946440 + 0.839988i
\(376\) 164.036i 0.436267i
\(377\) −180.970 + 57.7205i −0.480025 + 0.153105i
\(378\) −446.443 −1.18107
\(379\) 8.35834 + 0.941759i 0.0220537 + 0.00248485i 0.122984 0.992409i \(-0.460753\pi\)
−0.100931 + 0.994893i \(0.532182\pi\)
\(380\) −134.664 84.6153i −0.354380 0.222672i
\(381\) 511.879 + 116.833i 1.34352 + 0.306649i
\(382\) −497.326 + 396.605i −1.30190 + 1.03823i
\(383\) −81.7068 65.1590i −0.213334 0.170128i 0.510993 0.859585i \(-0.329278\pi\)
−0.724327 + 0.689457i \(0.757849\pi\)
\(384\) −54.9271 240.651i −0.143039 0.626696i
\(385\) −300.187 105.040i −0.779706 0.272831i
\(386\) −228.551 474.591i −0.592101 1.22951i
\(387\) 146.500 92.0523i 0.378554 0.237861i
\(388\) −380.742 + 133.227i −0.981293 + 0.343369i
\(389\) 3.30195 + 3.30195i 0.00848831 + 0.00848831i 0.711338 0.702850i \(-0.248089\pi\)
−0.702850 + 0.711338i \(0.748089\pi\)
\(390\) 58.7346 121.964i 0.150602 0.312727i
\(391\) 69.7251 + 618.827i 0.178325 + 1.58268i
\(392\) −47.7228 + 5.37707i −0.121742 + 0.0137170i
\(393\) 373.505 + 179.870i 0.950393 + 0.457685i
\(394\) 116.240 116.240i 0.295026 0.295026i
\(395\) 106.802 + 305.221i 0.270384 + 0.772712i
\(396\) −69.0642 109.915i −0.174405 0.277563i
\(397\) 596.541 287.279i 1.50262 0.723625i 0.511839 0.859082i \(-0.328965\pi\)
0.990783 + 0.135457i \(0.0432503\pi\)
\(398\) −38.5933 + 110.293i −0.0969680 + 0.277119i
\(399\) 258.466 58.9932i 0.647785 0.147853i
\(400\) 179.953 225.654i 0.449883 0.564135i
\(401\) −297.015 372.445i −0.740687 0.928792i 0.258622 0.965979i \(-0.416732\pi\)
−0.999308 + 0.0371871i \(0.988160\pi\)
\(402\) −20.4619 + 89.6495i −0.0509003 + 0.223009i
\(403\) −46.8826 + 74.6132i −0.116334 + 0.185144i
\(404\) 41.6279 369.458i 0.103039 0.914501i
\(405\) 154.363i 0.381143i
\(406\) 284.264 336.775i 0.700158 0.829494i
\(407\) 311.906 0.766354
\(408\) −168.456 18.9805i −0.412883 0.0465207i
\(409\) −245.996 154.570i −0.601458 0.377921i 0.196616 0.980481i \(-0.437005\pi\)
−0.798074 + 0.602560i \(0.794148\pi\)
\(410\) 506.851 + 115.685i 1.23622 + 0.282159i
\(411\) 336.539 268.381i 0.818831 0.652996i
\(412\) 102.271 + 81.5587i 0.248232 + 0.197958i
\(413\) 62.4657 + 273.680i 0.151249 + 0.662663i
\(414\) −202.112 70.7219i −0.488192 0.170826i
\(415\) −60.5088 125.648i −0.145804 0.302766i
\(416\) −208.018 + 130.706i −0.500043 + 0.314198i
\(417\) −368.661 + 129.000i −0.884078 + 0.309352i
\(418\) 569.089 + 569.089i 1.36146 + 1.36146i
\(419\) 148.802 308.990i 0.355135 0.737446i −0.644496 0.764608i \(-0.722933\pi\)
0.999631 + 0.0271619i \(0.00864698\pi\)
\(420\) 14.3255 + 127.143i 0.0341084 + 0.302721i
\(421\) 528.745 59.5753i 1.25593 0.141509i 0.541189 0.840901i \(-0.317974\pi\)
0.714738 + 0.699392i \(0.246546\pi\)
\(422\) 662.244 + 318.920i 1.56930 + 0.755734i
