Properties

Label 29.3.f.a.2.3
Level 29
Weight 3
Character 29.2
Analytic conductor 0.790
Analytic rank 0
Dimension 48
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 29 \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 29.f (of order \(28\) and degree \(12\))

Newform invariants

Self dual: No
Analytic conductor: \(0.790192766645\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(4\) over \(\Q(\zeta_{28})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 2.3
Character \(\chi\) = 29.2
Dual form 29.3.f.a.15.3

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.415096 + 0.0467701i) q^{2}\) \(+(2.68233 + 1.68542i) q^{3}\) \(+(-3.72959 - 0.851255i) q^{4}\) \(+(0.738700 - 0.589093i) q^{5}\) \(+(1.03460 + 0.825065i) q^{6}\) \(+(-0.577468 - 2.53005i) q^{7}\) \(+(-3.08546 - 1.07965i) q^{8}\) \(+(0.449302 + 0.932984i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.415096 + 0.0467701i) q^{2}\) \(+(2.68233 + 1.68542i) q^{3}\) \(+(-3.72959 - 0.851255i) q^{4}\) \(+(0.738700 - 0.589093i) q^{5}\) \(+(1.03460 + 0.825065i) q^{6}\) \(+(-0.577468 - 2.53005i) q^{7}\) \(+(-3.08546 - 1.07965i) q^{8}\) \(+(0.449302 + 0.932984i) q^{9}\) \(+(0.334184 - 0.209981i) q^{10}\) \(+(-8.65125 + 3.02720i) q^{11}\) \(+(-8.56928 - 8.56928i) q^{12}\) \(+(-4.51239 + 9.37008i) q^{13}\) \(+(-0.121374 - 1.07722i) q^{14}\) \(+(2.97431 - 0.335124i) q^{15}\) \(+(12.5564 + 6.04684i) q^{16}\) \(+(21.4949 - 21.4949i) q^{17}\) \(+(0.142868 + 0.408292i) q^{18}\) \(+(14.2589 + 22.6929i) q^{19}\) \(+(-3.25652 + 1.56826i) q^{20}\) \(+(2.71524 - 7.75971i) q^{21}\) \(+(-3.73269 + 0.851961i) q^{22}\) \(+(-2.27710 + 2.85539i) q^{23}\) \(+(-6.45655 - 8.09626i) q^{24}\) \(+(-5.36438 + 23.5029i) q^{25}\) \(+(-2.31132 + 3.67844i) q^{26}\) \(+(2.82493 - 25.0719i) q^{27}\) \(+9.92764i q^{28}\) \(+(-24.3191 - 15.7981i) q^{29}\) \(+1.25030 q^{30}\) \(+(21.7090 + 2.44602i) q^{31}\) \(+(16.0007 + 10.0539i) q^{32}\) \(+(-28.3076 - 6.46103i) q^{33}\) \(+(9.92777 - 7.91713i) q^{34}\) \(+(-1.91701 - 1.52877i) q^{35}\) \(+(-0.881504 - 3.86212i) q^{36}\) \(+(-46.0478 - 16.1128i) q^{37}\) \(+(4.85746 + 10.0866i) q^{38}\) \(+(-27.8962 + 17.5284i) q^{39}\) \(+(-2.91524 + 1.02009i) q^{40}\) \(+(-25.3355 - 25.3355i) q^{41}\) \(+(1.49001 - 3.09404i) q^{42}\) \(+(2.78030 + 24.6759i) q^{43}\) \(+(34.8426 - 3.92581i) q^{44}\) \(+(0.881514 + 0.424515i) q^{45}\) \(+(-1.07876 + 1.07876i) q^{46}\) \(+(7.49184 + 21.4104i) q^{47}\) \(+(23.4889 + 37.3824i) q^{48}\) \(+(38.0798 - 18.3383i) q^{49}\) \(+(-3.32597 + 9.50507i) q^{50}\) \(+(93.8843 - 21.4285i) q^{51}\) \(+(24.8057 - 31.1054i) q^{52}\) \(+(-18.6271 - 23.3576i) q^{53}\) \(+(2.34523 - 10.2751i) q^{54}\) \(+(-4.60737 + 7.33259i) q^{55}\) \(+(-0.949813 + 8.42982i) q^{56}\) \(+84.9020i q^{57}\) \(+(-9.35591 - 7.69514i) q^{58}\) \(+18.2577 q^{59}\) \(+(-11.3782 - 1.28202i) q^{60}\) \(+(-78.8333 - 49.5342i) q^{61}\) \(+(8.89694 + 2.03067i) q^{62}\) \(+(2.10104 - 1.67552i) q^{63}\) \(+(-37.4125 - 29.8355i) q^{64}\) \(+(2.18655 + 9.57990i) q^{65}\) \(+(-11.4482 - 4.00590i) q^{66}\) \(+(24.5454 + 50.9691i) q^{67}\) \(+(-98.4648 + 61.8696i) q^{68}\) \(+(-10.9205 + 3.82123i) q^{69}\) \(+(-0.724244 - 0.724244i) q^{70}\) \(+(56.1438 - 116.584i) q^{71}\) \(+(-0.379006 - 3.36377i) q^{72}\) \(+(47.2614 - 5.32509i) q^{73}\) \(+(-18.3607 - 8.84204i) q^{74}\) \(+(-54.0012 + 54.0012i) q^{75}\) \(+(-33.8624 - 96.7732i) q^{76}\) \(+(12.6548 + 20.1400i) q^{77}\) \(+(-12.3994 + 5.97125i) q^{78}\) \(+(-13.7375 + 39.2594i) q^{79}\) \(+(12.8375 - 2.93009i) q^{80}\) \(+(55.6449 - 69.7765i) q^{81}\) \(+(-9.33174 - 11.7016i) q^{82}\) \(+(-29.4538 + 129.046i) q^{83}\) \(+(-16.7322 + 26.6292i) q^{84}\) \(+(3.21577 - 28.5408i) q^{85}\) \(+10.3729i q^{86}\) \(+(-38.6056 - 83.3636i) q^{87}\) \(+29.9614 q^{88}\) \(+(32.3276 + 3.64244i) q^{89}\) \(+(0.346059 + 0.217443i) q^{90}\) \(+(26.3125 + 6.00567i) q^{91}\) \(+(10.9233 - 8.71105i) q^{92}\) \(+(54.1082 + 43.1499i) q^{93}\) \(+(2.10847 + 9.23779i) q^{94}\) \(+(23.9012 + 8.36341i) q^{95}\) \(+(25.9741 + 53.9358i) q^{96}\) \(+(-36.1089 + 22.6888i) q^{97}\) \(+(16.6645 - 5.83115i) q^{98}\) \(+(-6.71135 - 6.71135i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(48q \) \(\mathstrut -\mathstrut 16q^{2} \) \(\mathstrut -\mathstrut 12q^{3} \) \(\mathstrut -\mathstrut 14q^{4} \) \(\mathstrut -\mathstrut 14q^{5} \) \(\mathstrut -\mathstrut 14q^{6} \) \(\mathstrut -\mathstrut 10q^{7} \) \(\mathstrut +\mathstrut 28q^{8} \) \(\mathstrut -\mathstrut 14q^{9} \) \(\mathstrut -\mathstrut 20q^{10} \) \(\mathstrut -\mathstrut 8q^{11} \) \(\mathstrut -\mathstrut 68q^{12} \) \(\mathstrut -\mathstrut 14q^{13} \) \(\mathstrut +\mathstrut 26q^{14} \) \(\mathstrut -\mathstrut 4q^{15} \) \(\mathstrut +\mathstrut 18q^{16} \) \(\mathstrut -\mathstrut 26q^{17} \) \(\mathstrut -\mathstrut 34q^{18} \) \(\mathstrut +\mathstrut 2q^{19} \) \(\mathstrut +\mathstrut 46q^{20} \) \(\mathstrut +\mathstrut 218q^{21} \) \(\mathstrut +\mathstrut 154q^{22} \) \(\mathstrut +\mathstrut 56q^{23} \) \(\mathstrut +\mathstrut 154q^{24} \) \(\mathstrut -\mathstrut 34q^{25} \) \(\mathstrut +\mathstrut 110q^{26} \) \(\mathstrut +\mathstrut 126q^{27} \) \(\mathstrut -\mathstrut 170q^{29} \) \(\mathstrut +\mathstrut 24q^{30} \) \(\mathstrut -\mathstrut 88q^{31} \) \(\mathstrut -\mathstrut 132q^{32} \) \(\mathstrut -\mathstrut 224q^{33} \) \(\mathstrut -\mathstrut 224q^{34} \) \(\mathstrut -\mathstrut 210q^{35} \) \(\mathstrut -\mathstrut 434q^{36} \) \(\mathstrut -\mathstrut 56q^{37} \) \(\mathstrut -\mathstrut 294q^{38} \) \(\mathstrut -\mathstrut 232q^{39} \) \(\mathstrut -\mathstrut 492q^{40} \) \(\mathstrut -\mathstrut 34q^{41} \) \(\mathstrut -\mathstrut 14q^{42} \) \(\mathstrut +\mathstrut 176q^{43} \) \(\mathstrut +\mathstrut 126q^{44} \) \(\mathstrut +\mathstrut 114q^{45} \) \(\mathstrut +\mathstrut 744q^{46} \) \(\mathstrut +\mathstrut 208q^{47} \) \(\mathstrut +\mathstrut 640q^{48} \) \(\mathstrut +\mathstrut 506q^{49} \) \(\mathstrut +\mathstrut 732q^{50} \) \(\mathstrut +\mathstrut 322q^{51} \) \(\mathstrut +\mathstrut 690q^{52} \) \(\mathstrut -\mathstrut 14q^{53} \) \(\mathstrut -\mathstrut 36q^{54} \) \(\mathstrut +\mathstrut 284q^{55} \) \(\mathstrut +\mathstrut 332q^{56} \) \(\mathstrut -\mathstrut 508q^{58} \) \(\mathstrut -\mathstrut 44q^{59} \) \(\mathstrut -\mathstrut 316q^{60} \) \(\mathstrut -\mathstrut 30q^{61} \) \(\mathstrut -\mathstrut 504q^{62} \) \(\mathstrut -\mathstrut 686q^{63} \) \(\mathstrut -\mathstrut 896q^{64} \) \(\mathstrut -\mathstrut 554q^{65} \) \(\mathstrut -\mathstrut 608q^{66} \) \(\mathstrut -\mathstrut 574q^{67} \) \(\mathstrut -\mathstrut 796q^{68} \) \(\mathstrut -\mathstrut 806q^{69} \) \(\mathstrut -\mathstrut 1066q^{70} \) \(\mathstrut +\mathstrut 224q^{71} \) \(\mathstrut +\mathstrut 748q^{72} \) \(\mathstrut -\mathstrut 22q^{73} \) \(\mathstrut +\mathstrut 820q^{74} \) \(\mathstrut +\mathstrut 768q^{75} \) \(\mathstrut +\mathstrut 514q^{76} \) \(\mathstrut +\mathstrut 436q^{77} \) \(\mathstrut +\mathstrut 282q^{78} \) \(\mathstrut +\mathstrut 564q^{79} \) \(\mathstrut +\mathstrut 1162q^{80} \) \(\mathstrut +\mathstrut 670q^{81} \) \(\mathstrut -\mathstrut 18q^{82} \) \(\mathstrut -\mathstrut 126q^{83} \) \(\mathstrut +\mathstrut 572q^{84} \) \(\mathstrut +\mathstrut 38q^{85} \) \(\mathstrut -\mathstrut 118q^{87} \) \(\mathstrut -\mathstrut 384q^{88} \) \(\mathstrut -\mathstrut 160q^{89} \) \(\mathstrut -\mathstrut 828q^{90} \) \(\mathstrut -\mathstrut 434q^{91} \) \(\mathstrut -\mathstrut 1022q^{92} \) \(\mathstrut -\mathstrut 406q^{93} \) \(\mathstrut -\mathstrut 2q^{94} \) \(\mathstrut -\mathstrut 642q^{95} \) \(\mathstrut -\mathstrut 1176q^{96} \) \(\mathstrut +\mathstrut 604q^{97} \) \(\mathstrut -\mathstrut 102q^{98} \) \(\mathstrut +\mathstrut 316q^{99} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/29\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{28}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.415096 + 0.0467701i 0.207548 + 0.0233851i 0.215126 0.976586i \(-0.430984\pi\)
−0.00757815 + 0.999971i \(0.502412\pi\)
\(3\) 2.68233 + 1.68542i 0.894110 + 0.561807i 0.898886 0.438182i \(-0.144377\pi\)
−0.00477622 + 0.999989i \(0.501520\pi\)
\(4\) −3.72959 0.851255i −0.932398 0.212814i
\(5\) 0.738700 0.589093i 0.147740 0.117819i −0.546831 0.837243i \(-0.684166\pi\)
0.694571 + 0.719425i \(0.255594\pi\)
\(6\) 1.03460 + 0.825065i 0.172433 + 0.137511i
\(7\) −0.577468 2.53005i −0.0824954 0.361436i 0.916784 0.399383i \(-0.130775\pi\)
−0.999280 + 0.0379466i \(0.987918\pi\)
\(8\) −3.08546 1.07965i −0.385682 0.134956i
\(9\) 0.449302 + 0.932984i 0.0499224 + 0.103665i
\(10\) 0.334184 0.209981i 0.0334184 0.0209981i
\(11\) −8.65125 + 3.02720i −0.786477 + 0.275200i −0.693489 0.720467i \(-0.743928\pi\)
−0.0929879 + 0.995667i \(0.529642\pi\)
\(12\) −8.56928 8.56928i −0.714107 0.714107i
\(13\) −4.51239 + 9.37008i −0.347107 + 0.720775i −0.999305 0.0372733i \(-0.988133\pi\)
0.652198 + 0.758049i \(0.273847\pi\)
\(14\) −0.121374 1.07722i −0.00866957 0.0769445i
\(15\) 2.97431 0.335124i 0.198287 0.0223416i
\(16\) 12.5564 + 6.04684i 0.784774 + 0.377927i
\(17\) 21.4949 21.4949i 1.26441 1.26441i 0.315469 0.948936i \(-0.397838\pi\)
0.948936 0.315469i \(-0.102162\pi\)
\(18\) 0.142868 + 0.408292i 0.00793709 + 0.0226829i
\(19\) 14.2589 + 22.6929i 0.750467 + 1.19436i 0.975498 + 0.220010i \(0.0706090\pi\)
−0.225030 + 0.974352i \(0.572248\pi\)
\(20\) −3.25652 + 1.56826i −0.162826 + 0.0784128i
\(21\) 2.71524 7.75971i 0.129297 0.369510i
\(22\) −3.73269 + 0.851961i −0.169668 + 0.0387255i
\(23\) −2.27710 + 2.85539i −0.0990042 + 0.124147i −0.828866 0.559448i \(-0.811013\pi\)
0.729861 + 0.683595i \(0.239585\pi\)
\(24\) −6.45655 8.09626i −0.269023 0.337344i
\(25\) −5.36438 + 23.5029i −0.214575 + 0.940115i
\(26\) −2.31132 + 3.67844i −0.0888969 + 0.141479i
\(27\) 2.82493 25.0719i 0.104627 0.928589i
\(28\) 9.92764i 0.354558i
\(29\) −24.3191 15.7981i −0.838591 0.544761i
\(30\) 1.25030 0.0416766
\(31\) 21.7090 + 2.44602i 0.700291 + 0.0789039i 0.454929 0.890528i \(-0.349665\pi\)
0.245362 + 0.969431i \(0.421093\pi\)
\(32\) 16.0007 + 10.0539i 0.500022 + 0.314185i
\(33\) −28.3076 6.46103i −0.857807 0.195789i
\(34\) 9.92777 7.91713i 0.291993 0.232857i
\(35\) −1.91701 1.52877i −0.0547718 0.0436790i
\(36\) −0.881504 3.86212i −0.0244862 0.107281i
\(37\) −46.0478 16.1128i −1.24454 0.435482i −0.373927 0.927458i \(-0.621989\pi\)
−0.870608 + 0.491976i \(0.836275\pi\)
\(38\) 4.85746 + 10.0866i 0.127828 + 0.265437i
\(39\) −27.8962 + 17.5284i −0.715288 + 0.449445i
\(40\) −2.91524 + 1.02009i −0.0728810 + 0.0255021i
\(41\) −25.3355 25.3355i −0.617940 0.617940i 0.327063 0.945003i \(-0.393941\pi\)
−0.945003 + 0.327063i \(0.893941\pi\)
\(42\) 1.49001 3.09404i 0.0354764 0.0736675i
\(43\) 2.78030 + 24.6759i 0.0646582 + 0.573857i 0.983715 + 0.179733i \(0.0575234\pi\)
−0.919057 + 0.394124i \(0.871048\pi\)
\(44\) 34.8426 3.92581i 0.791877 0.0892231i
\(45\) 0.881514 + 0.424515i 0.0195892 + 0.00943366i
\(46\) −1.07876 + 1.07876i −0.0234513 + 0.0234513i
\(47\) 7.49184 + 21.4104i 0.159401 + 0.455541i 0.995690 0.0927479i \(-0.0295651\pi\)
−0.836289 + 0.548289i \(0.815279\pi\)
\(48\) 23.4889 + 37.3824i 0.489352 + 0.778800i
\(49\) 38.0798 18.3383i 0.777138 0.374250i
\(50\) −3.32597 + 9.50507i −0.0665193 + 0.190101i
\(51\) 93.8843 21.4285i 1.84087 0.420166i
\(52\) 24.8057 31.1054i 0.477033 0.598181i
\(53\) −18.6271 23.3576i −0.351454 0.440709i 0.574409 0.818568i \(-0.305232\pi\)
−0.925863 + 0.377859i \(0.876660\pi\)
\(54\) 2.34523 10.2751i 0.0434303 0.190280i
\(55\) −4.60737 + 7.33259i −0.0837704 + 0.133320i
\(56\) −0.949813 + 8.42982i −0.0169609 + 0.150533i
\(57\) 84.9020i 1.48951i
\(58\) −9.35591 7.69514i −0.161309 0.132675i
\(59\) 18.2577 0.309453 0.154726 0.987957i \(-0.450550\pi\)
0.154726 + 0.987957i \(0.450550\pi\)
\(60\) −11.3782 1.28202i −0.189637 0.0213670i
\(61\) −78.8333 49.5342i −1.29235 0.812037i −0.302362 0.953193i \(-0.597775\pi\)
−0.989987 + 0.141156i \(0.954918\pi\)
\(62\) 8.89694 + 2.03067i 0.143499 + 0.0327527i
\(63\) 2.10104 1.67552i 0.0333499 0.0265956i
\(64\) −37.4125 29.8355i −0.584570 0.466179i
\(65\) 2.18655 + 9.57990i 0.0336392 + 0.147383i
\(66\) −11.4482 4.00590i −0.173458 0.0606955i
\(67\) 24.5454 + 50.9691i 0.366349 + 0.760732i 0.999916 0.0129558i \(-0.00412406\pi\)
−0.633567 + 0.773688i \(0.718410\pi\)
\(68\) −98.4648 + 61.8696i −1.44801 + 0.909846i
\(69\) −10.9205 + 3.82123i −0.158267 + 0.0553802i
\(70\) −0.724244 0.724244i −0.0103463 0.0103463i
\(71\) 56.1438 116.584i 0.790758 1.64203i 0.0243218 0.999704i \(-0.492257\pi\)
0.766436 0.642321i \(-0.222028\pi\)
\(72\) −0.379006 3.36377i −0.00526397 0.0467190i
\(73\) 47.2614 5.32509i 0.647417 0.0729464i 0.217851 0.975982i \(-0.430095\pi\)
0.429566 + 0.903036i \(0.358667\pi\)
\(74\) −18.3607 8.84204i −0.248117 0.119487i
\(75\) −54.0012 + 54.0012i −0.720016 + 0.720016i
\(76\) −33.8624 96.7732i −0.445558 1.27333i
\(77\) 12.6548 + 20.1400i 0.164348 + 0.261558i
\(78\) −12.3994 + 5.97125i −0.158967 + 0.0765545i
\(79\) −13.7375 + 39.2594i −0.173892 + 0.496954i −0.997536 0.0701522i \(-0.977652\pi\)
0.823644 + 0.567107i \(0.191937\pi\)
\(80\) 12.8375 2.93009i 0.160469 0.0366261i
\(81\) 55.6449 69.7765i 0.686974 0.861438i
\(82\) −9.33174 11.7016i −0.113802 0.142703i