\(423\) −98.7882 + 98.7882i −0.233542 + 0.233542i
\(424\) −20.8137 59.4821i −0.0490889 0.140288i
\(425\) −165.131 262.804i −0.388542 0.618362i
\(426\) 156.676 75.4513i 0.367785 0.177116i
\(427\) −93.7034 + 267.789i −0.219446 + 0.627141i
\(428\) 354.598 80.9346i 0.828500 0.189100i
\(429\) −173.995 + 218.183i −0.405583 + 0.508585i
\(430\) −322.779 404.752i −0.750649 0.941284i
\(431\) −125.008 + 547.695i −0.290041 + 1.27075i 0.594425 + 0.804151i \(0.297380\pi\)
−0.884467 + 0.466604i \(0.845477\pi\)
\(432\) 303.809 483.510i 0.703262 1.11924i
\(433\) −14.0479 + 124.679i −0.0324432 + 0.287942i 0.967006 + 0.254754i \(0.0819945\pi\)
−0.999449 + 0.0331877i \(0.989434\pi\)
\(434\) 204.447i 0.471077i
\(435\) −176.287 148.800i −0.405257 0.342069i
\(436\) −121.019 −0.277567
\(437\) 537.422 + 60.5529i 1.22980 + 0.138565i
\(438\) 67.7704 + 42.5829i 0.154727 + 0.0972213i
\(439\) 505.439 + 115.363i 1.15134 + 0.262786i 0.755258 0.655428i \(-0.227512\pi\)
0.396084 + 0.918214i \(0.370369\pi\)
\(440\) 138.079 110.114i 0.313816 0.250260i
\(441\) −31.9785 25.5020i −0.0725137 0.0578277i
\(442\) 79.1532 + 346.793i 0.179080 + 0.784599i
\(443\) 57.1618 + 20.0018i 0.129033 + 0.0451507i 0.394023 0.919100i \(-0.371083\pi\)
−0.264990 + 0.964251i \(0.585369\pi\)
\(444\) −54.4446 113.055i −0.122623 0.254629i
\(445\) −146.423 + 92.0035i −0.329040 + 0.206749i
\(446\) −25.5566 + 8.94264i −0.0573018 + 0.0200508i
\(447\) −184.693 184.693i −0.413183 0.413183i
\(448\) 49.9788 103.782i 0.111560 0.231656i
\(449\) −80.2125 711.905i −0.178647 1.58554i −0.688476 0.725260i \(-0.741720\pi\)
0.509829 0.860276i \(-0.329709\pi\)
\(450\) 106.051 11.9491i 0.235669 0.0265535i
\(451\) −965.615 465.015i −2.14105 1.03108i
\(452\) −176.011 + 176.011i −0.389405 + 0.389405i
\(453\) 92.0762 + 263.139i 0.203259 + 0.580880i
\(454\) 93.0913 + 148.154i 0.205047 + 0.326330i
\(455\) −109.985 + 52.9658i −0.241724 + 0.116408i
\(456\) −48.6243 + 138.960i −0.106632 + 0.304738i
\(457\) −533.475 + 121.762i −1.16734 + 0.266438i −0.761908 0.647686i \(-0.775737\pi\)
−0.405435 + 0.914124i \(0.632880\pi\)
\(458\) −418.543 + 524.836i −0.913850 + 1.14593i
\(459\) −382.871 480.105i −0.834141 1.04598i
\(460\) −58.0798 + 254.464i −0.126260 + 0.553183i
\(461\) −313.897 + 499.564i −0.680904 + 1.08365i 0.310214 + 0.950667i \(0.399599\pi\)
−0.991118 + 0.132985i \(0.957544\pi\)
\(462\) 72.4928 643.392i 0.156911 1.39262i
\(463\) 75.7339i 0.163572i 0.996650 + 0.0817861i \(0.0260624\pi\)
−0.996650 + 0.0817861i \(0.973938\pi\)
\(464\) 171.291 + 537.045i 0.369162 + 1.15742i
\(465\) −107.019 −0.230149
\(466\) 361.192 + 40.6965i 0.775090 + 0.0873316i
\(467\) −146.168 91.8436i −0.312994 0.196667i 0.366369 0.930470i \(-0.380601\pi\)
−0.679363 + 0.733803i \(0.737744\pi\)