\(83\) −29.4538 + 129.046i −0.354865 + 1.55477i 0.410921 + 0.911671i \(0.365207\pi\)
−0.765786 + 0.643095i \(0.777650\pi\)
\(84\) −16.7322 + 26.6292i −0.199193 + 0.317014i
\(85\) 3.21577 28.5408i 0.0378326 0.335774i
\(86\) 10.3729i 0.120615i
\(87\) −38.6056 83.3636i −0.443742 0.958203i
\(88\) 29.9614 0.340470
\(89\) 32.3276 + 3.64244i 0.363231 + 0.0409263i 0.291694 0.956512i \(-0.405781\pi\)
0.0715370 + 0.997438i \(0.477210\pi\)
\(90\) 0.346059 + 0.217443i 0.00384510 + 0.00241603i
\(91\) 26.3125 + 6.00567i 0.289149 + 0.0659963i
\(92\) 10.9233 8.71105i 0.118732 0.0946853i
\(93\) 54.1082 + 43.1499i 0.581809 + 0.463977i
\(94\) 2.10847 + 9.23779i 0.0224305 + 0.0982744i
\(95\) 23.9012 + 8.36341i 0.251592 + 0.0880359i
\(96\) 25.9741 + 53.9358i 0.270564 + 0.561831i
\(97\) −36.1089 + 22.6888i −0.372257 + 0.233905i −0.705147 0.709061i \(-0.749119\pi\)
0.332890 + 0.942966i \(0.391976\pi\)
\(98\) 16.6645 5.83115i 0.170046 0.0595015i
\(99\) −6.71135 6.71135i −0.0677914 0.0677914i
\(100\) 40.0139 83.0897i 0.400139 0.830897i
\(101\) 10.9637 + 97.3053i 0.108551 + 0.963419i 0.923425 + 0.383780i \(0.125378\pi\)
−0.814873 + 0.579639i \(0.803194\pi\)
\(102\) 39.9733 4.50390i 0.391895 0.0441559i
\(103\) −66.1244 31.8438i −0.641985 0.309164i 0.0844205 0.996430i \(-0.473096\pi\)
−0.726405 + 0.687267i \(0.758810\pi\)
\(104\) 24.0392 24.0392i 0.231146 0.231146i
\(105\) −2.56545 7.33162i −0.0244328 0.0698250i
\(106\) −6.63959 10.5668i −0.0626376 0.0996872i
\(107\) 55.3820 26.6706i 0.517589 0.249258i −0.156805 0.987630i \(-0.550119\pi\)
0.674394 + 0.738372i \(0.264405\pi\)
\(108\) −31.8784 + 91.1033i −0.295171 + 0.843549i
\(109\) 154.567 35.2790i 1.41805 0.323660i 0.556294 0.830985i \(-0.312223\pi\)
0.861755 + 0.507325i \(0.169366\pi\)
\(110\) −2.25545 + 2.82824i −0.0205041 + 0.0257113i
\(111\) −96.3585 120.830i −0.868095 1.08856i
\(112\) 8.04790 35.2602i 0.0718562 0.314823i
\(113\) −46.5316 + 74.0546i −0.411784 + 0.655351i −0.986642 0.162902i \(-0.947914\pi\)
0.574858 + 0.818253i \(0.305057\pi\)
\(114\) −3.97088 + 35.2425i −0.0348323 + 0.309145i
\(115\) 3.45070i 0.0300061i
\(116\) 77.2523 + 79.6222i 0.665968 + 0.686398i
\(117\) −10.7696 −0.0920475
\(118\) 7.57871 + 0.853915i 0.0642263 + 0.00723657i
\(119\) −66.7958 41.9706i −0.561309 0.352694i
\(120\) −9.53890 2.17719i −0.0794909 0.0181433i
\(121\) −28.9215 + 23.0641i −0.239020 + 0.190612i
\(122\) −30.4067 24.2485i −0.249235 0.198759i
\(123\) −25.2572 110.659i −0.205343 0.899669i
\(124\) −78.8837 27.6026i −0.636159 0.222602i
\(125\) 20.1314 + 41.8033i 0.161051 + 0.334426i
\(126\) 0.950499 0.597238i 0.00754365 0.00473999i
\(127\) −171.713 + 60.0851i −1.35207 + 0.473111i −0.906527 0.422148i \(-0.861276\pi\)
−0.445546 + 0.895259i \(0.646990\pi\)
\(128\) −67.5837 67.5837i −0.527998 0.527998i
\(129\) −34.1315 + 70.8748i −0.264585 + 0.549417i
\(130\) 0.459576 + 4.07885i 0.00353520 + 0.0313757i
\(131\) −72.7489 + 8.19683i −0.555335 + 0.0625712i −0.385172 0.922845i \(-0.625858\pi\)
−0.170163 + 0.985416i \(0.554429\pi\)
\(132\) 100.076 + 48.1940i 0.758151 + 0.365106i
\(133\) 49.1801 49.1801i 0.369775 0.369775i
\(134\) 7.80488 + 22.3051i 0.0582454 + 0.166456i
\(135\) −12.6829 20.1848i −0.0939476 0.149517i
\(136\) −89.5284 + 43.1146i −0.658297 + 0.317019i
\(137\) 65.2470 186.465i 0.476255 1.36106i −0.415933 0.909395i \(-0.636545\pi\)
0.892188 0.451664i \(-0.149169\pi\)
\(138\) −4.71176 + 1.07543i −0.0341432 + 0.00779296i
\(139\) −38.5551 + 48.3466i −0.277375 + 0.347817i −0.900932 0.433961i \(-0.857116\pi\)
0.623557 + 0.781778i \(0.285687\pi\)
\(140\) 5.84830 + 7.33354i 0.0417736 + 0.0523824i
\(141\) −15.9900 + 70.0568i −0.113404 + 0.496856i
\(142\) 28.7577 45.7677i 0.202519 0.322308i
\(143\) 10.6727 94.7228i 0.0746343 0.662397i
\(144\) 14.4318i 0.100221i
\(145\) −27.2711 + 2.65621i −0.188076 + 0.0183187i
\(146\) 19.8671 0.136076
\(147\) 133.050 + 14.9912i 0.905103 + 0.101981i
\(148\) 158.023 + 99.2927i 1.06773 + 0.670897i
\(149\) −29.6561 6.76882i −0.199034 0.0454283i 0.121841 0.992550i \(-0.461120\pi\)
−0.320876 + 0.947121i \(0.603977\pi\)
\(150\) −24.9414 + 19.8901i −0.166276 + 0.132601i
\(151\) 110.649 + 88.2399i 0.732777 + 0.584370i 0.917177 0.398481i \(-0.130463\pi\)
−0.184399 + 0.982851i \(0.559034\pi\)
\(152\) −19.4948 85.4124i −0.128255 0.561924i
\(153\) 29.7121 + 10.3967i 0.194197 + 0.0679523i
\(154\) 4.31101 + 8.95191i 0.0279936 + 0.0581293i
\(155\) 17.4774 10.9818i 0.112757 0.0708501i
\(156\) 118.963 41.6269i 0.762582 0.266839i
\(157\) 19.5784 + 19.5784i 0.124703 + 0.124703i 0.766704 0.642001i \(-0.221895\pi\)
−0.642001 + 0.766704i \(0.721895\pi\)
\(158\) −7.53854 + 15.6539i −0.0477123 + 0.0990755i
\(159\) −10.5966 94.0472i −0.0666451 0.591492i
\(160\) 17.7424 1.99909i 0.110890 0.0124943i
\(161\) 8.53923 + 4.11228i 0.0530387 + 0.0255421i
\(162\) 26.3615 26.3615i 0.162725 0.162725i
\(163\) 34.1257 + 97.5257i 0.209360 + 0.598317i 0.999901 0.0140927i \(-0.00448600\pi\)
−0.790541 + 0.612410i \(0.790200\pi\)
\(164\) 72.9242 + 116.058i 0.444660 + 0.707672i
\(165\) −24.7170 + 11.9031i −0.149800 + 0.0721398i
\(166\) −18.2617 + 52.1888i −0.110010 + 0.314390i
\(167\) −262.410 + 59.8934i −1.57132 + 0.358643i −0.917414 0.397934i \(-0.869727\pi\)
−0.653904 + 0.756577i \(0.726870\pi\)
\(168\) −16.7555 + 21.0107i −0.0997351 + 0.125064i
\(169\) 37.9331 + 47.5666i 0.224456 + 0.281459i
\(170\) 2.66971 11.6968i 0.0157042 0.0688045i
\(171\) −14.7656 + 23.4993i −0.0863483 + 0.137423i
\(172\) 10.6361 94.3977i 0.0618376 0.548824i
\(173\) 126.379i 0.730512i −0.930907 0.365256i \(-0.880981\pi\)
0.930907 0.365256i \(-0.119019\pi\)
\(174\) −12.1261 36.4095i −0.0696903 0.209250i
\(175\) 62.5612 0.357493
\(176\) −126.933 14.3020i −0.721213 0.0812612i
\(177\) 48.9732 + 30.7719i 0.276685 + 0.173852i
\(178\) 13.2487 + 3.02393i 0.0744309 + 0.0169884i
\(179\) 220.984 176.229i 1.23455 0.984520i 0.234626 0.972086i \(-0.424614\pi\)
0.999923 0.0124338i \(-0.00395789\pi\)
\(180\) −2.92632 2.33366i −0.0162573 0.0129648i
\(181\) 51.3580 + 225.014i 0.283746 + 1.24317i 0.892949 + 0.450157i \(0.148632\pi\)
−0.609204 + 0.793014i \(0.708511\pi\)
\(182\) 10.6414 + 3.72357i 0.0584690 + 0.0204592i
\(183\) −127.971 265.734i −0.699295 1.45210i
\(184\) 10.1087 6.35171i 0.0549386 0.0345202i
\(185\) −43.5075 + 15.2239i −0.235175 + 0.0822914i
\(186\) 20.4420 + 20.4420i 0.109903 + 0.109903i
\(187\) −120.888 + 251.027i −0.646461 + 1.34239i
\(188\) −9.71575 86.2297i −0.0516795 0.458669i
\(189\) −65.0645 + 7.33101i −0.344257 + 0.0387884i
\(190\) 9.53017 + 4.58949i 0.0501588 + 0.0241552i
\(191\) 68.5806 68.5806i 0.359061 0.359061i −0.504406 0.863467i \(-0.668289\pi\)
0.863467 + 0.504406i \(0.168289\pi\)