\(468\) −48.5777 11.0875i −0.103798 0.0236913i
\(469\) 64.8320 51.7018i 0.138235 0.110238i
\(470\) 326.823 + 260.632i 0.695367 + 0.554537i
\(471\) −121.037 530.299i −0.256979 1.12590i
\(472\) −147.140 51.4864i −0.311737 0.109081i
\(473\) 463.058 + 961.550i 0.978981 + 2.03288i
\(474\) −557.417 + 350.248i −1.17598 + 0.738920i
\(475\) −254.422 + 89.0260i −0.535624 + 0.187423i
\(476\) −237.735 237.735i −0.499443 0.499443i
\(477\) 23.2874 48.3568i 0.0488206 0.101377i
\(478\) 28.7710 + 255.349i 0.0601903 + 0.534204i
\(479\) −14.8101 + 1.66870i −0.0309188 + 0.00348372i −0.127410 0.991850i \(-0.540667\pi\)
0.0964915 + 0.995334i \(0.469238\pi\)
\(480\) −268.817 129.455i −0.560035 0.269699i
\(481\) 84.6559 84.6559i 0.176000 0.176000i
\(482\) −313.285 895.318i −0.649970 1.85751i
\(483\) −231.480 368.398i −0.479254 0.762728i
\(484\) 421.657 203.059i 0.871193 0.419544i
\(485\) 154.373 441.174i 0.318296 0.909636i
\(486\) 363.309 82.9228i 0.747548 0.170623i
\(487\) 121.461 152.307i 0.249406 0.312745i −0.641331 0.767264i \(-0.721618\pi\)
0.890737 + 0.454519i \(0.150189\pi\)
\(488\) −98.2302 123.177i −0.201291 0.252411i
\(489\) −31.9184 + 139.843i −0.0652727 + 0.285979i
\(490\) −65.1121 + 103.625i −0.132882 + 0.211480i
\(491\) 4.56914 40.5522i 0.00930578 0.0825911i −0.988201 0.153163i \(-0.951054\pi\)
0.997507 + 0.0705722i \(0.0224825\pi\)
\(492\) 431.173i 0.876368i
\(493\) 605.953 + 16.8788i 1.22911 + 0.0342370i
\(494\) 308.918 0.625341
\(495\) 149.470 + 16.8413i 0.301960 + 0.0340228i
\(496\) 221.422 + 139.129i 0.446415 + 0.280501i
\(497\) −152.886 34.8952i −0.307617 0.0702116i
\(498\) 221.973 177.018i 0.445729 0.355457i
\(499\) 510.903 + 407.432i 1.02385 + 0.816497i 0.983173 0.182676i \(-0.0584758\pi\)
0.0406810 + 0.999172i \(0.487047\pi\)
\(500\) −77.6850 340.360i −0.155370 0.680720i
\(501\) −317.037 110.936i −0.632809 0.221429i
\(502\) 249.398 + 517.880i 0.496808 + 1.03163i
\(503\) −543.585 + 341.557i −1.08069 + 0.679040i −0.949958 0.312379i \(-0.898874\pi\)
−0.130728 + 0.991418i \(0.541731\pi\)
\(504\) −49.6147 + 17.3609i −0.0984418 + 0.0344463i
\(505\) 304.627 + 304.627i 0.603222 + 0.603222i
\(506\) 573.075 1190.00i 1.13256 2.35178i
\(507\) −35.2493 312.846i −0.0695252 0.617053i
\(508\) −574.616 + 64.7437i −1.13113 + 0.127448i
\(509\) −108.052 52.0353i −0.212284 0.102230i 0.324720 0.945810i \(-0.394730\pi\)
−0.537004 + 0.843580i \(0.680444\pi\)
\(510\) −305.471 + 305.471i −0.598963 + 0.598963i
\(511\) −23.8386 68.1267i −0.0466508 0.133320i
\(512\) 253.515 + 403.466i 0.495146 + 0.788020i
\(513\) −480.484 + 231.389i −0.936616 + 0.451050i
\(514\) −112.010 + 320.106i −0.217918 + 0.622775i
\(515\) −147.772 + 33.7280i −0.286936 + 0.0654913i
\(516\) 267.701 335.686i 0.518799 0.650554i
\(517\) −537.297 673.750i −1.03926 1.30319i