\(192\) −50.0674 143.084i −0.260767 0.745231i
\(193\) −16.7176 26.6059i −0.0866198 0.137855i 0.800604 0.599194i \(-0.204512\pi\)
−0.887224 + 0.461339i \(0.847369\pi\)
\(194\) −16.0499 + 7.72920i −0.0827312 + 0.0398413i
\(195\) −10.2811 + 29.3817i −0.0527236 + 0.150675i
\(196\) −157.633 + 35.9786i −0.804248 + 0.183564i
\(197\) −63.4701 + 79.5889i −0.322183 + 0.404005i −0.916377 0.400317i \(-0.868900\pi\)
0.594194 + 0.804322i \(0.297471\pi\)
\(198\) −2.47197 3.09975i −0.0124847 0.0156553i
\(199\) 34.8200 152.557i 0.174975 0.766616i −0.808927 0.587909i \(-0.799951\pi\)
0.983902 0.178707i \(-0.0571915\pi\)
\(200\) 41.9264 66.7254i 0.209632 0.333627i
\(201\) −20.0654 + 178.085i −0.0998278 + 0.885996i
\(202\) 40.9039i 0.202494i
\(203\) −25.9264 + 70.6516i −0.127716 + 0.348037i
\(204\) −368.391 −1.80584
\(205\) −33.6403 3.79036i −0.164099 0.0184895i
\(206\) −25.9587 16.3109i −0.126013 0.0791792i
\(207\) −3.68714 0.841565i −0.0178123 0.00406553i
\(208\) −113.319 + 90.3686i −0.544801 + 0.434465i
\(209\) −192.053 153.157i −0.918914 0.732810i
\(210\) −0.722007 3.16332i −0.00343813 0.0150634i
\(211\) −19.1966 6.71718i −0.0909791 0.0318350i 0.284406 0.958704i \(-0.408204\pi\)
−0.375385 + 0.926869i \(0.622489\pi\)
\(212\) 49.5881 + 102.971i 0.233906 + 0.485711i
\(213\) 347.089 218.090i 1.62952 1.02390i
\(214\) 24.2363 8.48064i 0.113254 0.0396291i
\(215\) 16.5902 + 16.5902i 0.0771637 + 0.0771637i
\(216\) −35.7850 + 74.3084i −0.165671 + 0.344020i
\(217\) −6.34771 56.3375i −0.0292521 0.259620i
\(218\) 65.8104 7.41505i 0.301882 0.0340140i
\(219\) 135.746 + 65.3717i 0.619844 + 0.298501i
\(220\) 23.4255 23.4255i 0.106480 0.106480i
\(221\) 104.415 + 298.402i 0.472468 + 1.35024i
\(222\) −34.3469 54.6627i −0.154716 0.246228i
\(223\) 228.933 110.248i 1.02661 0.494387i 0.156721 0.987643i \(-0.449908\pi\)
0.869884 + 0.493256i \(0.164193\pi\)
\(224\) 16.1970 46.2884i 0.0723081 0.206645i
\(225\) −24.3380 + 5.55500i −0.108169 + 0.0246889i
\(226\) −22.7787 + 28.5635i −0.100791 + 0.126387i
\(227\) 261.380 + 327.760i 1.15145 + 1.44388i 0.875836 + 0.482609i \(0.160311\pi\)
0.275617 + 0.961268i \(0.411118\pi\)
\(228\) 72.2733 316.650i 0.316988 1.38882i
\(229\) 140.386 223.424i 0.613041 0.975649i −0.385556 0.922685i \(-0.625990\pi\)
0.998596 0.0529641i \(-0.0168669\pi\)
\(230\) −0.161390 + 1.43237i −0.000701694 + 0.00622771i
\(231\) 75.3507i 0.326194i
\(232\) 57.9793 + 75.0004i 0.249911 + 0.323277i
\(233\) 233.305 1.00131 0.500654 0.865648i \(-0.333093\pi\)
0.500654 + 0.865648i \(0.333093\pi\)
\(234\) −4.47041 0.503694i −0.0191043 0.00215254i
\(235\) 18.1470 + 11.4025i 0.0772211 + 0.0485212i
\(236\) −68.0938 15.5420i −0.288533 0.0658558i
\(237\) −103.017 + 82.1533i −0.434671 + 0.346638i
\(238\) −25.7637 20.5459i −0.108251 0.0863272i
\(239\) 37.0417 + 162.290i 0.154986 + 0.679038i 0.991392 + 0.130928i \(0.0417956\pi\)
−0.836406 + 0.548111i \(0.815347\pi\)
\(240\) 39.3730 + 13.7772i 0.164054 + 0.0574050i
\(241\) −119.624 248.401i −0.496363 1.03071i −0.987204 0.159460i \(-0.949025\pi\)
0.490841 0.871249i \(-0.336689\pi\)
\(242\) −13.0839 + 8.22116i −0.0540657 + 0.0339717i
\(243\) 52.5283 18.3804i 0.216166 0.0756397i
\(244\) 251.850 + 251.850i 1.03217 + 1.03217i
\(245\) 17.3266 35.9790i 0.0707207 0.146853i
\(246\) −5.30865 47.1155i −0.0215799 0.191527i
\(247\) −276.976 + 31.2077i −1.12136 + 0.126347i
\(248\) −64.3414 30.9852i −0.259441 0.124940i
\(249\) −296.501 + 296.501i −1.19077 + 1.19077i
\(250\) 6.40133 + 18.2940i 0.0256053 + 0.0731758i
\(251\) −222.330 353.836i −0.885777 1.40971i −0.912062 0.410052i \(-0.865511\pi\)
0.0262849 0.999654i \(-0.491632\pi\)
\(252\) −9.26233 + 4.46050i −0.0367553 + 0.0177004i
\(253\) 11.0559 31.5959i 0.0436992 0.124885i
\(254\) −74.0878 + 16.9100i −0.291684 + 0.0665750i
\(255\) 56.7289 71.1358i 0.222466 0.278964i
\(256\) 94.4490 + 118.435i 0.368941 + 0.462638i
\(257\) 2.48412 10.8836i 0.00966583 0.0423487i −0.969865 0.243643i \(-0.921658\pi\)
0.979531 + 0.201294i \(0.0645147\pi\)
\(258\) −17.4827 + 27.8235i −0.0677624 + 0.107843i
\(259\) −14.1752 + 125.808i −0.0547303 + 0.485745i
\(260\) 37.5904i 0.144579i
\(261\) 3.81273 29.7875i 0.0146082 0.114128i
\(262\) −30.5812 −0.116722
\(263\) −325.997 36.7310i −1.23953 0.139662i −0.532246 0.846590i \(-0.678652\pi\)
−0.707285 + 0.706928i \(0.750080\pi\)
\(264\) 80.3662 + 50.4975i 0.304418 + 0.191278i
\(265\) −27.5196 6.28117i −0.103848 0.0237025i
\(266\) 22.7146 18.1143i 0.0853934 0.0680990i
\(267\) 80.5742 + 64.2558i 0.301776 + 0.240658i
\(268\) −48.1567 210.988i −0.179689 0.787270i
\(269\) 292.071 + 102.200i 1.08577 + 0.379926i 0.813066 0.582172i \(-0.197797\pi\)
0.272702 + 0.962099i \(0.412083\pi\)
\(270\) −4.32059 8.97181i −0.0160022 0.0332289i
\(271\) 16.8213 10.5695i 0.0620712 0.0390019i −0.500639 0.865656i \(-0.666902\pi\)
0.562710 + 0.826654i \(0.309759\pi\)
\(272\) 399.874 139.922i 1.47013 0.514419i
\(273\) 60.4569 + 60.4569i 0.221454 + 0.221454i
\(274\) 35.8048 74.3494i 0.130674 0.271348i
\(275\) −24.7394 219.568i −0.0899615 0.798430i
\(276\) 43.9817 4.95555i 0.159354 0.0179549i
\(277\) −278.671 134.201i −1.00603 0.484480i −0.143051 0.989715i \(-0.545691\pi\)
−0.862981 + 0.505236i \(0.831406\pi\)
\(278\) −18.2653 + 18.2653i −0.0657024 + 0.0657024i
\(279\) 7.47180 + 21.3532i 0.0267807 + 0.0765347i
\(280\) 4.26433 + 6.78663i 0.0152297 + 0.0242380i
\(281\) −275.413 + 132.632i −0.980118 + 0.472000i −0.854146 0.520034i \(-0.825919\pi\)
−0.125972 + 0.992034i \(0.540205\pi\)
\(282\) −9.91396 + 28.3325i −0.0351559 + 0.100470i
\(283\) −104.652 + 23.8861i −0.369794 + 0.0844032i −0.403380 0.915033i \(-0.632165\pi\)
0.0335853 + 0.999436i \(0.489307\pi\)
\(284\) −308.636 + 387.017i −1.08675 + 1.36274i
\(285\) 50.0152 + 62.7171i 0.175492 + 0.220060i
\(286\) 8.86040 38.8199i 0.0309804 0.135734i
\(287\) −49.4697 + 78.7306i −0.172368 + 0.274323i
\(288\) −2.19100 + 19.4457i −0.00760763 + 0.0675196i
\(289\) 635.060i 2.19744i
\(290\) −11.4444 0.172888i −0.0394633 0.000596165i
\(291\) −135.096 −0.464248
\(292\) −180.799 20.3712i −0.619175 0.0697642i
\(293\) −230.684 144.948i −0.787318 0.494705i 0.0773772 0.997002i \(-0.475345\pi\)
−0.864695 + 0.502297i \(0.832488\pi\)
\(294\) 54.5275 + 12.4456i 0.185468 + 0.0423318i
\(295\) 13.4870 10.7555i 0.0457185 0.0364593i
\(296\) 124.682 + 99.4308i 0.421224 + 0.335915i
\(297\) 51.4586 + 225.455i 0.173261 + 0.759108i
\(298\) −11.9936 4.19673i −0.0402469 0.0140830i
\(299\) −16.4801 34.2212i −0.0551173 0.114452i
\(300\) 247.372 155.434i 0.824572 0.518113i
\(301\) 60.8257 21.2838i 0.202079 0.0707104i
\(302\) 41.8032 + 41.8032i 0.138421 + 0.138421i
\(303\) −134.592 + 279.483i −0.444198 + 0.922388i
\(304\) 41.8199 + 371.162i 0.137565 + 1.22093i