\(518\) −61.8089 + 270.802i −0.119322 + 0.522785i
\(519\) −28.1373 + 44.7803i −0.0542144 + 0.0862818i
\(520\) 7.59003 67.3634i 0.0145962 0.129545i
\(521\) 424.304i 0.814404i 0.913338 + 0.407202i \(0.133495\pi\)
−0.913338 + 0.407202i \(0.866505\pi\)
\(522\) −95.6307 + 185.203i −0.183201 + 0.354795i
\(523\) 4.61578 0.00882558 0.00441279 0.999990i \(-0.498595\pi\)
0.00441279 + 0.999990i \(0.498595\pi\)
\(524\) −453.700 51.1197i −0.865840 0.0975568i
\(525\) 183.611 + 115.370i 0.349734 + 0.219753i
\(526\) 136.596 + 31.1770i 0.259687 + 0.0592720i
\(527\) 219.863 175.335i 0.417197 0.332703i
\(528\) 647.478 + 516.347i 1.22628 + 0.977929i
\(529\) −79.7873 349.571i −0.150827 0.660815i
\(530\) −151.581 53.0405i −0.286002 0.100076i
\(531\) −57.6056 119.619i −0.108485 0.225272i
\(532\) −247.227 + 155.343i −0.464712 + 0.291998i
\(533\) −388.294 + 135.870i −0.728507 + 0.254916i
\(534\) −248.939 248.939i −0.466178 0.466178i
\(535\) −182.859 + 379.710i −0.341792 + 0.709739i
\(536\) 5.15582 + 45.7592i 0.00961907 + 0.0853716i
\(537\) 227.034 25.5805i 0.422781 0.0476360i
\(538\) 58.6734 + 28.2556i 0.109058 + 0.0525198i
\(539\) 178.400 178.400i 0.330984 0.330984i
\(540\) −85.0060 242.933i −0.157418 0.449876i
\(541\) 160.391 + 255.261i 0.296472 + 0.471833i 0.961431 0.275048i \(-0.0886936\pi\)
−0.664958 + 0.746880i \(0.731551\pi\)
\(542\) 721.608 347.508i 1.33138 0.641159i
\(543\) −162.170 + 463.455i −0.298656 + 0.853509i
\(544\) 764.356 174.459i 1.40507 0.320697i
\(545\) 87.4304 109.634i 0.160423 0.201164i
\(546\) −154.950 194.302i −0.283792 0.355864i
\(547\) 33.8389 148.258i 0.0618627 0.271038i −0.934532 0.355880i \(-0.884181\pi\)
0.996394 + 0.0848416i \(0.0270384\pi\)
\(548\) −252.222 + 401.409i −0.460259 + 0.732498i
\(549\) 15.0237 133.339i 0.0273655 0.242876i
\(550\) 658.293i 1.19690i
\(551\) 131.391 509.786i 0.238459 0.925201i
\(552\) 241.611 0.437700
\(553\) 589.929 + 66.4691i 1.06678 + 0.120197i
\(554\) −1095.77 688.518i −1.97793 1.24281i
\(555\) 141.753 + 32.3542i 0.255411 + 0.0582959i
\(556\) 336.313 268.201i 0.604880 0.482375i
\(557\) −24.5533 19.5806i −0.0440814 0.0351538i 0.601201 0.799098i \(-0.294689\pi\)
−0.645283 + 0.763944i \(0.723260\pi\)
\(558\) 21.5166 + 94.2703i 0.0385602 + 0.168943i
\(559\) 386.660 + 135.298i 0.691699 + 0.242036i
\(560\) 157.181 + 326.390i 0.280680 + 0.582839i
\(561\) 754.074 473.816i 1.34416 0.844592i
\(562\) −981.646 + 343.493i −1.74670 + 0.611197i
\(563\) −667.667 667.667i −1.18591 1.18591i −0.978188 0.207721i \(-0.933395\pi\)
−0.207721 0.978188i \(-0.566605\pi\)
\(564\) −150.424 + 312.358i −0.266709 + 0.553826i
\(565\) −32.2934 286.612i −0.0571565 0.507278i
\(566\) 191.227 21.5461i 0.337857 0.0380674i
\(567\) 255.326 + 122.958i 0.450310 + 0.216858i
\(568\) 61.5773 61.5773i 0.108411 0.108411i
\(569\) 296.283 + 846.727i 0.520708 + 1.48810i 0.841136 + 0.540824i \(0.181888\pi\)
−0.320428 + 0.947273i \(0.603827\pi\)
\(570\) 199.604 + 317.668i 0.350183 + 0.557312i
\(571\) −603.338 + 290.552i −1.05663 + 0.508848i −0.879776 0.475388i \(-0.842308\pi\)
−0.176858 + 0.984236i \(0.556593\pi\)
\(572\) 101.510 290.100i 0.177466 0.507168i
\(573\) 595.969 136.026i 1.04009 0.237393i
\(574\) 595.086 746.214i 1.03673 1.30002i
\(575\) 275.809 + 345.853i 0.479668 + 0.601484i
\(576\) −12.1228 + 53.1136i −0.0210466 + 0.0922112i
\(577\) −4.39331 + 6.99192i −0.00761406 + 0.0121177i −0.850510 0.525960i \(-0.823706\pi\)
0.842895 + 0.538077i \(0.180849\pi\)
\(578\) 43.0330 381.928i 0.0744516 0.660776i
\(579\) 506.212i 0.874287i
\(580\) 237.383 + 90.5588i 0.409281 + 0.156136i
\(581\) −256.028 −0.440669
\(582\) 945.569 + 106.540i 1.62469 + 0.183059i
\(583\) 280.321 + 176.137i 0.480825 + 0.302122i
\(584\) 39.0762 + 8.91890i 0.0669114 + 0.0152721i
\(585\) 45.1395 35.9975i 0.0771615 0.0615342i
\(586\) −915.717 730.260i −1.56266 1.24618i
\(587\) −68.8550 301.673i −0.117300 0.513924i −0.999105 0.0423093i \(-0.986529\pi\)
0.881805 0.471615i \(-0.156329\pi\)
\(588\) −95.8046 33.5235i −0.162933 0.0570127i
\(589\) −105.964 220.036i −0.179905 0.373576i
\(590\) −336.366 + 211.353i −0.570112 + 0.358225i
\(591\) −149.112 + 52.1766i −0.252305 + 0.0882853i
\(592\) −251.225 251.225i −0.424366 0.424366i
\(593\) 313.607 651.212i 0.528849 1.09817i −0.449896 0.893081i \(-0.648539\pi\)
0.978744 0.205084i \(-0.0657469\pi\)
\(594\) 145.825 + 1294.23i 0.245497 + 2.17885i
\(595\) 387.121 43.6181i 0.650624 0.0733077i
\(596\) 259.177 + 124.813i 0.434861 + 0.209418i
\(597\) 79.4033 79.4033i 0.133004 0.133004i
\(598\) −167.443 478.526i −0.280006 0.800210i
\(599\) −202.636 322.493i −0.338290 0.538386i 0.633648 0.773621i \(-0.281557\pi\)
−0.971938 + 0.235235i \(0.924414\pi\)
\(600\) −108.494 + 52.2481i −0.180824 + 0.0870801i
\(601\) −311.119 + 889.126i −0.517668 + 1.47941i 0.327469 + 0.944862i \(0.393804\pi\)
−0.845137 + 0.534549i \(0.820481\pi\)
\(602\) −926.597 + 211.490i −1.53920 + 0.351312i
\(603\) −24.4527 + 30.6627i −0.0405518 + 0.0508503i
\(604\) −191.434 240.050i −0.316943 0.397434i
\(605\) −120.670 + 528.690i −0.199455 + 0.873868i
\(606\) −466.620 + 742.621i −0.770000 + 1.22545i
\(607\) 9.33482 82.8488i 0.0153786 0.136489i −0.983677 0.179945i \(-0.942408\pi\)
0.999055 + 0.0434556i \(0.0138367\pi\)
\(608\) 680.878i 1.11986i
\(609\) −386.547 + 173.062i −0.634724 + 0.284175i
\(610\) −401.490 −0.658180
\(611\) −328.696 37.0352i −0.537964 0.0606140i
\(612\) 134.639 + 84.5993i 0.219998 + 0.138234i
\(613\) −730.866 166.815i −1.19228 0.272129i −0.420065 0.907494i \(-0.637993\pi\)
−0.772212 + 0.635365i \(0.780850\pi\)