\(305\) −87.4144 + 9.84924i −0.286605 + 0.0322926i
\(306\) 11.8471 + 5.70527i 0.0387161 + 0.0186447i
\(307\) −134.403 + 134.403i −0.437796 + 0.437796i −0.891270 0.453473i \(-0.850185\pi\)
0.453473 + 0.891270i \(0.350185\pi\)
\(308\) −30.0530 85.8865i −0.0975746 0.278852i
\(309\) −123.697 196.863i −0.400315 0.637097i
\(310\) 7.76842 3.74108i 0.0250594 0.0120680i
\(311\) 60.8757 173.973i 0.195742 0.559398i −0.803619 0.595144i \(-0.797095\pi\)
0.999361 + 0.0357461i \(0.0113808\pi\)
\(312\) 104.997 23.9649i 0.336529 0.0768106i
\(313\) 263.236 330.088i 0.841010 1.05459i −0.156746 0.987639i \(-0.550101\pi\)
0.997756 0.0669540i \(-0.0213281\pi\)
\(314\) 7.21125 + 9.04262i 0.0229658 + 0.0287981i
\(315\) 0.564998 2.47542i 0.00179364 0.00785847i
\(316\) 84.6549 134.728i 0.267895 0.426353i
\(317\) −45.6880 + 405.492i −0.144126 + 1.27915i 0.688466 + 0.725268i \(0.258284\pi\)
−0.832592 + 0.553886i \(0.813144\pi\)
\(318\) 39.5343i 0.124322i
\(319\) 258.215 + 63.0541i 0.809451 + 0.197662i
\(320\) −45.2125 −0.141289
\(321\) 193.504 + 21.8027i 0.602816 + 0.0679210i
\(322\) 3.35227 + 2.10637i 0.0104108 + 0.00654153i
\(323\) 794.274 + 181.288i 2.45905 + 0.561263i
\(324\) −266.930 + 212.870i −0.823860 + 0.657006i
\(325\) −196.018 156.319i −0.603131 0.480981i
\(326\) 9.60417 + 42.0786i 0.0294607 + 0.129076i
\(327\) 474.060 + 165.881i 1.44973 + 0.507281i
\(328\) 50.8182 + 105.525i 0.154934 + 0.321723i
\(329\) 49.8432 31.3186i 0.151499 0.0951932i
\(330\) −10.8166 + 3.78491i −0.0327777 + 0.0114694i
\(331\) 53.9759 + 53.9759i 0.163069 + 0.163069i 0.783925 0.620856i \(-0.213215\pi\)
−0.620856 + 0.783925i \(0.713215\pi\)
\(332\) 219.702 456.215i 0.661752 1.37414i
\(333\) −5.65634 50.2014i −0.0169860 0.150755i
\(334\) −111.727 + 12.5886i −0.334511 + 0.0376904i
\(335\) 48.1572 + 23.1913i 0.143753 + 0.0692277i
\(336\) 81.0153 81.0153i 0.241117 0.241117i
\(337\) −100.512 287.246i −0.298255 0.852363i −0.991318 0.131486i \(-0.958025\pi\)
0.693063 0.720877i \(-0.256261\pi\)
\(338\) 13.5212 + 21.5189i 0.0400035 + 0.0636652i
\(339\) −249.626 + 120.214i −0.736361 + 0.354613i
\(340\) −36.2890 + 103.708i −0.106732 + 0.305024i
\(341\) −195.215 + 44.5565i −0.572478 + 0.130664i
\(342\) −7.22820 + 9.06387i −0.0211351 + 0.0265025i
\(343\) −147.670 185.172i −0.430525 0.539861i
\(344\) 18.0627 79.1380i 0.0525080 0.230052i
\(345\) −5.81587 + 9.25591i −0.0168576 + 0.0268287i
\(346\) 5.91075 52.4593i 0.0170831 0.151617i
\(347\) 3.76060i 0.0108375i −0.999985 0.00541873i \(-0.998275\pi\)
0.999985 0.00541873i \(-0.00172484\pi\)
\(348\) 73.0194 + 343.776i 0.209826 + 0.987861i
\(349\) 227.541 0.651979 0.325989 0.945373i \(-0.394303\pi\)
0.325989 + 0.945373i \(0.394303\pi\)
\(350\) 25.9689 + 2.92600i 0.0741970 + 0.00835999i
\(351\) 222.179 + 139.604i 0.632988 + 0.397732i
\(352\) −168.861 38.5415i −0.479720 0.109493i
\(353\) −317.199 + 252.957i −0.898579 + 0.716593i −0.959548 0.281547i \(-0.909153\pi\)
0.0609682 + 0.998140i \(0.480581\pi\)
\(354\) 18.8894 + 15.0638i 0.0533599 + 0.0425531i
\(355\) −27.2053 119.194i −0.0766347 0.335759i
\(356\) −117.468 41.1039i −0.329967 0.115460i
\(357\) −108.430 225.158i −0.303726 0.630694i
\(358\) 99.9720 62.8166i 0.279251 0.175465i
\(359\) −237.999 + 83.2794i −0.662949 + 0.231976i −0.640717 0.767777i \(-0.721363\pi\)
−0.0222319 + 0.999753i \(0.507077\pi\)
\(360\) −2.26155 2.26155i −0.00628207 0.00628207i
\(361\) −155.019 + 321.900i −0.429415 + 0.891690i
\(362\) 10.7946 + 95.8045i 0.0298193 + 0.264653i
\(363\) −116.450 + 13.1207i −0.320798 + 0.0361452i
\(364\) −93.0227 44.7974i −0.255557 0.123070i
\(365\) 31.7750 31.7750i 0.0870549 0.0870549i
\(366\) −40.6919 116.291i −0.111180 0.317734i
\(367\) −246.647 392.537i −0.672063 1.06958i −0.992492 0.122310i \(-0.960970\pi\)
0.320429 0.947273i \(-0.396173\pi\)
\(368\) −45.8582 + 22.0841i −0.124615 + 0.0600112i
\(369\) 12.2544 35.0209i 0.0332096 0.0949077i
\(370\) −18.7718 + 4.28454i −0.0507346 + 0.0115799i
\(371\) −48.3394 + 60.6157i −0.130295 + 0.163385i
\(372\) −165.070 206.991i −0.443737 0.556429i
\(373\) −55.7998 + 244.475i −0.149597 + 0.655429i 0.843399 + 0.537287i \(0.180551\pi\)
−0.992997 + 0.118142i \(0.962306\pi\)
\(374\) −61.9209 + 98.5465i −0.165564 + 0.263493i
\(375\) −16.4570 + 146.060i −0.0438854 + 0.389494i
\(376\) 74.1495i 0.197206i
\(377\) 257.767 156.585i 0.683731 0.415345i
\(378\) −27.3509 −0.0723570
\(379\) 487.332 + 54.9091i 1.28584 + 0.144879i 0.728291 0.685268i \(-0.240315\pi\)
0.557545 + 0.830147i \(0.311743\pi\)
\(380\) −82.0226 51.5382i −0.215849 0.135627i
\(381\) −561.860 128.241i −1.47470 0.336590i
\(382\) 31.6751 25.2600i 0.0829190 0.0661257i
\(383\) 172.689 + 137.715i 0.450886 + 0.359570i 0.822450 0.568838i \(-0.192607\pi\)
−0.371564 + 0.928407i \(0.621178\pi\)
\(384\) −67.3749 295.189i −0.175455 0.768721i
\(385\) 21.2124 + 7.42255i 0.0550972 + 0.0192794i
\(386\) −5.69506 11.8259i −0.0147540 0.0306371i
\(387\) −21.7730 + 13.6809i −0.0562610 + 0.0353511i
\(388\) 153.986 53.8819i 0.396870 0.138871i
\(389\) −291.445 291.445i −0.749217 0.749217i 0.225115 0.974332i \(-0.427724\pi\)
−0.974332 + 0.225115i \(0.927724\pi\)
\(390\) −5.64183 + 11.7154i −0.0144662 + 0.0300395i
\(391\) 12.4303 + 110.322i 0.0317911 + 0.282154i
\(392\) −137.292 + 15.4691i −0.350236 + 0.0394621i
\(393\) −208.952 100.626i −0.531684 0.256045i
\(394\) −30.0686 + 30.0686i −0.0763162 + 0.0763162i
\(395\) 12.9796 + 37.0935i 0.0328597 + 0.0939077i
\(396\) 19.3175 + 30.7437i 0.0487817 + 0.0776356i
\(397\) −65.4912 + 31.5389i −0.164965 + 0.0794430i −0.514544 0.857464i \(-0.672039\pi\)
0.349579 + 0.936907i \(0.386325\pi\)
\(398\) 21.5888 61.6972i 0.0542431 0.155018i
\(399\) 214.806 49.0281i 0.538362 0.122878i
\(400\) −209.475 + 262.674i −0.523688 + 0.656684i
\(401\) 324.268 + 406.619i 0.808649 + 1.01401i 0.999475 + 0.0323898i \(0.0103118\pi\)
−0.190826 + 0.981624i \(0.561117\pi\)
\(402\) −16.6581 + 72.9841i −0.0414382 + 0.181552i
\(403\) −120.879 + 192.378i −0.299948 + 0.477365i
\(404\) 41.9416 372.242i 0.103816 0.921392i
\(405\) 84.3239i 0.208207i
\(406\) −14.0663 + 28.1146i −0.0346462 + 0.0692479i
\(407\) 447.148 1.09864
\(408\) −312.811 35.2453i −0.766694 0.0863856i
\(409\) 250.417 + 157.347i 0.612266 + 0.384712i 0.802174 0.597090i \(-0.203676\pi\)
−0.189909 + 0.981802i \(0.560819\pi\)
\(410\) −13.7867 3.14673i −0.0336261 0.00767494i
\(411\) 489.286 390.192i 1.19048 0.949373i
\(412\) 219.510 + 175.053i 0.532791 + 0.424887i
\(413\) −10.5432 46.1929i −0.0255284 0.111847i
\(414\) −1.49116 0.521779i −0.00360183 0.00126033i
\(415\) 54.2624 + 112.677i 0.130753 + 0.271511i
\(416\) −166.407 + 104.561i −0.400018 + 0.251348i
\(417\) −184.902 + 64.6999i −0.443410 + 0.155156i
\(418\) −72.5574 72.5574i −0.173582 0.173582i
\(419\) 59.7192 124.008i 0.142528 0.295962i −0.817469 0.575972i \(-0.804624\pi\)
0.959997 + 0.280010i \(0.0903379\pi\)
\(420\) 3.32699 + 29.5278i 0.00792140 + 0.0703044i
\(421\) 432.517 48.7330i 1.02736 0.115755i 0.417833 0.908524i \(-0.362790\pi\)
0.609523 + 0.792768i \(0.291361\pi\)
\(422\) −7.65428 3.68611i −0.0181381 0.00873485i
\(423\) −16.6095 + 16.6095i −0.0392660 + 0.0392660i
\(424\) 32.2550 + 92.1795i 0.0760731 + 0.217404i
\(425\) 389.885 + 620.498i 0.917376 + 1.46000i
\(426\) 154.275 74.2951i 0.362149 0.174402i
\(427\) −79.8005 + 228.057i −0.186886 + 0.534091i
\(428\) −229.256 + 52.3262i −0.535645 + 0.122257i
\(429\) 188.275 236.090i 0.438870 0.550326i
\(430\) 6.11061 + 7.66246i 0.0142107 + 0.0178197i
\(431\) 38.3560 168.049i 0.0889930 0.389904i −0.910741 0.412979i \(-0.864488\pi\)
0.999734 + 0.0230748i \(0.00734557\pi\)
\(432\) 187.077 297.731i 0.433048 0.689192i
\(433\) 5.55493 49.3014i 0.0128289 0.113860i −0.985666 0.168711i \(-0.946040\pi\)
0.998495 + 0.0548506i \(0.0174682\pi\)
\(434\) 23.6824i 0.0545677i
\(435\) −77.6269 38.8384i −0.178453 0.0892836i
\(436\) −606.505 −1.39107
\(437\) −97.2658 10.9592i −0.222576 0.0250783i
\(438\) 53.2902 + 33.4844i 0.121667 + 0.0764485i
\(439\) 190.067 + 43.3816i 0.432955 + 0.0988191i 0.433443 0.901181i \(-0.357298\pi\)
−0.000488576 1.00000i \(0.500156\pi\)
\(440\) 22.1324 17.6500i 0.0503010 0.0401137i
\(441\) 34.2186 + 27.2884i 0.0775932 + 0.0618785i
\(442\) 29.3862 + 128.749i 0.0664845 + 0.291288i
\(443\) −228.033 79.7920i −0.514746 0.180117i 0.0603905 0.998175i \(-0.480765\pi\)
−0.575137 + 0.818057i \(0.695051\pi\)
\(444\) 256.521 + 532.672i 0.577751 + 1.19971i
\(445\) 26.0261 16.3533i 0.0584856 0.0367490i
\(446\) 100.186 35.0565i 0.224631 0.0786019i
\(447\) −68.1392 68.1392i −0.152437 0.152437i
\(448\) −53.8807 + 111.884i −0.120269 + 0.249742i
\(449\) −55.8565 495.740i −0.124402 1.10410i −0.888461 0.458952i \(-0.848225\pi\)
0.764059 0.645147i \(-0.223204\pi\)
\(450\) −10.3624 + 1.16757i −0.0230276 + 0.00259459i
\(451\) 295.880 + 142.488i 0.656053 + 0.315938i
\(452\) 236.583 236.583i 0.523415 0.523415i
\(453\) 148.077 + 423.179i 0.326880 + 0.934171i
\(454\) 93.1685 + 148.277i 0.205217 + 0.326601i
\(455\) 22.9750 11.0642i 0.0504944 0.0243168i
\(456\) 91.6642 261.961i 0.201018 0.574476i
\(457\) 204.659 46.7120i 0.447831 0.102215i 0.00734312 0.999973i \(-0.497663\pi\)
0.440488 + 0.897759i \(0.354805\pi\)
\(458\) 68.7234 86.1764i 0.150051 0.188158i
\(459\) −478.197 599.639i −1.04182 1.30640i
\(460\) 2.93743 12.8697i 0.00638571 0.0279776i
\(461\) −129.473 + 206.054i −0.280852 + 0.446973i −0.957124 0.289679i \(-0.906451\pi\)
0.676272 + 0.736652i \(0.263594\pi\)
\(462\) −3.52417 + 31.2778i −0.00762806 + 0.0677009i
\(463\) 710.071i 1.53363i 0.641868 + 0.766815i \(0.278160\pi\)
−0.641868 + 0.766815i \(0.721840\pi\)
\(464\) −209.832 345.421i −0.452225 0.744441i
\(465\) 65.3890 0.140622
\(466\) 96.8439 + 10.9117i 0.207820 + 0.0234156i
\(467\) −676.037 424.782i −1.44762 0.909598i −0.999881 0.0154315i \(-0.995088\pi\)
−0.447735 0.894166i \(-0.647769\pi\)
\(468\) 40.1661 + 9.16765i 0.0858250 + 0.0195890i
\(469\) 114.780 91.5341i 0.244734 0.195169i
\(470\) 6.99944 + 5.58187i 0.0148924 + 0.0118763i
\(471\) 19.5179 + 85.5136i 0.0414393 + 0.181558i
\(472\) −56.3333 19.7119i −0.119350 0.0417625i
\(473\) −98.7519 205.061i −0.208778 0.433532i
\(474\) −46.6043 + 29.2834i −0.0983213 + 0.0617794i
\(475\) −609.838 + 213.391i −1.28387 + 0.449245i
\(476\) 213.393 + 213.393i 0.448306 + 0.448306i
\(477\) 13.4231 27.8734i 0.0281407 0.0584347i
\(478\) 7.78553 + 69.0985i 0.0162877 + 0.144558i
\(479\) −483.953 + 54.5284i −1.01034 + 0.113838i −0.601587 0.798807i \(-0.705465\pi\)
−0.408753 + 0.912645i \(0.634036\pi\)
\(480\) 50.9603 + 24.5412i 0.106167 + 0.0511275i
\(481\) 358.764 358.764i 0.745872 0.745872i
\(482\) −38.0376 108.705i −0.0789161 0.225529i
\(483\) 15.9741 + 25.4227i 0.0330727 + 0.0526349i
\(484\) 127.499 61.4001i 0.263427 0.126860i
\(485\) −13.3079 + 38.0317i −0.0274389 + 0.0784159i
\(486\) 22.6640 5.17290i 0.0466337 0.0106438i
\(487\) −72.6889 + 91.1490i −0.149259 + 0.187164i −0.850840 0.525425i \(-0.823906\pi\)
0.701581 + 0.712589i \(0.252478\pi\)
\(488\) 189.757 + 237.948i 0.388847 + 0.487598i
\(489\) −72.8353 + 319.112i −0.148947 + 0.652581i
\(490\) 8.87495 14.1244i 0.0181121 0.0288253i
\(491\) 75.7150 671.989i 0.154206 1.36861i −0.643445 0.765493i \(-0.722495\pi\)
0.797650 0.603120i \(-0.206076\pi\)
\(492\) 434.214i 0.882550i
\(493\) −862.315 + 183.159i −1.74912 + 0.371520i
\(494\) −116.431 −0.235691
\(495\) −8.91129 1.00406i −0.0180026 0.00202841i
\(496\) 257.796 + 161.984i 0.519751 + 0.326581i
\(497\) −327.384 74.7233i −0.658721 0.150349i
\(498\) −136.944 + 109.209i −0.274988 + 0.219295i
\(499\) −611.573 487.713i −1.22560 0.977381i −0.999995 0.00316117i \(-0.998994\pi\)
−0.225602 0.974220i \(-0.572435\pi\)
\(500\) −39.4967 173.046i −0.0789934 0.346093i
\(501\) −804.816 281.617i −1.60642 0.562110i
\(502\) −75.7395 157.275i −0.150875 0.313296i
\(503\) −418.298 + 262.834i −0.831606 + 0.522533i −0.879266 0.476331i \(-0.841967\pi\)
0.0476598 + 0.998864i \(0.484824\pi\)
\(504\) −8.29164 + 2.90137i −0.0164517 + 0.00575669i
\(505\) 65.4208 + 65.4208i 0.129546 + 0.129546i
\(506\) 6.06701 12.5983i 0.0119901 0.0248978i
\(507\) 21.5794 + 191.522i 0.0425629 + 0.377756i
\(508\) 691.569 77.9211i 1.36136 0.153388i
\(509\) 658.293 + 317.017i 1.29331 + 0.622823i 0.948775 0.315952i \(-0.102324\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(510\) 26.8750 26.8750i 0.0526961 0.0526961i
\(511\) −40.7647 116.499i −0.0797744 0.227982i
\(512\) 237.068 + 377.292i 0.463023 + 0.736898i
\(513\) 609.234 293.392i 1.18759 0.571914i
\(514\) 1.54018 4.40157i 0.00299645 0.00856337i
\(515\) −67.6051 + 15.4304i −0.131272 + 0.0299620i
\(516\) 187.629 235.280i 0.363622 0.455968i
\(517\) −129.627 162.548i −0.250730 0.314406i
\(518\) −11.7681 + 51.5595i −0.0227184 + 0.0995356i
\(519\) 213.001 338.989i 0.410407 0.653158i
\(520\) 3.59641 31.9190i 0.00691618 0.0613828i
\(521\) 412.503i 0.791753i 0.918304 + 0.395876i \(0.129559\pi\)
−0.918304 + 0.395876i \(0.870441\pi\)
\(522\) 2.97581 12.1864i 0.00570079 0.0233455i
\(523\) −54.7428 −0.104671 −0.0523354 0.998630i \(-0.516666\pi\)
−0.0523354 + 0.998630i \(0.516666\pi\)
\(524\) 278.301 + 31.3570i 0.531110 + 0.0598417i
\(525\) 167.810 + 105.442i 0.319638 + 0.200842i
\(526\) −133.602 30.4938i −0.253996 0.0579730i
\(527\) 519.210 414.056i 0.985219 0.785686i
\(528\) −316.373 252.299i −0.599190 0.477838i
\(529\) 114.745 + 502.733i 0.216910 + 0.950346i