\(614\) −42.6568 + 34.0177i −0.0694737 + 0.0554034i
\(615\) −390.610 311.501i −0.635139 0.506506i
\(616\) −72.1486 316.104i −0.117124 0.513155i
\(617\) 516.148 + 180.608i 0.836544 + 0.292719i 0.714351 0.699787i \(-0.246722\pi\)
0.122192 + 0.992506i \(0.461008\pi\)
\(618\) −133.886 278.017i −0.216644 0.449866i
\(619\) −669.936 + 420.949i −1.08229 + 0.680046i −0.950341 0.311211i \(-0.899266\pi\)
−0.131947 + 0.991257i \(0.542123\pi\)
\(620\) 111.251 38.9283i 0.179436 0.0627875i
\(621\) 618.867 + 618.867i 0.996565 + 0.996565i
\(622\) 174.076 361.472i 0.279865 0.581145i
\(623\) 35.5459 + 315.478i 0.0570560 + 0.506386i
\(624\) 315.880 35.5911i 0.506217 0.0570370i
\(625\) 30.0154 + 14.4547i 0.0480247 + 0.0231275i
\(626\) 313.447 313.447i 0.500713 0.500713i
\(627\) −255.446 730.023i −0.407410 1.16431i
\(628\) 318.719 + 507.239i 0.507515 + 0.807705i
\(629\) −344.229 + 165.772i −0.547263 + 0.263548i
\(630\) −44.2417 + 126.436i −0.0702249 + 0.200691i
\(631\) 305.108 69.6389i 0.483531 0.110363i 0.0261949 0.999657i \(-0.491661\pi\)
0.457336 + 0.889294i \(0.348804\pi\)
\(632\) −205.546 + 257.747i −0.325232 + 0.407828i
\(633\) −440.413 552.261i −0.695756 0.872450i
\(634\) −21.6182 + 94.7153i −0.0340980 + 0.149393i
\(635\) 356.479 567.333i 0.561384 0.893438i
\(636\) 14.9125 132.352i 0.0234474 0.208101i
\(637\) 96.8410i 0.152027i
\(638\) −1069.16 714.076i −1.67580 1.11924i
\(639\) 74.1679 0.116069
\(640\) −313.024 35.2693i −0.489100 0.0551083i
\(641\) 166.181 + 104.418i 0.259253 + 0.162899i 0.655387 0.755293i \(-0.272506\pi\)
−0.396134 + 0.918193i \(0.629648\pi\)
\(642\) −836.482 190.922i −1.30293 0.297386i
\(643\) −28.9995 + 23.1263i −0.0451003 + 0.0359663i −0.645781 0.763523i \(-0.723468\pi\)
0.600680 + 0.799489i \(0.294896\pi\)
\(644\) 374.636 + 298.763i 0.581734 + 0.463917i
\(645\) 110.706 + 485.033i 0.171637 + 0.751989i
\(646\) −930.522 325.604i −1.44044 0.504030i
\(647\) 341.548 + 709.232i 0.527895 + 1.09619i 0.979027 + 0.203729i \(0.0653061\pi\)
−0.451132 + 0.892457i \(0.648980\pi\)
\(648\) −133.250 + 83.7267i −0.205633 + 0.129208i
\(649\) 772.992 270.482i 1.19105 0.416767i
\(650\) 178.670 + 178.670i 0.274878 + 0.274878i
\(651\) −85.2467 + 177.017i −0.130947 + 0.271915i
\(652\) −17.6877 156.983i −0.0271284 0.240771i
\(653\) 651.771 73.4370i 0.998118 0.112461i 0.402239 0.915535i \(-0.368232\pi\)
0.595879 + 0.803074i \(0.296804\pi\)
\(654\) 257.208 + 123.865i 0.393285 + 0.189396i
\(655\) 374.087 374.087i 0.571125 0.571125i
\(656\) 403.207 + 1152.30i 0.614646 + 1.75656i
\(657\) 18.1618 + 28.9043i 0.0276435 + 0.0439943i
\(658\) 691.435 332.978i 1.05081 0.506045i
\(659\) −49.7225 + 142.099i −0.0754514 + 0.215628i −0.975431 0.220304i \(-0.929295\pi\)
0.899980 + 0.435931i \(0.143581\pi\)
\(660\) 363.907 83.0593i 0.551374 0.125847i
\(661\) 236.407 296.445i 0.357650 0.448479i −0.570159 0.821534i \(-0.693118\pi\)
0.927809 + 0.373055i \(0.121690\pi\)
\(662\) 447.195 + 560.764i 0.675521 + 0.847076i
\(663\) 76.0662 333.268i 0.114730 0.502666i
\(664\) 75.6427 120.385i 0.113920 0.181302i
\(665\) 37.8803 336.197i 0.0569628 0.505559i
\(666\) 131.372i 0.197255i
\(667\) −860.895 + 72.7909i −1.29070 + 0.109132i
\(668\) 369.925 0.553780
\(669\) 25.8564 + 2.91332i 0.0386494 + 0.00435474i
\(670\) 99.3616 + 62.4330i 0.148301 + 0.0931836i
\(671\) 806.926 + 184.176i 1.20257 + 0.274479i
\(672\) −428.255 + 341.522i −0.637284 + 0.508217i
\(673\) −387.895 309.336i −0.576367 0.459637i 0.291405 0.956600i \(-0.405877\pi\)
−0.867772 + 0.496963i \(0.834449\pi\)
\(674\) 150.642 + 660.007i 0.223505 + 0.979239i
\(675\) −411.729 144.070i −0.609969 0.213437i
\(676\) 150.441 + 312.393i 0.222545 + 0.462120i
\(677\) −659.147 + 414.170i −0.973630 + 0.611772i −0.922122 0.386900i \(-0.873546\pi\)
−0.0515083 + 0.998673i \(0.516403\pi\)
\(678\) 554.234 193.935i 0.817455 0.286040i
\(679\) −606.763 606.763i −0.893612 0.893612i
\(680\) −93.8645 + 194.912i −0.138036 + 0.286635i
\(681\) −18.8267 167.092i −0.0276457 0.245362i
\(682\) −592.691 + 66.7803i −0.869049 + 0.0979183i
\(683\) 346.400 + 166.817i 0.507174 + 0.244242i 0.669930 0.742424i \(-0.266324\pi\)
−0.162756 + 0.986666i \(0.552038\pi\)
\(684\) 97.6472 97.6472i 0.142759 0.142759i
\(685\) −181.428 518.492i −0.264859 0.756923i
\(686\) 515.712 + 820.751i 0.751767 + 1.19643i
\(687\) 581.224 279.903i 0.846032 0.407428i
\(688\) 401.510 1147.45i 0.583591 1.66781i
\(689\) 123.889 28.2770i 0.179811 0.0410406i
\(690\) 383.888 481.380i 0.556359 0.697652i
\(691\) 654.553 + 820.783i 0.947254 + 1.18782i 0.982087 + 0.188426i \(0.0603386\pi\)
−0.0348332 + 0.999393i \(0.511090\pi\)
\(692\) 12.9610 56.7857i 0.0187297 0.0820603i
\(693\) 146.918 233.819i 0.212003 0.337401i
\(694\) 22.0367 195.581i 0.0317532 0.281817i
\(695\) 498.436i 0.717175i
\(696\) 32.8299 232.885i 0.0471694 0.334605i
\(697\) 1312.83 1.88354
\(698\) −227.411 25.6231i −0.325804 0.0367093i
\(699\) −295.762 185.840i −0.423121 0.265865i
\(700\) −232.836 53.1433i −0.332623 0.0759190i
\(701\) 70.4321 56.1677i 0.100474 0.0801252i −0.571964 0.820278i \(-0.693818\pi\)
0.672438 + 0.740153i \(0.265247\pi\)
\(702\) 390.854 + 311.695i 0.556772 + 0.444011i
\(703\) 73.8336 + 323.486i 0.105026 + 0.460151i
\(704\) −317.188 110.989i −0.450552 0.157655i
\(705\) −174.299 361.936i −0.247233 0.513384i
\(706\) 939.659 590.427i 1.33096 0.836299i
\(707\) 746.526 261.221i 1.05591 0.369478i
\(708\) −232.970 232.970i −0.329053 0.329053i
\(709\) −457.420 + 949.843i −0.645162 + 1.33969i 0.279955 + 0.960013i \(0.409680\pi\)
−0.925118 + 0.379681i \(0.876034\pi\)