\(530\) −11.1295 3.89439i −0.0209991 0.00734790i
\(531\) 8.20321 + 17.0341i 0.0154486 + 0.0320794i
\(532\) −225.287 + 141.557i −0.423471 + 0.266084i
\(533\) 351.720 123.072i 0.659887 0.230904i
\(534\) 30.4408 + 30.4408i 0.0570053 + 0.0570053i
\(535\) 25.1992 52.3267i 0.0471013 0.0978069i
\(536\) −20.7051 183.763i −0.0386290 0.342842i
\(537\) 889.772 100.253i 1.65693 0.186691i
\(538\) 116.458 + 56.0832i 0.216465 + 0.104244i
\(539\) −273.924 + 273.924i −0.508208 + 0.508208i
\(540\) 30.1198 + 86.0774i 0.0557774 + 0.159403i
\(541\) −6.00071 9.55008i −0.0110919 0.0176526i 0.841132 0.540829i \(-0.181890\pi\)
−0.852224 + 0.523177i \(0.824747\pi\)
\(542\) 7.47680 3.60064i 0.0137948 0.00664324i
\(543\) −241.484 + 690.121i −0.444722 + 1.27094i
\(544\) 560.041 127.826i 1.02949 0.234974i
\(545\) 93.3962 117.115i 0.171369 0.214890i
\(546\) 22.2679 + 27.9230i 0.0407836 + 0.0511410i
\(547\) −11.9903 + 52.5331i −0.0219202 + 0.0960385i −0.984705 0.174232i \(-0.944256\pi\)
0.962785 + 0.270270i \(0.0871130\pi\)
\(548\) −402.074 + 639.897i −0.733712 + 1.16770i
\(549\) 10.7948 95.8061i 0.0196626 0.174510i
\(550\) 92.2991i 0.167817i
\(551\) 11.7400 777.134i 0.0213068 1.41041i
\(552\) 37.8202 0.0685148
\(553\) 107.261 + 12.0854i 0.193962 + 0.0218543i
\(554\) −109.399 68.7398i −0.197471 0.124079i
\(555\) −142.360 32.4928i −0.256505 0.0585455i
\(556\) 184.950 147.493i 0.332644 0.265275i
\(557\) 543.971 + 433.802i 0.976608 + 0.778819i 0.975233 0.221180i \(-0.0709909\pi\)
0.00137506 + 0.999999i \(0.499562\pi\)
\(558\) 2.10283 + 9.21309i 0.00376851 + 0.0165109i
\(559\) −243.761 85.2955i −0.436066 0.152586i
\(560\) −14.8265 30.7876i −0.0264760 0.0549779i
\(561\) −747.348 + 469.590i −1.33217 + 0.837059i
\(562\) −120.526 + 42.1740i −0.214460 + 0.0750426i
\(563\) −319.915 319.915i −0.568233 0.568233i 0.363400 0.931633i \(-0.381616\pi\)
−0.931633 + 0.363400i \(0.881616\pi\)
\(564\) 119.272 247.672i 0.211476 0.439134i
\(565\) 9.25221 + 82.1156i 0.0163756 + 0.145337i
\(566\) −44.5578 + 5.02045i −0.0787239 + 0.00887006i
\(567\) −208.671 100.491i −0.368027 0.177232i
\(568\) −299.099 + 299.099i −0.526582 + 0.526582i
\(569\) 173.583 + 496.072i 0.305067 + 0.871832i 0.989727 + 0.142969i \(0.0456650\pi\)
−0.684660 + 0.728863i \(0.740049\pi\)
\(570\) 17.8278 + 28.3728i 0.0312769 + 0.0497769i
\(571\) 619.219 298.200i 1.08445 0.522242i 0.195711 0.980662i \(-0.437299\pi\)
0.888736 + 0.458419i \(0.151584\pi\)
\(572\) −120.438 + 344.192i −0.210556 + 0.601735i
\(573\) 299.543 68.3687i 0.522762 0.119317i
\(574\) −24.2170 + 30.3671i −0.0421898 + 0.0529044i
\(575\) −54.8946 68.8357i −0.0954689 0.119714i
\(576\) 11.0265 48.3104i 0.0191433 0.0838722i
\(577\) −30.2263 + 48.1049i −0.0523853 + 0.0833707i −0.871890 0.489702i \(-0.837106\pi\)
0.819505 + 0.573072i \(0.194249\pi\)
\(578\) 29.7019 263.611i 0.0513873 0.456075i
\(579\) 99.5421i 0.171921i
\(580\) 103.971 + 13.3081i 0.179261 + 0.0229449i
\(581\) 343.501 0.591223
\(582\) −56.0780 6.31847i −0.0963539 0.0108565i
\(583\) 231.855 + 145.684i 0.397694 + 0.249888i
\(584\) −151.572 34.5954i −0.259542 0.0592387i
\(585\) −7.95547 + 6.34428i −0.0135991 + 0.0108449i
\(586\) −88.9769 70.9567i −0.151838 0.121087i
\(587\) −71.8016 314.583i −0.122320 0.535917i −0.998541 0.0540076i \(-0.982800\pi\)
0.876221 0.481910i \(-0.160057\pi\)
\(588\) −483.462 169.171i −0.822214 0.287705i
\(589\) 254.039 + 527.518i 0.431306 + 0.895616i
\(590\) 6.10142 3.83378i 0.0103414 0.00649793i
\(591\) −304.388 + 106.510i −0.515040 + 0.180220i
\(592\) −480.762 480.762i −0.812099 0.812099i
\(593\) 209.288 434.591i 0.352931 0.732869i −0.646621 0.762812i \(-0.723818\pi\)
0.999552 + 0.0299430i \(0.00953257\pi\)
\(594\) 10.8157 + 95.9923i 0.0182083 + 0.161603i
\(595\) −74.0666 + 8.34530i −0.124482 + 0.0140257i
\(596\) 104.843 + 50.4899i 0.175912 + 0.0847146i
\(597\) 350.521 350.521i 0.587137 0.587137i
\(598\) −5.24029 14.9759i −0.00876302 0.0250433i
\(599\) 452.046 + 719.427i 0.754668 + 1.20105i 0.974254 + 0.225454i \(0.0723865\pi\)
−0.219586 + 0.975593i \(0.570471\pi\)
\(600\) 224.921 108.316i 0.374868 0.180527i
\(601\) 241.988 691.562i 0.402642 1.15069i −0.546941 0.837171i \(-0.684208\pi\)
0.949584 0.313514i \(-0.101506\pi\)
\(602\) 26.2440 5.99001i 0.0435946 0.00995019i
\(603\) −36.5251 + 45.8010i −0.0605722 + 0.0759552i
\(604\) −337.563 423.290i −0.558878 0.700811i
\(605\) −7.77737 + 34.0749i −0.0128552 + 0.0563221i
\(606\) −68.9402 + 109.718i −0.113763 + 0.181052i
\(607\) −27.7513 + 246.300i −0.0457188 + 0.405766i 0.949921 + 0.312489i \(0.101163\pi\)
−0.995640 + 0.0932767i \(0.970266\pi\)
\(608\) 506.460i 0.832993i
\(609\) −188.621 + 145.814i −0.309722 + 0.239432i
\(610\) −36.7461 −0.0602395
\(611\) −234.424 26.4132i −0.383672 0.0432295i
\(612\) −101.964 64.0681i −0.166607 0.104686i
\(613\) 1.19680 + 0.273162i 0.00195236 + 0.000445614i 0.223497 0.974705i \(-0.428253\pi\)
−0.221545 + 0.975150i \(0.571110\pi\)
\(614\) −62.0765 + 49.5043i −0.101102 + 0.0806260i
\(615\) −83.8461 66.8651i −0.136335 0.108724i
\(616\) −17.3017 75.8038i −0.0280872 0.123058i
\(617\) −285.233 99.8075i −0.462291 0.161762i 0.0890772 0.996025i \(-0.471608\pi\)
−0.551368 + 0.834262i \(0.685894\pi\)
\(618\) −42.1390 87.5025i −0.0681861 0.141590i
\(619\) −272.432 + 171.181i −0.440117 + 0.276544i −0.733808 0.679356i \(-0.762259\pi\)
0.293691 + 0.955900i \(0.405116\pi\)
\(620\) −74.5319 + 26.0798i −0.120213 + 0.0420642i
\(621\) 65.1574 + 65.1574i 0.104923 + 0.104923i
\(622\) 33.4060 69.3683i 0.0537074 0.111525i
\(623\) −9.45256 83.8938i −0.0151727 0.134661i
\(624\) −456.267 + 51.4090i −0.731197 + 0.0823862i
\(625\) −503.501 242.473i −0.805601 0.387957i
\(626\) 124.707 124.707i 0.199212 0.199212i
\(627\) −257.016 734.508i −0.409913 1.17146i
\(628\) −56.3533 89.6858i −0.0897346 0.142812i
\(629\) −1336.14 + 643.449i −2.12422 + 1.02297i
\(630\) 0.350304 1.00111i 0.000556039 0.00158907i
\(631\) 680.376 155.291i 1.07825 0.246103i 0.353723 0.935350i \(-0.384916\pi\)
0.724527 + 0.689247i \(0.242058\pi\)
\(632\) 84.7726 106.301i 0.134134 0.168199i
\(633\) −40.1703 50.3720i −0.0634603 0.0795766i
\(634\) −37.9298 + 166.181i −0.0598262 + 0.262116i
\(635\) −91.4488 + 145.540i −0.144014 + 0.229197i
\(636\) −40.5373 + 359.778i −0.0637378 + 0.565689i
\(637\) 439.560i 0.690047i
\(638\) 104.235 + 38.2503i 0.163378 + 0.0599534i
\(639\) 133.996 0.209697
\(640\) −89.7372 10.1110i −0.140214 0.0157984i
\(641\) −989.853 621.966i −1.54423 0.970306i −0.990485 0.137621i \(-0.956054\pi\)
−0.553748 0.832684i \(-0.686803\pi\)
\(642\) 79.3031 + 18.1004i 0.123525 + 0.0281938i
\(643\) −234.086 + 186.677i −0.364052 + 0.290322i −0.788382 0.615186i \(-0.789081\pi\)