\(710\) −24.8471 220.524i −0.0349959 0.310597i
\(711\) −279.011 + 31.4370i −0.392420 + 0.0442152i
\(712\) −158.840 76.4933i −0.223090 0.107434i
\(713\) −283.408 + 283.408i −0.397487 + 0.397487i
\(714\) 261.944 + 748.594i 0.366869 + 1.04845i
\(715\) 189.473 + 301.544i 0.264997 + 0.421740i
\(716\) −226.705 + 109.175i −0.316627 + 0.152480i
\(717\) 81.5602 233.086i 0.113752 0.325085i
\(718\) 1064.72 243.015i 1.48289 0.338461i
\(719\) −375.775 + 471.207i −0.522636 + 0.655364i −0.971166 0.238403i \(-0.923376\pi\)
0.448531 + 0.893767i \(0.351947\pi\)
\(720\) −106.826 133.956i −0.148370 0.186050i
\(721\) −61.9204 + 271.291i −0.0858813 + 0.376270i
\(722\) 43.4815 69.2005i 0.0602237 0.0958455i
\(723\) −102.062 + 905.822i −0.141164 + 1.25287i
\(724\) 540.769i 0.746919i
\(725\) 370.840 218.854i 0.511504 0.301868i
\(726\) −1104.00 −1.52067
\(727\) −652.396 73.5073i −0.897380 0.101110i −0.348789 0.937201i \(-0.613407\pi\)
−0.548591 + 0.836091i \(0.684836\pi\)
\(728\) −105.377 66.2131i −0.144749 0.0909520i
\(729\) −774.239 176.715i −1.06206 0.242407i
\(730\) 79.8569 63.6837i 0.109393 0.0872380i
\(731\) −1022.09 815.089i −1.39821 1.11503i
\(732\) −74.0951 324.632i −0.101223 0.443486i
\(733\) −1069.34 374.177i −1.45885 0.510473i −0.519810 0.854282i \(-0.673997\pi\)
−0.939040 + 0.343809i \(0.888283\pi\)
\(734\) −282.498 586.614i −0.384875 0.799201i
\(735\) 99.5839 62.5727i 0.135488 0.0851330i
\(736\) −1054.70 + 369.057i −1.43302 + 0.501436i
\(737\) −171.060 171.060i −0.232103 0.232103i
\(738\) −195.860 + 406.707i −0.265392 + 0.551093i
\(739\) 72.0915 + 639.830i 0.0975527 + 0.865805i 0.943237 + 0.332121i \(0.107764\pi\)
−0.845684 + 0.533684i \(0.820807\pi\)
\(740\) −159.127 + 17.9293i −0.215036 + 0.0242288i
\(741\) −267.471 128.807i −0.360959 0.173829i
\(742\) −208.475 + 208.475i −0.280964 + 0.280964i
\(743\) 147.582 + 421.766i 0.198630 + 0.567653i 0.999514 0.0311669i \(-0.00992233\pi\)
−0.800884 + 0.598820i \(0.795637\pi\)
\(744\) −58.0475 92.3820i −0.0780208 0.124169i
\(745\) −300.314 + 144.624i −0.403106 + 0.194126i
\(746\) 421.450 1204.44i 0.564947 1.61453i
\(747\) 118.054 26.9451i 0.158038 0.0360711i
\(748\) −611.538 + 766.844i −0.817564 + 1.02519i
\(749\) 482.408 + 604.921i 0.644070 + 0.807638i
\(750\) −183.256 + 802.896i −0.244341 + 1.07053i
\(751\) 523.385 832.962i 0.696917 1.10914i −0.291381 0.956607i \(-0.594115\pi\)
0.988299 0.152531i \(-0.0487423\pi\)
\(752\) −109.905 + 975.438i −0.146151 + 1.29712i
\(753\) 552.385i 0.733580i
\(754\) −483.997 + 96.3746i −0.641905 + 0.127818i
\(755\) 355.769 0.471217
\(756\) −469.539 52.9044i −0.621083 0.0699793i
\(757\) −315.734 198.389i −0.417086 0.262073i 0.307100 0.951677i \(-0.400641\pi\)
−0.724186 + 0.689605i \(0.757784\pi\)
\(758\) 21.3047 +