0.424330 + 0.905508i \(0.360510\pi\)
\(644\) −28.3473 22.6062i −0.0440175 0.0351028i
\(645\) 16.5389 + 72.4618i 0.0256418 + 0.112344i
\(646\) 321.221 + 112.400i 0.497247 + 0.173994i
\(647\) 493.455 + 1024.67i 0.762681 + 1.58372i 0.811108 + 0.584897i \(0.198865\pi\)
−0.0484269 + 0.998827i \(0.515421\pi\)
\(648\) −247.024 + 155.215i −0.381210 + 0.239530i
\(649\) −157.952 + 55.2698i −0.243377 + 0.0851614i
\(650\) −74.0552 74.0552i −0.113931 0.113931i
\(651\) 77.9256 161.814i 0.119701 0.248563i
\(652\) −44.2558 392.781i −0.0678770 0.602425i
\(653\) 609.259 68.6470i 0.933015 0.105126i 0.367648 0.929965i \(-0.380163\pi\)
0.565367 + 0.824839i \(0.308735\pi\)
\(654\) 189.023 + 91.0285i 0.289025 + 0.139187i
\(655\) −48.9109 + 48.9109i −0.0746731 + 0.0746731i
\(656\) −164.923 471.322i −0.251407 0.718479i
\(657\) 26.2029 + 41.7016i 0.0398826 + 0.0634728i
\(658\) 22.1545 10.6691i 0.0336695 0.0162144i
\(659\) 176.059 503.147i 0.267161 0.763501i −0.729659 0.683811i \(-0.760321\pi\)
0.996820 0.0796900i \(-0.0253931\pi\)
\(660\) 102.317 23.3531i 0.155026 0.0353836i
\(661\) 620.208 777.717i 0.938288 1.17658i −0.0458100 0.998950i \(-0.514587\pi\)
0.984098 0.177626i \(-0.0568417\pi\)
\(662\) 19.8808 + 24.9297i 0.0300314 + 0.0376581i
\(663\) −222.856 + 976.397i −0.336133 + 1.47270i
\(664\) 230.202 366.365i 0.346690 0.551754i
\(665\) 7.35765 65.3010i 0.0110641 0.0981970i
\(666\) 21.1030i 0.0316861i
\(667\) 100.487 33.4669i 0.150655 0.0501752i
\(668\) 1029.67 1.54142
\(669\) 799.888 + 90.1258i 1.19565 + 0.134717i
\(670\) 18.9052 + 11.8789i 0.0282168 + 0.0177298i
\(671\) 831.957 + 189.889i 1.23988 + 0.282994i
\(672\) 121.461 96.8621i 0.180746 0.144140i
\(673\) 314.226 + 250.587i 0.466903 + 0.372343i 0.828498 0.559992i \(-0.189196\pi\)
−0.361594 + 0.932336i \(0.617767\pi\)
\(674\) −28.2876 123.936i −0.0419697 0.183881i
\(675\) 574.108 + 200.889i 0.850530 + 0.297613i
\(676\) −100.984 209.695i −0.149384 0.310199i
\(677\) 424.331 266.625i 0.626781 0.393833i −0.180858 0.983509i \(-0.557888\pi\)
0.807640 + 0.589676i \(0.200745\pi\)
\(678\) −109.241 + 38.2252i −0.161123 + 0.0563794i
\(679\) 78.2555 + 78.2555i 0.115251 + 0.115251i
\(680\) −40.7361 + 84.5893i −0.0599060 + 0.124396i
\(681\) 148.694 + 1319.69i 0.218346 + 1.93788i
\(682\) −83.1169 + 9.36503i −0.121872 + 0.0137317i
\(683\) −344.482 165.894i −0.504366 0.242890i 0.164358 0.986401i \(-0.447445\pi\)
−0.668724 + 0.743511i \(0.733159\pi\)
\(684\) 75.0734 75.0734i 0.109756 0.109756i
\(685\) −61.6474 176.178i −0.0899963 0.257195i
\(686\) −52.6368 83.7709i −0.0767300 0.122115i
\(687\) 753.125 362.686i 1.09625 0.527927i
\(688\) −114.300 + 326.652i −0.166134 + 0.474784i
\(689\) 302.915 69.1384i 0.439645 0.100346i
\(690\) −2.84705 + 3.57009i −0.00412616 + 0.00517404i
\(691\) −495.980 621.939i −0.717771 0.900056i 0.280439 0.959872i \(-0.409520\pi\)
−0.998209 + 0.0598158i \(0.980949\pi\)
\(692\) −107.580 + 471.341i −0.155463 + 0.681129i
\(693\) −13.1045 + 20.8557i −0.0189098 + 0.0300947i
\(694\) 0.175884 1.56101i 0.000253435 0.00224930i
\(695\) 58.4262i 0.0840664i
\(696\) 29.1125 + 298.895i 0.0418283 + 0.429447i
\(697\) −1089.17 −1.56265
\(698\) 94.4513 + 10.6421i 0.135317 + 0.0152466i
\(699\) 625.800 + 393.216i 0.895279 + 0.562541i
\(700\) −233.328 53.2556i −0.333326 0.0760794i
\(701\) −825.456 + 658.279i −1.17754 + 0.939057i −0.998993 0.0448739i \(-0.985711\pi\)
−0.178548 + 0.983931i \(0.557140\pi\)
\(702\) 85.6963 + 68.3405i 0.122074 + 0.0973511i
\(703\) −290.944 1274.71i −0.413860 1.81324i
\(704\) 413.983 + 144.859i 0.588044 + 0.205765i
\(705\) 29.4582 + 61.1705i 0.0417846 + 0.0867667i
\(706\) −143.499 + 90.1663i −0.203256 + 0.127714i
\(707\) 239.856 83.9294i 0.339259 0.118712i
\(708\) −156.455 156.455i −0.220982 0.220982i
\(709\) 313.200 650.367i 0.441749 0.917301i −0.554615 0.832107i \(-0.687135\pi\)
0.996364 0.0851945i \(-0.0271512\pi\)
\(710\) −5.71810 50.7495i −0.00805366 0.0714782i
\(711\) −42.8007 + 4.82248i −0.0601978 + 0.00678267i
\(712\) −95.8127 46.1410i −0.134568 0.0648048i
\(713\) −56.4179 + 56.4179i −0.0791275 + 0.0791275i
\(714\) −34.4784 98.5335i −0.0482890 0.138002i
\(715\) −47.9167 76.2589i −0.0670163 0.106656i
\(716\) −974.197 + 469.149i −1.36061 + 0.655236i
\(717\) −174.169 + 497.747i −0.242914 + 0.694207i
\(718\) −102.687 + 23.4377i −0.143019 + 0.0326431i
\(719\) −684.608 + 858.472i −0.952167 + 1.19398i 0.0287562 + 0.999586i \(0.490845\pi\)
−0.980924 + 0.194394i \(0.937726\pi\)
\(720\) 8.50166 + 10.6607i 0.0118079 + 0.0148066i
\(721\) −42.3818 + 185.687i −0.0587820 + 0.257541i
\(722\) −79.4031 + 126.369i −0.109977 + 0.175027i
\(723\) 97.7898 867.909i 0.135256 1.20043i
\(724\) 882.929i 1.21952i
\(725\) 501.757 486.823i 0.692079 0.671480i
\(726\) −48.9515 −0.0674263
\(727\) 31.1294 + 3.50744i 0.0428190 + 0.00482454i 0.133348 0.991069i \(-0.457427\pi\)
−0.0905290 + 0.995894i \(0.528856\pi\)
\(728\) −74.7022 46.9385i −0.102613 0.0644759i
\(729\) −611.212 139.505i −0.838425 0.191365i
\(730\) 14.6758 11.7036i 0.0201039 0.0160323i
\(731\) 590.167 + 470.643i 0.807342 + 0.643834i
\(732\) 251.072 + 1100.02i 0.342994 + 1.50276i
\(733\) 143.446 + 50.1941i 0.195698 + 0.0684776i 0.426348 0.904559i \(-0.359800\pi\)
−0.230651 + 0.973037i \(0.574085\pi\)
\(734\) −84.0234 174.476i −0.114473 0.237706i
\(735\) 107.115 67.3050i 0.145735 0.0915715i
\(736\) −65.1430 + 22.7945i −0.0885095 + 0.0309708i
\(737\) −366.642 366.642i −0.497479 0.497479i
\(738\) 6.72467 13.9639i 0.00911203 0.0189213i
\(739\) 125.579 + 1114.55i 0.169931 + 1.50818i 0.732122 + 0.681174i \(0.238530\pi\)
−0.562191 + 0.827008i \(0.690041\pi\)
\(740\) 175.225 19.7431i 0.236790 0.0266798i
\(741\) −795.538 383.111i −1.07360 0.517019i
\(742\) −22.9005 + 22.9005i −0.0308632 + 0.0308632i
\(743\) −63.5004 181.474i −0.0854649 0.244245i 0.893217 0.449625i \(-0.148442\pi\)
−0.978682 + 0.205381i \(0.934157\pi\)
\(744\) −120.362 191.555i −0.161777 0.257466i
\(745\) −25.8944 + 12.4701i −0.0347576 + 0.0167384i
\(746\) −34.5965 + 98.8710i −0.0463759 + 0.132535i
\(747\) −133.631 + 30.5004i −0.178890 + 0.0408306i
\(748\) 664.552 833.322i 0.888439 1.11407i
\(749\) −99.4592 124.718i −0.132789 0.166513i
\(750\) −13.6625 + 59.8593i −0.0182167 + 0.0798125i
\(751\) −192.970 + 307.110i −0.256950 + 0.408934i −0.950141 0.311820i \(-0.899061\pi\)
0.693191 + 0.720754i \(0.256204\pi\)
\(752\) −35.3950 + 314.140i −0.0470679 + 0.417739i
\(753\) 1323.83i 1.75807i
\(754\) 114.322 52.9422i 0.151620 0.0702151i
\(755\) 133.718 0.177110
\(756\) 248.905 + 28.0448i 0.329239 + 0.0370964i
\(757\) −145.660 91.5245i −0.192418 0.120904i 0.432377 0.901693i \(-0.357675\pi\)
−0.624796 + 0.780788i \(0.714818\pi\)